×
13.02.2018
218.016.2263

Результат интеллектуальной деятельности: Способ приготовления металлических наночастиц железа

Вид РИД

Изобретение

Аннотация: 10 Вт/см и частотой 22 кГц. Обеспечивают восстановление металла в виде осадка из металлических наночастиц железа, который затем сепарируют и высушивают. Полученные ферромагнитные наночастицы железа имеют объемоцентрированную кубическую упаковку. 2 ил.,1 табл." class = "blcSndTextValline"> Изобретение относится к приготовлению металлических наночастиц железа из водного золя на основе наночастиц ферригидрита и может быть использовано в медицине. Водный золь на основе наночастиц ферригидрита, полученных в результате культивирования бактерий Klebsiella oxytoca, выделенных из сапропеля озера Боровое Красноярского края, обрабатывают в режиме кавитации в течение 4-24 мин на аппарате серии "Волна" УЗТА-0,4/22-ОМ с интенсивностью ультразвукового воздействия >10 Вт/см и частотой 22 кГц. Обеспечивают восстановление металла в виде осадка из металлических наночастиц железа, который затем сепарируют и высушивают. Полученные ферромагнитные наночастицы железа имеют объемоцентрированную кубическую упаковку. 2 ил.,1 табл.
10 Вт/см и частотой 22 кГц, обеспечивают восстановление металла в виде осадка из металлических наночастиц железа, который затем сепарируют и высушивают." class = "blcSndTextValline">

Изобретение относится к способам получения магнитных наночастиц железа и может быть использовано в разработке новых биомедицинских технологий.

Известны различные способы получения наночастиц металлов путем восстановления из солей в растворах водородом или боргидридами металлов.

Известен способ получения наночастиц металлов (Fe, Со, Ni и др.) [п.РФ №2486130, МПК В82В 3/00, опубл. 27.06.2013], включающий восстановление их из органической соли металла, имеющей формулу M(OOC-R)n, или M(SOC-R)n, где R обозначает алкил, арил, С17Н33-, изоалкил, трет-алкил, алкиларил, диэтиламино-, возможно включающий гидроксильную или аминогруппу, n=l-3, М - металл в условиях термического воздействия при температурах (200-300°С) в среде углеводородного сырья, в качестве которого выступают тяжелые нефти, вакуумные газойли, прямогонные мазуты, гудроны, полугудроны, крекинг-остатки, нефтяные шламы индивидуально или в смеси, а также их смеси с горючими ископаемыми.

Недостатком данного способа является использование горючего углеводородного сырья.

Известен способ получения дисперсии наноразмерных порошков металлов [п. РФ №2410204, МПК B22F 9/24, опубл. 27.01.2011], включающий проведение окислительно-восстановительной реакции формиата соответствующего металла в среде углеводородов с добавлением серосодержащих поверхностно-активных веществ (ПАВ) под действием энергии ультразвуковых колебаний. Данным способом получают устойчивые дисперсии наночастиц золота, платины, кадмия, железа, кобальта, а также серебра в различных углеводородах.

Недостатком способа является ограниченность способа, который применим только для соединения металлов в виде формиата.

Известны способы восстановления серебра из аммиачного раствора оксида серебра [п. РФ №2448810, МПК B22F 9/24, опубл. 05.04.2011] (аммиачный раствор оксида серебра получают в результате предварительного смешения 4%-ного раствора нитрата серебра в этиловом спирте с 1%-ным раствором гидроксида натрия в этиловым спирте с получением осадка оксида серебра, через который далее пропускают газообразный аммиак до полного растворения осадка) в этиловом спирте под воздействием акустической кавитации в течение 5-15 мин в присутствии этиленгликоля, диэтиленгликоля или глицерина, взятых в качестве органического растворителя. Недостатком способа является его многоэтапность и отсутствие магнитных свойств у получаемых частиц.

Известен способ получения водного золя магнитных порошков на основе железа [«Способ получения устойчивого водного золя на основе магнитных наночастиц ферригидрита РФ, п. №2457074, Cl B22F 9/24, 27.07.2012], включающий получение устойчивого золя наночастиц ферригидрита, полученных в результате культивирования бактерий Klebsiella oxytoca, выделенных из сапропеля озеро Боровое Красноярского края. В результате высушивания золя получается магнитный порошок.

Недостаток способа заключается в низких значениях намагниченности насыщения наночастиц ферригидрита (~ 30 Гс), что ограничивает области их применения. Для сравнения намагниченность насыщения ферромагнитного Fe с объемоцентрированной кубической упаковкой (ОЦК) составляет 1700 Гс.

