×
13.02.2018
218.016.21d1

СПОСОБ ПЕРЕРАБОТКИ ПОПУТНЫХ И ПРИРОДНЫХ ГАЗОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способу переработки природных и попутных нефтяных углеводородных газов с повышенным содержанием тяжелых гомологов метана в топливный газ путем смешивания углеводородного газа с кислородом или кислородсодержащим газом в мольном соотношении углерод тяжелых компонентов : кислород 10÷1:1 и проведения прямого парциального окисления тяжелых компонентов при температуре 350-420°С и давлении 10-40 бар с получением паро-газовой смеси, содержащей углеводородные газы, СО, оксигенаты и НО, которую затем смешивают с кислородом или кислородсодержащим газом до содержания кислорода 2-5% об. и дополнительно окисляют в присутствии катализаторов окисления при температуре ниже 350°С. Изобретение обеспечивает создание более простого и доступного в промысловых условиях способа переработки попутных нефтяных и природных газов с повышенным содержанием гомологов метана с получением топливного газа с высокими топливными характеристиками и увеличение его выхода. 2 пр.
Реферат Свернуть Развернуть

Изобретение относится к нефтяной и газовой промышленности, в частности к процессам переработки попутных нефтяных и природных газов с повышенным содержанием гомологов метана в химические продукты. Эти газы являются ценным углеводородным сырьем, однако во многих случаях не находят практического применения и зачастую сжигаются на факелах. Попутный нефтяной газ сложно транспортировать и трудно использовать без дополнительной переработки или очистки от содержащихся в нем тяжелых компонентов - C3+ гомологов метана.

Важным источником потребления углеводородных газов, особенно в промысловых условиях, является их использование в качестве топлива для электрогенерирующих устройств. Однако современные энергогенерирующие машины, особенно газопоршневые двигатели (ГПД), рассчитаны на работу на «сухом» углеводородном газе, а в случае использования «жирных» или попутных нефтяных газов требуют их специальной подготовки. Компонентный состав природных газов сильно зависит не только от района добычи и его климатических условий, но и сезона добычи газа, способов его подготовки и транспортировки и других условий, и при этом постоянно изменяется по мере выработки месторождения. Так как топливные характеристики газа сильно зависят от состава входящих в него компонентов, все эти обстоятельства сказываются на качестве газового топлива. Производителями ГПД для обеспечения работы оборудования в нормальном режиме и достижения заявленных характеристик задаются определенные требования к качеству топливного газа. Хотя эти требования могут несколько различаться в зависимости от типа и конструкции двигателя, наиболее типичными являются следующие:

- содержание метана - более 70% об.,

- низшая теплотворная способность (Qн) - 30-40 МДж/м3,

- плотность - 0,7-1,2 кг/м3.

Важнейшей характеристикой газового топлива является метановый индекс (MN), характеризующий его антидетонационные свойства. Низкие значения метанового числа газового топлива приводят к существенному снижению номинальной мощности газопоршневого двигателя (дерейтингу) и сокращению срока службы за счет повышенного износа оборудования. Например, для нормальной работы двигателей компании Cummins Westport требуется газовое топливо с метановым индексом более 65, а для некоторых типов - и более 75. Только при выполнении этих требований производитель гарантирует достижение номинальных значений мощности и КПД и длительный срок службы устройства. В то же время сырые природные газы обычно имеют метановый индекс ниже 52 и низшую теплотворную способность более 40 МДж/м3. Так как проблема энергообеспечения особенно остро стоит для удаленных и труднодоступных районов, то эффективная автономная генерация электроэнергии в таких регионах с использованием местных топливных ресурсов является одной из важнейших задач.

Известны способы подготовки «жирных» природных и попутных газов для использования в энергетических установках путем извлечения тяжелых С3+ углеводородов с использованием методов глубокого охлаждения [Патент РФ №2340841, опубл. 10.12.2008] или мембранного разделения [Scholes С.A. et al. Membrane gas separation applications in natural gas processing / Fuel, 2012, V. 96, pages 15-28].

