×
13.02.2018
218.016.20f8

Результат интеллектуальной деятельности: СОЛНЕЧНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ КОНЦЕНТРАТОРНЫЙ МОДУЛЬ

Вид РИД

Изобретение

Аннотация: Солнечный фотоэлектрический концентраторный модуль содержит первичный оптический концентратор (3) в виде линзы Френеля, с линейным размером D, оптическая ось (4) которой проходит через центр (5) фотоактивной области фотоэлемента (1), выполненной в виде круга диаметром d, и соосный с ним вторичный концентратор (6), выполненный в виде четвертьволнового радиального градана диаметром d и высотой h, установленный на расстоянии h от фронтальной поверхности линзы Френеля, при этом величины h, h, и D удовлетворяют определенным соотношениям. Изобретение обеспечивает формирование фотоэлектрического модуля с повышенной надежностью, с увеличенным сроком службы и высокой энергопроизводительностью за счет выравнивания освещенности фотоактивной области и уменьшения локальной концентрации солнечного излучения. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области солнечной энергетики и, в частности, к фотоэлектрическим концентраторным модулям. Настоящее изобретение предназначено для применения в концентраторных солнечных энергоустановках, используемых в качестве систем энергоснабжения в различных климатических зонах.

Одним из наиболее перспективных методов получения электроэнергии из возобновляемых источников является фотоэлектрическое преобразование концентрированного солнечного излучения с использованием высокоэффективных каскадных фотоэлементов (ФЭ) и недорогих оптических концентраторов. Известно, что применение концентраторов излучения при условии согласования их параметров с параметрами ФЭ позволяет не только поднять энергетическую эффективность фотоэлектрических концентраторных модулей, но и улучшить их энерго-экономические показатели за счет уменьшения расхода дорогостоящих полупроводниковых материалов. Использование последних при концентрации солнечного излучения 500-2500 крат позволяет пропорционально сократить суммарную площадь ФЭ и существенно снизить стоимость получаемой электроэнергии. В то же время, при высокой степени концентрации солнечного излучения происходит чрезмерный разогрев ФЭ, что негативно влияет на преобразующие свойства ФЭ, их срок службы и выходные характеристики фотоэлектрических модулей. Лучшие характеристики оптических фокусирующих систем могут быть получены при использовании двухкаскадных оптических концентраторов. В качестве первичного оптического элемента в таких системах обычно используют длиннофокусные стеклянные линзы или линзы Френеля большой площади, вторичные оптические элементы могут быть разной конструкции - короткофокусные стеклянные линзы, полые или стеклянные конические или параболические отражатели. Преимущество двухкаскадных фокусирующих систем заключается в том, что они обеспечивают дополнительное собирание света от первичных концентраторов, позволяют уменьшить углы преломления света, что приводит к снижению хроматической аберрации при фокусировке; в случае установки дополнительных отражателей - к более равномерному распределению плотности излучения в сфокусированном световом пятне. Кроме того, они позволяют увеличить предельный угол отклонения оптической оси фокусирующей системы относительно направления падающего солнечного излучения, что делает возможным снижение требований к характеристикам следящих систем и, соответственно, уменьшение стоимости конструкции.

Известен солнечный концентраторный модуль (см. патент US 6717045, МПК H01L 31/042, H01L 31/052, опубл. 06.04.2004), включающий множество оптических концентраторов, фокусирующих солнечное излучение на фотоприемные площадки ФЭ. Каждый из оптических концентраторов состоит из первичного концентратора, имеющего степень концентрации солнечного излучения 5-10 крат, вторичного концентратора, расположенного ниже первого концентратора и увеличивающего степень концентрации солнечного излучения в 20-50 раз, и третьего концентратора, установленного в нижней плоскости вторичного концентратора и фокусирующего излучение на поверхность ФЭ. В качестве первичного концентратора может быть использована линза Френеля. Вторичный концентратор представляет собой комбинированный параболический отражатель, изготовленный из стекла или керамики и имеющий отражающие и защитные покрытия. В качестве третьего концентратора служит стеклянная линза. Фотоэлемент устанавливают на площадке, имеющей оребрение для рассеяния тепла.