Наиболее близким аналогом по назначению является способ получения магнитного нанопорошка на основе железа, раскрытый в [UA 105662 С2, B22F 9/22, 10.06.2014 г.]. В данном изобретении разработан способ получения ферромагнитного порошка Fe3O4 - магнетита в результате разложения оксалата железа в углеводородной среде (парафин, стеарин), при температуре 450-470°С в течение 2-2,5 часов с последующей деагломерацией порошка в среде органического растворителя (спирты, альдегиды, кетоны, эфиры) с помощью ультразвука.

Недостаток данного способа заключается в его многоэтапности. На первом этапе осуществляют приготовление сухого порошка оксалата железа. На втором этапе используется печь с высокими температурами 450-470°С, в которой в результате разложения углеводородов в течение 2-2,5 часов формируются железосодержащие порошки. На третьем этапе в результате ультразвуковой обработки происходит деагломерация порошка Fe3O4 - магнетита. Намагниченность насыщения Fe3O4 - магнетита составляет 430 Гс, что более чем в 3 раза ниже намагниченности ОЦК - Fe.

Техническим результатом предлагаемого изобретения является разработка способа приготовления ферромагнитных наночастиц ОЦК - Fe из золей наночастиц ферригидрита с органической составляющей после ультразвуковой обработки в режиме кавитации.

Технический результат достигается тем, что в способе получения металлических наночастиц железа с объемоцентрированной кубической упаковкой из водного золя на основе наночастиц ферригидрита, полученных в результате культивирования бактерий Klebsiella oxytoca, выделенных из сапропеля озера Боровое Красноярского края, новым является то, что указанный золь обрабатывают в режиме кавитации в течение 4-24 минут на аппарате серии "Волна" УЗТА-0,4/22-ОМ с интенсивностью ультразвукового воздействия >10 Вт/см2 и частотой 22 кГц, с обеспечением восстановления металла в виде осадка из металлических наночастиц, который затем сепарируют и высушивают.

Таким образом, заявляемый способ получения металлических наночастиц железа с объемоцентрированной кубической упаковкой отличается от прототипа тем, что указанный золь обрабатывают в режиме кавитации в течение 4-24 минут на аппарате серии "Волна" УЗТА-0,4/22-ОМ с интенсивностью ультразвукового воздействия >10 Вт/см2 и частотой 22 кГц, с обеспечением восстановления металла в виде осадка из металлических наночастиц, который затем сепарируют и высушивают.

Признаки, отличающие заявляемое техническое решение от прототипа, не выявлены в других технических решениях при изучении данных и смежных областей техники и, следовательно, обеспечивают заявляемому решению соответствие критерию «изобретательский уровень».

Сущность изобретения поясняется чертежами. На фиг. 1 представлен ИК-спектр биогенных наночастиц ферригидрита. На фиг. 2 представлены мессбауэровские спектры ферригидрита химического - а) и биогенного - b) происхождения; исходные наночастицы - 1, после ультразвуковой обработки в воде - 2 и после ультразвуковой обработке в растворе альбумина - 3.

Оболочка наночастиц ферригидрита биогенного происхождения

Устойчивость полученного золя (отсутствие конгломерации) наночастиц ферригидрита, описанного в патенте [РФ, п. №2457074, опубл. 27.07.2012], обеспечивалась естественной органической оболочкой наночастиц. Функциональные группы органических молекул обладают характеристическими колебаниями, которым соответствуют полосы поглощения в определенных областях ИК-спектров, поэтому такие функциональные группы могут быть идентифицированы на основании их полос поглощения. ИК-спектры, представленные на фиг. 1, для образцов биогенного ферригидрита были получены на вакуумном Фурье-спектрометре Bruker-Vertex 80V на прессованных таблетках с бромидом калия диаметром 13 мм и толщиной -0.55 мм. Частицы ферригидрита тщательно растирались в порошок и смешивались с KBr, также тщательно перетертым в пропорциях 1:100, соответственно. Смесь прессовалась под вакуумом гидравлическим прессом при давлении от 10 и до 104 Н/см2. ИК-Фурье [L. Anghel, М. Balasoiu, L.A. Ishchenko, S.V Stolyar, T.S. Kurkin, A.V Rogachev, A.I. Kuklin, Y.S. Kovalev, Y.L. Raikher, R.S. Iskhakov, G. Duca, J. Phys. Conf. Ser. 351 (2012) 012005] спектры, показали пик 3255.0-3216.2 см-1, характерный для ОН валентных колебаний (фиг. 1). Пик при 2929.5-2926.8 см-1 соответствует СН колебаниям С; 1406,2 см-1 указывает на наличие ОСН, СОН и ССН групп. Эти пики четко указывают на наличие глюкозы [Ibrahim М, Alaam М, El-Haes Н, et. al. 2006 Eel. Quim. Sao Paulo 31(3) 14-21]. Кроме того, полоса 1311,1 см-1 указывает на СО связь полисахарида. Данные результаты указывают на то, что наночастицы биогенного ферригидрита встроены в железосвязывающие экзополисахариды. Кроме того, полосы 636,3 см-1 и 1546,6 см-1 подтвердили наличие амина I и II белков.