Недостатками этих способов являются высокие капитальные затраты и большой дополнительный расход энергии на компримирование газа и его глубокое охлаждение. Сооружение и эксплуатация таких капиталоемких и энергозатратных установок в удаленных местах добычи углеводородного сырья экономически не целесообразно.

Из уровня техники известен способ подготовки попутных нефтяных и сырых природных газов для использования в поршневых двигателях внутреннего сгорания [патент РФ №2385897, опубл. 10.04.2010], который состоит в том, что подготавливаемый газ в смеси с кислородсодержащим газом, например с воздухом, подвергают термообработке при температуре 450-1100°C в течение 0,01-50 сек при содержании свободного кислорода в смеси 0,5-5%. При указанных условиях практически не наблюдается конверсия более легких углеводородов C1-C4, в то время как конверсия углеводородов C5+, имеющих низкие метановые числа, превышает 95%. Основными продуктами превращения C5+ углеводородов при такой термообработке смесей углеводородных газов являются (в порядке убывания выхода) этилен, метан, этан и монооксид углерода.

Недостатком способа является низкая конверсия C2-C4 компонентов попутного нефтяного газа, имеющих невысокие метановые числа по сравнению с чистым метаном, а также образование олефинов, содержание которых в топливном газе хотя и не регламентировано, но нежелательно.

Ближайшим аналогом настоящего изобретения (прототипом) является способ переработки природных и попутных нефтяных газов с повышенным содержанием тяжелых гомологов метана путем прямого парциального окисления углеводородного газа и последующего карбонилирования получаемых продуктов, при котором углеводородный газ смешивают с кислородом или кислородсодержащим газом в мольном соотношении углерод тяжелых компонентов : кислород 10÷1:1 и проводят селективное окисление тяжелых компонентов при температуре 350-420°C и давлении 10-40 бар, а полученные продукты подвергают обработке в присутствии катализаторов карбонилирования с получением жидких продуктов из ряда карбоновых кислот и их эфиров и обогащенного метаном очищенного от тяжелых компонентов сухого топливного газа [патент РФ №2538970, опубл. 10.01.2015].

Недостатками предложенного способа являются сложность реализации в промысловых условиях стадии карбонилирования, для проведения которой необходимы сложные комплексные катализаторы на основе металлов платиной группы, синтезируемые in situ, и получение продуктов карбонилирования, требующих реализации вне промысловых условий, а также снижение выхода топливного газа из-за дополнительного его расхода на получение продуктов карбонилирования.

Технический результат настоящего изобретения заключается в создании более простого и доступного в промысловых условиях способа переработки попутных нефтяных и природных газов с повышенным содержанием гомологов метана с получением топливного газа с высокими топливными характеристиками и увеличении его выхода.

Указанный технический результат достигается способом переработки природных и попутных нефтяных углеводородных газов с повышенным содержанием тяжелых гомологов метана в топливный газ путем смешивания углеводородного газа с кислородом или кислородсодержащим газом в мольном соотношении углерод тяжелых компонентов : кислород 10÷1:1 и проведения прямого парциального окисления тяжелых компонентов при температуре 350-420°C и давлении 10-40 бар с получением паро-газовой смеси, содержащей углеводородные газы, CO, оксигенаты и H2O, которую затем смешивают с кислородом или кислородсодержащим газом до содержания кислорода 2-5% и дополнительно окисляют в присутствии катализаторов окисления при температуре ниже 350°C.

В качестве катализаторов могут использоваться, например, нанесенные на оксиды алюминия оксиды меди, хрома, железа, магния, и платина.

Благодаря такому способу осуществления процесса увеличивается выход топливного газа, обеспечивается утилизация получаемых на первой стадии окисления оксигенатов (особенно формальдегида, муравьиной кислоты и ее эфиров), получаемый топливный газ имеет более высокое метановое число по сравнению с исходным углеводородным газом и сухим углеводородным газом, который можно получить после первой ступени, если дополнительно осуществить выделение воды и оксигенатов.