Недостатками рассматриваемой конструкции солнечного концентраторного модуля являются большие потери света за счет отражения на поверхностях оптических элементов трехкаскадного концентратора, высокий уровень концентрации света на поверхности ФЭ, технические сложности изготовления, монтажа и юстировки большого количества оптических деталей и, соответственно, высокая стоимость конструкции.

Известен фотоэлектрический концентраторный модуль (см. заявка PCT WO 2007093422, МПК H01L 31/052, опубл. 23.08.2007), содержащий линзовую панель и панель с ФЭ, установленные на несущей раме, обеспечивающей герметизацию внутреннего объема модуля и защиту оптических элементов от воздействия внешней среды. На линзовой панели установлены концентраторные линзы, в качестве которых используются линзы Френеля. ФЭ, изготовленные на основе многослойных гетероструктур, напаяны на теплоотводы и установлены на нижней несущей панели так, что фотоприемная площадка каждого ФЭ расположена в фокусе одной из линз Френеля.

Недостатками известной конструкции фотоэлектрического концентраторного модуля является сложность монтажа с высокой точностью большого количества ФЭ на несущей панели и низкая разориентационная характеристика устройства, требующая использования более точных и сложных систем слежения за Солнцем.

Известен солнечный концентраторный модуль (см. патент RU 2352023, МПК H01L 31/052, опубл. 10.04.2009), содержащий фронтальную панель и тыльную панель, изготовленные из силикатного стекла, первичный и вторичный оптические концентраторы и ФЭ с теплоотводящим основанием. Первичный оптический концентратор выполнен в форме линзы, сформированной в виде тыльной поверхности фронтальной панели. Вторичный оптический концентратор выполнен в виде фокона, установленного меньшим основанием на светочувствительной поверхности ФЭ. ФЭ с теплоотводящим основанием, размещен на фронтальной поверхности тыльной панели соосно первичному оптическому концентратору. Вторичный оптический концентратор позволяет улучшить разориентационную характеристику солнечного фотоэлектрического модуля, что обеспечивает увеличение энергопроизводительности солнечного концентраторного модуля.

Недостатками известного солнечного концентраторного модуля являются сложность монтажа вторичного оптического концентратора на светочувствительной поверхности ФЭ, приводящая к большому количеству брака при сборке конструкции и уменьшающая срок службы ФЭ, а также трудоемкость позиционирования ФЭ и высокая статистическая вероятность линейного несовпадения центра ФЭ с оптическим центром линзы.

Известен солнечный концентраторный модуль (см. заявка WO 2014066957, МПК H01L 31/048, H01L 31/052, опубл. 08.05.2014). Модуль представляет собой объемную несущую конструкцию, в верхней части которой расположено множество первичных оптических концентраторов в виде линз. В нижней части конструкции прикреплено множество ФЭ и над каждым ФЭ установлен вторичный оптический элемент, расположенный напротив соответствующего первичного концентратора. Вторичный концентратор представляет собой тонкостенную конструкцию, закрепленную в поддерживающем устройстве, с выпуклой верхней частью и боковыми стенками, состоящими из секторов параболической формы.

Недостатком известного солнечного концентраторного модуля является сложность изготовления вторичного оптического концентратора. Монтаж вторичного оптического концентратора на светочувствительной поверхности ФЭ приводит к уменьшению срока службы элементов.

Известен солнечный концентраторный модуль (см. заявка CN 103165717, МПК H01L 31/054, опубл. 19.06.2013), содержащий матрицу из линз Френеля, закрепленную на стеклянной плате, панели солнечных батарей, размещенные на металлическом основании и вторичные концентрирующие элементы в виде стеклянных цилиндрических линз. Цилиндрических линзы установлены над ФЭ и жестко закреплены на металлическом основании, а верхняя плата и металлические основания фиксируют так, чтобы оптические оси линз Френеля проходили через центры цилиндрических линз и фотоприемных площадок ФЭ. Фокусы линз Френеля позиционируют в середине продольной оси цилиндрических линз.

Недостатками известного солнечного концентраторного модуля являются сложность монтажа вторичного оптического концентратора и трудоемкость позиционирования ФЭ. Кроме того, вторичные концентрирующие элементы в виде цилиндрических линз улучшают разориентационные характеристики модулей только в одной плоскости.