Получение наночастиц ферригидрита химическим способом.

Поскольку биогенные наночастицы ферригидрита характеризуются наличием органической оболочки, нами были изготовлены наночастицы ферригидрита таких же размеров, что и биогенные наночастицы (~ 3 нм), но в результате химического осаждения. [F.M. Michel, L. Ehm, S.M. Antao, P.L. Lee, P.J. Chupas, G. Liu, D.R. Strongin, M.A.A. Schoonen, B.L. Phillips, J.B. Parise, Science (80-.). 316 (2007) 1726]. Был использован хлорид железа (III). При доведении рН до нейтрального значения раствором щелочи выпадал осадок, собираемый на фильтре. Полученный осадок промывался и высушивался при комнатной температуре. После высушивания образующиеся порошки исследовались методом мессбауэровской спектроскопии. Мессбауэровские измерения проведены с источником Co57(Cr), имеющим ширину линии на полувысоте 0.24 мм/с на поглотителе из порошка нитропруссида натрия. Толщина исследуемых образцов составляла 5-10 мг/см2 по естественному содержанию железа, при которой интенсивности линий спектра линейно связаны с содержанием железа в фазе. Расшифровку спектров проводили в два этапа. На первом этапе определяли распределение вероятности квадрупольных расщеплений P(QS) в экспериментальных спектрах. По положению максимумов и особенностей на зависимостях P(QS) определяли число и ориентировочные величины параметров сверхтонкой структуры неэквивалентных позиций ионов железа. Эту информацию использовали на втором этапе расшифровки спектра при построении модельного спектра и подгонки его к экспериментальному спектру при варьировании всего набора параметров сверхтонкой структуры. На фиг. 2 кривые 1(a), 1(b) приведены спектры мессбауэровской спектроскопии наночастиц ферригидрита, полученных химическим способом, и в результате культивирования микроорганизмов, соответственно. В таблице 1 представлены результаты расшифровки полученных мессбауэровских спектров.

Результаты ультразвуковой обработки в режиме кавитации золя биогенных наночастиц ферригидрита и золя наночастиц ферригидрита, полученных химическим способом.

Золи биогенных наночастиц ферригидрита и наночастиц ферригидрита, полученных химическим способом, были подвергнуты ультразвуковой обработки в режиме кавитации на аппарате серии "Волна" УЗТА-0,4/22-ОМ ООО «Центр ультразвуковых технологий», г. Бийск. Интенсивность ультразвукового воздействия >10 Вт/см2, частота 22 кГц. Время обработки составляло 4-24 минут.

На фиг. 2 приведены спектры Мессбауэра, полученные при комнатной температуре, наночастиц биогенного ферригидрита (кривая 2(b)) и наночастиц ферригидрита, полученных химическим способом (кривая 2(a)) после ультразвуковой обработки в режиме кавитации. Кривая 2(b) характеризуется секстетом. В таблице 1 представлены результаты расшифровки спектров. Результаты расшифровки свидетельствуют о наличии металлических наночастиц ОЦК-Fe (α-Fe) в осадках биогенных наночастиц после кавитационной обработки.