Ранее такие варианты организации процесса с получением углеводородного газа с более высоким метановым числом по сравнению с исходным углеводородным газом в едином технологическом цикле в патентной литературе не рассматривались. Проблема является особенно актуальной для России с ее огромными запасами попутных нефтяных и «жирных» углеводородных газов

Примеры осуществления предложенного способа.

Пример 1

Углеводородсодержащий газ состава (% объемные): CH4 - 82%, C2H6 - 6%, С3H8 - 8%, С4H10 - 4% (метановое число смеси 54, низшая теплотворная способность - 45,7 МДж/м3, плотность 0,939 кг/м3) в количестве 1000 л/ч первоначально подвергают гомогенному парциальному окислению:

вариант a) - воздухом, обогащенным кислородом до содержания кислорода 45% об., в количестве 125 л/ч при давлении 20 бар и температуре 380-420°C;

вариант б) - воздухом в количестве 215 л/ч при давлении 40 бар и температуре 350-420°C. Полученную в варианте а) паро-газовую смесь охлаждают до 300°C, смешивают с кислород-воздушной смесью с содержанием кислорода 45% в количестве 92 л/ч и дополнительно окисляют в присутствии катализатора Cr2O3/Al2O3 при температуре 300-350°C. После охлаждения и отделения воды получают сухой топливный газ в количестве 1170 л/ч с содержанием метана 70,0%, метановое число 65,4, низшая теплотворная способность - 37,6 МДж/м3, плотность 0,985 кг/м3.

Полученную в варианте б) паро-газовую смесь охлаждают до 250°C, смешивают с воздухом в количестве 130 л/ч и дополнительно окисляют в присутствии катализатора CuO/Cr2O3/Al2O3 при температуре 250-350°C. После охлаждения и отделения воды получают сухой топливный газ в количестве 1309 л/ч с содержанием метана 62,6%, метановое число 66,0, низшая теплотворная способность - 34,0 МДж/м3, плотность 1,012 кг/м3.

Пример 2

Углеводородсодержащий газ состава (% объемные): CH4 - 71,9%, C2H6 - 2,5%, С3H8 - 22,5%, C4Н10 - 3,1%о (метановое число смеси 46, низшая теплотворная способность - 52,2 МДж/м3, плотность 1,088 кг/м3) в количестве 1000 л/ч первоначально подвергают гомогенному парциальному окислению:

вариант а) - воздухом, обогащенным кислородом до содержания кислорода 50% об., в количестве 100 л/ч при давлении 20 бар и температуре 380-420°C;

вариант б) - воздухом в количестве 238 л/ч при давлении 30 бар и температуре 400-420°C.

Полученную в варианте а) паро-газовую смесь охлаждают до 300°C, смешивают с воздухом в количестве 143 л/ч и дополнительно окисляют в присутствии катализатора Cr2O3/Al2O3 при температуре 300-350°C. После охлаждения и отделения воды получают сухой топливный газ в количестве 1200 л/ч с содержанием метана 60.0%, метановое число 55,2, низшая теплотворная способность - 42,2 МДж/м3, плотность 1,10 кг/м3.

Полученную в варианте б) паро-газовую смесь охлаждают до 250°C, смешивают с воздухом в количестве 143 л/ч и дополнительно окисляют в присутствии катализатора CuO/Cr2O3/Al2O3 при температуре 250-350°C. После охлаждения и отделения воды получают сухой топливный газ в количестве 1335 л/ч с содержанием метана 53,9%, метановое число 58,3, низшая теплотворная способность - 37,9 МДж/м3, плотность 1,124 кг/м3.

По сравнению с прототипом настоящее изобретение позволяет достигнуть существенного упрощения технологии, уменьшения капитальных затрат за счет снижения числа создаваемых производств и устранения высокоэнерго- и капиталоемкой стадии получения синтез-газа, а также обеспечивает возможность получения углеводородного газа с более высоким метановым числом по сравнению с исходным углеводородным газом, который может использоваться как топливо для энергоустановок.