Известен солнечный фотоэлектрический концентраторный модуль (см. патент RU 2307294, МПК H01L 31/052, опубл. 27.09.2007), совпадающий с настоящим техническим решением по наибольшему числу существенных признаков и принятый за прототип. Солнечный фотоэлектрический концентраторный модуль содержит фронтальную панель из силикатного стекла с линзами Френеля на ее тыльной стороне, а также ФЭ с теплоотводящими основаниями. Теплоотводящие основания расположены на тыльной панели из силикатного стекла. Оптические оси линз Френеля проходят через центры фотоактивных поверхностей соответствующих ФЭ. Введена дополнительная промежуточная панель из силикатного стекла, на которой установлены плосковыпуклые линзы, соосные с соответствующими линзами Френеля. Фотоактивные поверхности ФЭ расположены в фокусном пятне двух оптических концентраторов - линз Френеля и плоско-выпуклых линз.

Известный солнечный фотоэлектрический концентраторный модуль обладает хорошей разориентационной характеристикой. Однако недостатком известного модуля-прототипа является высокий уровень концентрации солнечного излучения на ФЭ. В центре фокусного пятна двух оптических концентраторов - линзы Френеля и плоско-выпуклой линзы, концентрация солнечного излучения достигает 5000 крат, что приводит к снижению эффективности преобразования света в электроэнергию и уменьшает срок службы ФЭ.

Задачей, решаемой настоящим техническим решением, является создание солнечного фотоэлектрического концентраторного модуля с повышенной надежностью, с увеличенным сроком службы и высокой энергопроизводительностью за счет выравнивания освещенности фотоактивной области ФЭ и уменьшения локальной концентрации солнечного излучения.

Поставленная задача решается тем, что солнечный фотоэлектрический концентраторный модуль включает первичный оптический концентратор в виде линзы Френеля, с линейным размером D, оптическая ось которой проходит через центр фотоактивной области ФЭ, выполненной в виде круга диаметром d, и соосный с ним вторичный концентратор, выполненный в виде четвертьволнового радиального градана диаметром, равным d, и высотой h1, установленный на расстоянии h2 от фронтальной поверхности линзы Френеля, при этом величины h1, h2, и D удовлетворяют соотношениям, мм:

h1=L/4;

h2=F;

где: F - фокусное расстояние линзы Френеля, мм;

L - характеристическая длина самофокусировки градиентной линзы, мм;

Na - числовая апертура градана.

На торцевые поверхности градана могут быть нанесены просветляющие диэлектрические покрытия.

Выбор значения высоты h1 определяется свойствами радиальных градиентных линз, внутри которых за счет радиального изменения показателя преломления происходит периодическая самофокусировка параллельного светового пучка в точках на оптической оси на расстоянии характеристической длины самофокусировки L. При этом при фокусировке светового пятна на приемный торец градана длиной L/4, сфокусированное излучение выходит через выходной торец градана в виде параллельного светового пучка.

Для фокусировки солнечного излучения на приемном торце, четвертьволновой радиальный градан устанавливается соосно с линзой Френеля на расстоянии h2, равном фокусу линзы Френеля F.

Для обеспечения оптического преобразования всех световых лучей внутри вторичного концентратора, выходной апертурный угол первичного концентратора, определяемый соотношением размера D линзы Френеля и ее фокусного расстояния F, устанавливается равным или меньшим входному апертурному углу градана, определяемому числовой апертурой Na.

Для снижения потерь линзы Френеля на отражение света на торцевые поверхности градана могут быть нанесены просветляющие диэлектрические покрытия.

Устройство настоящего солнечного фотоэлектрического концентраторного модуля поясняется чертежом, где схематично изображен солнечный фотоэлектрический концентраторный модуль с вторичным концентратором, выполненным в виде четвертьволнового радиального градана.