Спектры Мессбауэра наночастиц ферригидрита, полученных химическим осаждением, подвергнутых ультразвуковой обработке в режиме кавитации остались неизменными (см. кривые 2(а) и 2(b) на фиг. 2). Таким образом, наличие ОЦК фазы Fe после кавитационной обработки наночастиц ферригидрита определяется наличием органической составляющей. Для проверки данного утверждения нами был выполнен следующий эксперимент. Химические наночастицы ферригидрита и биогенные наночастицы ферригидрита были обработаны ультразвуком в режиме кавитации в растворе бычьего сывороточного белка альбумина (BSA - коммерческий продукт). На фиг. 2 приведены спектры Мессбауэра наночастиц ферригидрита, полученных химическим способом, после ультразвуковой обработки в растворе альбумина (кривая 3(a)) и биогенных наночастиц ферригидрита, (кривая 3(b)). Кривые 3(а) и 3(b) характеризуется секстетом. В таблице 1 представлены результаты расшифровки спектров. Результаты расшифровки свидетельствуют о наличии металлических наночастиц ОЦК-Fe в осадках как химически полученных наночастиц, так и в биогенных наночастицах после кавитационной обработки в растворе альбумина.

Таблица 1. Мессбауэровские параметры ферригидритов. IS - изомерный химический сдвиг относительно ОЦК-Fe, QS - квадрупольное расщепление, W - ширина линии поглощения, Η - сверхтонкое поле на ядре железа, А - долевая заселенность позиции.

Итак, мессбауэровские спектры 2а, 3а, 3b характеризуются секстетом с параметрами ОЦК-Fe и парамагнитным дублетом суперпарамагнитных наночастиц ферригидрита. В парамагнитной составляющей спектров 2b, 3а, 3b, а также в спектрах 1а, 1b, 2а регистрируются три основные неэквивалентные позиции ионов Fe3+, имеющих октаэдрическую координацию. Эти позиции можно разделить на две группы: позиции Fel и Fe2 с относительно малой степенью искажения локальной симметрии, QS(Fel) ~ 0.4-0.5 мм/с и QS(Fe2) ~ 0.7-0.8 мм/с, и позиции Fe3 с большой степенью искажения, QS(Fe3) ~ 1 - 1.5. Кристаллическая структура ферригидрита обсуждалась в работе [S.V. Stolyar, О.А. Bayukov, Y.L. Gurevich, R.S. Ishkakov, V.P. Ladygina, Bull. Russ. Acad. Sci. Phys. 71 (2007) 1286]. Регистрируемые при комнатной температуре мессбауэровские секстеты с параметрами ОЦК-Fe указывают на то, что размер образующихся ферромагнитных частиц превышает 100 [А.Р. Amulyavichus, I P. Suzdalev, JETP 37 (1973) 859].

При акустической кавитации происходит образование, пульсация и схлопывание образующихся газовых пузырьков в обрабатываемой ультразвуком жидкости. Схлопывание газовых пузырьков сопровождается концентрированным выделением энергии, что приводит к целому ряду процессов: эмиссии света, эрозии поверхности, диспергированию твердых тел и т.д. [Маргулис М.А. Основы звукохимии. М.: Высшая школа, 1984]. Реализующиеся высокие значения локальной температуры и давления, в сочетании с чрезвычайно быстрым охлаждением обеспечивают уникальные возможности для протекания химических реакций. В поле ультразвуковых волн происходит расщепление молекулы воды на свободные радикалы. В результате последующих реакций образуется молекулярный водород (Н2), перекись водорода (Н2О2), свободные радикалы Н, ОН, ОН2, О2Н, сольватированные электроны. Радикалы ОН2, О2Н, перекись водорода являются окислителями. Атомарный водород, сольватированный электрон - восстановителями. С помощью ультразвукового воздействия ранее были получены наноструктурные металлы, сплавы, карбиды и сульфиды, устойчивые коллоиды, биоматериалы [S.J. Doktycz, K.S. Suslick, Science 247 (1990) 1067].

Во всех выполненных нами экспериментах, при которых регистрировалось восстановление металла, в суспензиях присутствовала органическая составляющая.

Преимущества способа заключаются в демонстрации процесса восстановления окисленных форм железа до металлического состояния в результате кавитационной обработки.

Способ приготовления металлических наночастиц железа с объемоцентрированной кубической упаковкой из водного золя на основе наночастиц ферригидрита, полученных в результате культивирования бактерий Klebsiella oxytoca, выделенных из сапропеля озера Боровое Красноярского края, характеризующийся тем, что указанный золь обрабатывают в режиме кавитации в течение 4-24 мин на аппарате серии "Волна" УЗТА-0,4/22-ОМ с интенсивностью ультразвукового воздействия >10 Вт/см и частотой 22 кГц, обеспечивают восстановление металла в виде осадка из металлических наночастиц железа, который затем сепарируют и высушивают.
Способ приготовления металлических наночастиц железа
Источник поступления информации: Роспатент