Способ переработки природных и попутных нефтяных углеводородных газов с повышенным содержанием тяжелых гомологов метана в топливный газ путем смешивания углеводородного газа с кислородом или кислородсодержащим газом в мольном соотношении углерод тяжелых компонентов : кислород 10÷1:1 и проведения прямого парциального окисления тяжелых компонентов при температуре 350-420°С и давлении 10-40 бар с получением паро-газовой смеси, содержащей углеводородные газы, СО, оксигенаты и НО, которую затем смешивают с кислородом или кислородсодержащим газом до содержания кислорода 2-5% об. и дополнительно окисляют в присутствии катализаторов окисления при температуре ниже 350°С.
Источник поступления информации: Роспатент

Показаны записи 41-47 из 47.
17.10.2019
№219.017.d719

Устройство для преобразования химической энергии топливно-воздушной смеси в электрическую (варианты)

Изобретение относится к двигателестроению, а именно к устройствам двигателей внутреннего сгорания со свободным поршнем. Представлено устройство для преобразования химической энергии топливно-воздушной смеси в электрическую, включающее цилиндр, свободный поршень, выполненный с возможностью...
Тип: Изобретение
Номер охранного документа: 0002703114
Дата охранного документа: 15.10.2019
01.11.2019
№219.017.dce8

Применение водорастворимых производных фуллерена в качестве лекарственных препаратов нейропротекторного и противоопухолевого действия

Изобретение относится к медицине и предназначено для лечения заболеваний нервной системы. Раскрыто использование водорастворимых производных фуллерена С60 в производстве лекарственных препаратов нейропротекторного действия. Используют производные фуллеренов формулы I, содержащие 5 гидрофильных...
Тип: Изобретение
Номер охранного документа: 0002704483
Дата охранного документа: 29.10.2019
06.12.2019
№219.017.ea0d

Установка и способ исследования кинетики химических реакций и определения теплофизических свойств различных соединений газометрическим методом

Изобретение предназначено для исследования кинетики химических реакций, проходящих с изменением количества газообразных соединений, а также определения температурных зависимостей упругостей паров от температуры, энтальпий и энтропий испарения, температур и критических температур исследуемых...
Тип: Изобретение
Номер охранного документа: 0002707986
Дата охранного документа: 03.12.2019
27.12.2019
№219.017.f2e4

Способ мембранно-абсорбционного разделения нефтезаводских газовых смесей, содержащих олефины и монооксид углерода

Изобретение относится к области мембранных технологий, а именно к процессу мембранно-абсорбционного разделения газовых смесей, и может быть использовано для извлечения олефинов и монооксида углерода из нефтезаводских газовых смесей. Задача предлагаемого изобретения состоит в создании простого и...
Тип: Изобретение
Номер охранного документа: 0002710189
Дата охранного документа: 24.12.2019
22.01.2020
№220.017.f850

Родийсодержащие гетерогенные катализаторы для процессов получения пропаналя и диэтилкетона гидроформилированием этилена

Группа изобретений относится к области получения гетерогенных родийсодержащих катализаторов для процесса гидроформилирования непредельных соединений, а именно к получению закрепленных родиевых комплексов на поверхности гибридных материалов, имеющих свободные аминогруппы, также группа...
Тип: Изобретение
Номер охранного документа: 0002711579
Дата охранного документа: 17.01.2020
14.03.2020
№220.018.0bcd

Способ получения пленочных медьсодержащих нанокомпозиционных материалов для защиты металлопродукции от коррозии

Использование: для получения пленочных нанокомпозиционных материалов. Сущность изобретения заключается в том, что способ получения полимерного медьсодержащего нанокомпозиционного материала, включающий образование наночастицы металла при термическом разложении предшественника в момент его...
Тип: Изобретение
Номер охранного документа: 0002716464
Дата охранного документа: 11.03.2020
16.05.2023
№223.018.622f