Настоящий солнечный фотоэлектрический концентраторный модуль (см. чертеж) содержит ФЭ 1, фотоактивная область 2 которого выполнена в виде круга диаметром d, первичный оптический концентратор 3 в виде линзы Френеля с линейным размером D, оптическая ось 4 которой проходит через центр 5 фотоактивной области 2 ФЭ 1 и вторичный соосный с ним концентратор 6, выполненный в виде четвертьволнового радиального градана диаметром d, и высотой h1, установленный на расстоянии h2 от фронтальной поверхности 7 первичного оптического концентратора 3. Высота h1 установлена равной характеристической длины самофокусировки градиентной линзы L. Высота h2 установлена равной фокусу линзы Френеля F. Размер D линзы Френеля и ее фокусное расстояние F выбраны такими, чтобы выполнялось соотношение:

где Na - числовая апертура градана. На торцевые поверхности градана могут быть нанесены просветляющие диэлектрические покрытия.

При работе настоящего солнечного фотоэлектрического концентраторного модуля, ориентированного перпендикулярно солнечным лучам, солнечное излучение, попадающее на входную апертуру первичного оптического концентратора 3, фокусируется им на приемном торце 8 вторичного оптического концентратора 6, затем после изменения направления хода лучей во вторичном оптическом концентраторе 6, через выходной торец 9 вторичного оптического концентратора 6 в виде параллельного светового пучка направляется на фотоактивную область 2 ФЭ 1.

При этом распределение концентрации солнечного излучения на поверхности фотоактивной области 2 ФЭ 1 более однородное, чем в фокальном пятне первичного оптического концентратора 3, происходит выравнивание интенсивности светового потока, а также уменьшается спектральная неоднородность излучения. Максимальные значения локальной концентрации солнечного излучения существенно ниже, чем при использовании в качестве вторичных оптических концентраторов 6 выпуклых линз. Уменьшение спектральной неоднородности излучения приводит к увеличению КПД преобразования света в трехкаскадном ФЭ за счет уменьшения латеральных токов между каскадами. Снижение максимальных значений локальной концентрации солнечного излучения приводит к уменьшению локального перегрева ФЭ. Более однородное распределение концентрации солнечного излучения по поверхности фотоактивной области ФЭ приводит к повышению надежности его работы, увеличению срока службы и увеличению эффективности преобразования солнечного излучения в электрическую энергию.


СОЛНЕЧНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ КОНЦЕНТРАТОРНЫЙ МОДУЛЬ
СОЛНЕЧНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ КОНЦЕНТРАТОРНЫЙ МОДУЛЬ
Источник поступления информации: Роспатент

Показаны записи 81-90 из 119.
16.05.2019
№219.017.5260

Способ изготовления фотоэлектрического преобразователя с антиотражающим покрытием

Изобретение относится к солнечной энергетике. Способ изготовления фотоэлектрического преобразователя включает последовательное формирование фоточувствительной полупроводниковой гетероструктуры АВ с пассивирующим слоем и контактным слоем GaAs, удаление контактного слоя над...
Тип: Изобретение
Номер охранного документа: 0002687501
Дата охранного документа: 14.05.2019
18.05.2019
№219.017.53af

Способ изготовления омических контактов фотоэлектрического преобразователя

Способ изготовления омических контактов фотоэлектрического преобразователя включает напыление на гетероструктуру AB основы фронтального омического контакта через первую фоторезистивную маску с рисунком фронтального омического контакта и основы тыльного омического контакта, термообработку...
Тип: Изобретение
Номер охранного документа: 0002687851
Дата охранного документа: 16.05.2019
01.06.2019
№219.017.7275

Способ изготовления нитридного светоизлучающего диода

Способ изготовления нитридного светоизлучающего диода включает последовательное формирование на диэлектрической подложке слоя нитридного полупроводника n-типа проводимости, активного слоя нитридного полупроводника, слоя нитридного полупроводника р-типа проводимости. На полученной...
Тип: Изобретение
Номер охранного документа: 0002690036
Дата охранного документа: 30.05.2019
07.06.2019
№219.017.7543

Концентраторно-планарный солнечный фотоэлектрический модуль

Концентраторно-планарный фотоэлектрический модуль (1) содержит фронтальную светопрозрачную панель (2) с концентрирующими оптическими элементами (4), светопрозрачную тыльную панель (5), на которой сформированы планарные неконцентраторные фотоэлектрические преобразователи (6) с окнами (10),...
Тип: Изобретение
Номер охранного документа: 0002690728
Дата охранного документа: 05.06.2019
13.06.2019
№219.017.8186