Показаны записи 121-130 из 381.
13.02.2018
№218.016.2082

Способ получения суспензии на полимерной основе с высокодисперсными металлическими частицами для изготовления полимерных матриц, наполненных упомянутыми частицами

Изобретение относится к способам введения частиц в вещество и может быть использовано для получения суспензий частиц, содержащих наполнители контролируемого размера, в том числе для введения частиц контролируемого размера от наночастиц до атомарных в матрицу термопластических и сетчатых...
Тип: Изобретение
Номер охранного документа: 0002641591
Дата охранного документа: 18.01.2018
13.02.2018
№218.016.24cc

Защитное покрытие фундамента

Изобретение относится к строительству и может быть использовано для защиты фундаментов от грунтовых вод. Защитное покрытие фундамента содержит наклеенный на защищаемую поверхность водонепроницаемый материал, состыкованный с помощью герметичных швов. В составе защитного покрытия использован...
Тип: Изобретение
Номер охранного документа: 0002642685
Дата охранного документа: 25.01.2018
04.04.2018
№218.016.315b

Держатель образца для сквид-магнитометра типа mpms

Изобретение относится к устройствам для измерения переменных магнитных величин и может быть использовано при проведении магнитных измерений в следующих областях: физика магнитных явлений, физика конденсированного состояния. Держатель образца для СКВИД-магнитометра типа MPMS содержит...
Тип: Изобретение
Номер охранного документа: 0002645031
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.33c2

Емкостный дилатометр для работы в составе установки ppms qd

Изобретение относится к измерительной технике, предназначенной для измерения малых деформаций, в частности к емкостным дилатометрам, и может быть использовано для определения коэффициента линейного температурного расширения, пьезоэлектрического эффекта и магнитострикции. Емкостный дилатометр...
Тип: Изобретение
Номер охранного документа: 0002645823
Дата охранного документа: 28.02.2018
10.05.2018
№218.016.3b75

Спин-стекольный магнитный материал с содержанием иттербия

Изобретение относится к области разработки новых керамических редкоземельных оксидных материалов с магнитным состоянием спинового стекла и может найти применение в химической промышленности и электронной технике, в частности, для разработки моделей новых типов устройств магнитной памяти....
Тип: Изобретение
Номер охранного документа: 0002647544
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.41d1

Анкерная система крепления подпорной стенки

Изобретение относится к области строительства и может быть использовано при возведении малоэтажных зданий и сооружений на слабых глинистых основаниях. Анкерная система крепления подпорной стенки содержит бетонную плиту (1), соединенный с ней анкерный тяж (3), расположенный в грунте и упертый в...
Тип: Изобретение
Номер охранного документа: 0002649347
Дата охранного документа: 02.04.2018
10.05.2018
№218.016.41dd

Анкерное крепление подпорной стены

Изобретение относится к области строительства, а именно к возведению подпорной стены с анкерным креплением. Анкерное крепление подпорной стены содержит соединенный с подпорной стеной анкерный тяж, снабженный оголовком и анкерным элементом, расположенным с возможностью опирания на возведенную в...
Тип: Изобретение
Номер охранного документа: 0002649356
Дата охранного документа: 02.04.2018
10.05.2018
№218.016.41ed

Ветрогенератор

Изобретение относится к области ветроэнергетики. Ветрогенератор, содержащий установленное на валу ветроколесо с лопастями и электрогенератор, причем лопасти ветроколеса оснащены энергоизлучателями, примыкающими непосредственно к поверхностям лопастей, на которые действует подъемная сила при...
Тип: Изобретение
Номер охранного документа: 0002649371
Дата охранного документа: 02.04.2018
10.05.2018
№218.016.420d

Пиролизная установка для утилизации нефтешламов

Изобретение относится к области переработки жидких отходов путем их пиролиза и может быть использовано для утилизации промышленных отходов органического происхождения. Технический результат заключается в повышении эффективности и производительности процесса пиролиза и достигается за счет...
Тип: Изобретение
Номер охранного документа: 0002649357
Дата охранного документа: 02.04.2018
10.05.2018
№218.016.4224

Устройство для удаления снежно-ледяного наката с дорожных покрытий

Изобретение относится к оборудованию для очистки от снега и гололедных образований на дорогах, подъездных путях аэродромов и может быть использовано при строительстве и эксплуатации снежно-ледовых зимних дорог, при обустройстве нефтяных и газовых месторождений, строительстве, эксплуатации и...
Тип: Изобретение
Номер охранного документа: 0002649342
Дата охранного документа: 02.04.2018
Показаны записи 121-129 из 129.
13.02.2018
№218.016.2082