Сопряженный полимер на основе замещенного бензодитиофена, 5,6-дифторбензо[с][1,2,5]тиадиазола и тиофена и его применение в перовскитных солнечных батареях

Изобретение может быть использовано при изготовлении солнечных батарей. Сопряженный полимер на основе замещенного бензодитиофена, 5,6-дифторбензо[с][1,2,5]тиадиазола и тиофена имеет следующее строение: где n=5-200. Предложено также применение сопряженного полимера в качестве...
Тип: Изобретение
Номер охранного документа: 0002789132
Дата охранного документа: 30.01.2023
Показаны записи 41-47 из 47.
22.01.2020
№220.017.f850

Родийсодержащие гетерогенные катализаторы для процессов получения пропаналя и диэтилкетона гидроформилированием этилена

Группа изобретений относится к области получения гетерогенных родийсодержащих катализаторов для процесса гидроформилирования непредельных соединений, а именно к получению закрепленных родиевых комплексов на поверхности гибридных материалов, имеющих свободные аминогруппы, также группа...
Тип: Изобретение
Номер охранного документа: 0002711579
Дата охранного документа: 17.01.2020
14.03.2020
№220.018.0bcd

Способ получения пленочных медьсодержащих нанокомпозиционных материалов для защиты металлопродукции от коррозии

Использование: для получения пленочных нанокомпозиционных материалов. Сущность изобретения заключается в том, что способ получения полимерного медьсодержащего нанокомпозиционного материала, включающий образование наночастицы металла при термическом разложении предшественника в момент его...
Тип: Изобретение
Номер охранного документа: 0002716464
Дата охранного документа: 11.03.2020
24.06.2020
№220.018.29cb

Устройство для получения метанола высокой концентрации

Настоящее изобретение относится к устройству для малотоннажного получения метанола из синтез-газа. Предлагаемое устройство состоит из реакторного блока, ректификационной колонны и теплообменника, при этом продукты синтеза метанола из реакторного блока подаются непосредственно в...
Тип: Изобретение
Номер охранного документа: 0002724085
Дата охранного документа: 19.06.2020
29.07.2020
№220.018.38ba

Способ переработки полиимидных материалов

Изобретение относится к способу переработки полимерных материалов, получаемых по реакции поликонденсации диангидридов тетракарбоновых кислот с диаминами. Предложен способ переработки полиимидных материалов, содержащих в своей молекулярной структуре пятичленные имидные циклы, отличающийся тем,...
Тип: Изобретение
Номер охранного документа: 0002727921
Дата охранного документа: 27.07.2020
20.04.2023
№223.018.4bfe

Способ получения водородсодержащего газа

Изобретение относится к способу получения водородсодержащего газа, включающему две последовательные стадии. Способ характеризуется тем, что на первой стадии при температуре Т=1000-1100°С осуществляет некаталитическую матричную конверсию метана в синтез-газ в присутствии водяного пара, а на...
Тип: Изобретение
Номер охранного документа: 0002769311
Дата охранного документа: 30.03.2022
27.05.2023
№223.018.706c

Способ получения метанола

Изобретение относится к области газопереработки, а именно к способу получения метанола из природного газа. Предложенный способ включает в себя следующие стадии: получение синтез-газа парциальным окислением природного газа в матричном конверторе при давлении 1-5 атм. При этом в качестве...
Тип: Изобретение
Номер охранного документа: 0002780881
Дата охранного документа: 04.10.2022
16.06.2023
№223.018.7a97

Способ получения 5-метил-3-гептанона и полифункциональный катализатор

Настоящее изобретение относится к способу получения 5-метил-3-гептанона - потенциального полупродукта в тонком органическом синтезе и высокооктановой добавки к моторному топливу, а также к полифункциональному катализатору. Предлагаемый способ включает проведение альдольно-кротоновой конденсации...
Тип: Изобретение
Номер охранного документа: 0002739257
Дата охранного документа: 22.12.2020
+ добавить свой РИД