Способ получения суспензии на полимерной основе с высокодисперсными металлическими частицами для изготовления полимерных матриц, наполненных упомянутыми частицами

Изобретение относится к способам введения частиц в вещество и может быть использовано для получения суспензий частиц, содержащих наполнители контролируемого размера, в том числе для введения частиц контролируемого размера от наночастиц до атомарных в матрицу термопластических и сетчатых...
Тип: Изобретение
Номер охранного документа: 0002641591
Дата охранного документа: 18.01.2018
13.02.2018
№218.016.24cc

Защитное покрытие фундамента

Изобретение относится к строительству и может быть использовано для защиты фундаментов от грунтовых вод. Защитное покрытие фундамента содержит наклеенный на защищаемую поверхность водонепроницаемый материал, состыкованный с помощью герметичных швов. В составе защитного покрытия использован...
Тип: Изобретение
Номер охранного документа: 0002642685
Дата охранного документа: 25.01.2018
04.04.2018
№218.016.315b

Держатель образца для сквид-магнитометра типа mpms

Изобретение относится к устройствам для измерения переменных магнитных величин и может быть использовано при проведении магнитных измерений в следующих областях: физика магнитных явлений, физика конденсированного состояния. Держатель образца для СКВИД-магнитометра типа MPMS содержит...
Тип: Изобретение
Номер охранного документа: 0002645031
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.33c2

Емкостный дилатометр для работы в составе установки ppms qd

Изобретение относится к измерительной технике, предназначенной для измерения малых деформаций, в частности к емкостным дилатометрам, и может быть использовано для определения коэффициента линейного температурного расширения, пьезоэлектрического эффекта и магнитострикции. Емкостный дилатометр...
Тип: Изобретение
Номер охранного документа: 0002645823
Дата охранного документа: 28.02.2018
29.03.2019
№219.016.f5cc

Способ получения наночастиц ферригидрита

Изобретение относится к способу получения магнитных железосодержащих наночастиц для использования в медицинских целях. Способ получения наночастиц ферригидрита включает культивирование бактерий Klebsiella oxytoca, выделенных из сапропеля озера Боровое Красноярского края, выращивание биомассы....
Тип: Изобретение
Номер охранного документа: 0002457074
Дата охранного документа: 27.07.2012
06.04.2019
№219.016.fd9f

Средство для лечения ожоговых ран в виде мази и способ его получения

Изобретение относится к медицине и ветеринарии, в частности к средству для лечения ожоговых ран в виде мази. Средство содержит эмульгатор - ланолин безводный и вазелин медицинский, наночастицы ферригидрита FeO⋅nHO размером 2-4 нм, полученные в результате культивирования бактерий Klebsiella...
Тип: Изобретение
Номер охранного документа: 0002684116
Дата охранного документа: 04.04.2019
31.12.2020
№219.017.f47a

Способ получения металлических магнитных покрытий

Изобретение относится к получению магнитных металлических покрытий на медных или стеклянных подложках. Первый вариант способа включает химическое осаждение металлического покрытия на подготовленную подложку из водного раствора, содержащего, г/л: сульфат кобальта 10, сульфат никеля 15,...
Тип: Изобретение
Номер охранного документа: 0002710611
Дата охранного документа: 30.12.2019
21.05.2023
№223.018.685a

Магнитный аффинный сорбент для выделения рекомбинантных белков

Настоящее изобретение относится к магнитному аффинному сорбенту для выделения рекомбинантных белков, характеризующемуся тем, что состоит из крахмал-активированных магнитных наночастиц оксида железа со средним размером 11,5 нм, значением намагниченности насыщения при комнатной температуре 29,8...
Тип: Изобретение
Номер охранного документа: 0002794889
Дата охранного документа: 25.04.2023
27.05.2023
№223.018.70a0

Способ получения материала, проявляющего газочувствительные и каталитические свойства, на основе cafeo

Изобретение может быть использовано при создании газоаналитических устройств и катализаторов для окислительных процессов. Для получения материала на основе CaFeO, проявляющего газочувствительные и каталитические свойства, готовят шихту из реактивных препаратов, проводят прессование образца и...
Тип: Изобретение
Номер охранного документа: 0002729783
Дата охранного документа: 12.08.2020
+ добавить свой РИД