Импульсный инжекционный лазер

Импульсный инжекционный лазер содержит гетероструктуру раздельного ограничения, включающую асимметричный многомодовый волновод, ограничительные слои (3), (8) которого одновременно являются эмиттерами n- и р-типа проводимости с одинаковыми показателями преломления, активную область (6),...
Тип: Изобретение
Номер охранного документа: 0002691164
Дата охранного документа: 11.06.2019
20.06.2019
№219.017.8cbe

Оптический магнитометр

Изобретение относится к нанотехнологиям и может быть использовано в области разработки материалов на основе карбида кремния для магнитометрии, квантовой оптики, биомедицины, а также в информационных технологиях, основанных на квантовых свойствах спинов и одиночных фотонов. Оптический...
Тип: Изобретение
Номер охранного документа: 0002691774
Дата охранного документа: 18.06.2019
20.06.2019
№219.017.8cfa

Оптический магнитометр

Изобретение относится к нанотехнологиям и может быть использовано в области разработки материалов на основе карбида кремния для магнитометрии, квантовой оптики, биомедицины, а также в информационных технологиях, основанных на квантовых свойствах спинов и одиночных фотонов. Оптический...
Тип: Изобретение
Номер охранного документа: 0002691775
Дата охранного документа: 18.06.2019
20.06.2019
№219.017.8d0a

Способ измерения температуры

Изобретение относится к области нанотехнологий и может быть использовано в области измерения локальных слабых температурных полей с микро- и наноразмерным разрешением в микроэлектронике, биотехнологиях и др. Предложен способ измерения температуры, включающий предварительное построение...
Тип: Изобретение
Номер охранного документа: 0002691766
Дата охранного документа: 18.06.2019
17.07.2019
№219.017.b5e8

Устройство определения характеристик для определения характеристик сцинтилляционного материала

Группа изобретений относится к устройству определения характеристик для определения характеристик сцинтилляционного материала, в частности, для датчика ПЭТ. Первый источник излучения облучает сцинтилляционный материал первым излучением с длиной волны менее 450 нм. Второй источник излучения...
Тип: Изобретение
Номер охранного документа: 0002694592
Дата охранного документа: 16.07.2019
26.07.2019
№219.017.b955

Способ измерения магнитного поля

Изобретение относится к области измерительной техники и касается способа измерения магнитного поля. Способ включает воздействие на кристалл карбида кремния, содержащего спиновые центры с основным квадруплетным спиновым состоянием, сфокусированным лазерным излучением, перестраиваемым по частоте...
Тип: Изобретение
Номер охранного документа: 0002695593
Дата охранного документа: 24.07.2019
Показаны записи 81-90 из 104.
29.12.2018
№218.016.acff

Свч фотодетектор лазерного излучения

Изобретение относится к полупроводниковой электронике и может быть использовано для создания фотодетекторов (ФД) лазерного излучения (ЛИ). СВЧ фотодетектор лазерного излучения состоит из подложки 1, выполненной из n-GaAs, и последовательно осажденных: Брегговского отражателя 2, настроенного на...
Тип: Изобретение
Номер охранного документа: 0002676187
Дата охранного документа: 26.12.2018
01.03.2019
№219.016.cedd

Способ полирования полупроводниковых материалов

Изобретение относится к области обработки полупроводниковых материалов, а именно к химико-механическим способам полирования полупроводников. Изобретение обеспечивает высокое качество полированной поверхности. Сущность изобретения: в способе химико-механического полирования полупроводниковых...
Тип: Изобретение
Номер охранного документа: 0002457574
Дата охранного документа: 27.07.2012
01.03.2019
№219.016.d0be

Способ изготовления полупроводниковой структуры с p-n переходами

Изобретение относится к электронной технике, а именно к полупроводниковым многопереходным структурам, используемым, в частности, в фотоэлектрических преобразователях. Способ изготовления полупроводниковой структуры включает последовательное формирование на полупроводниковой подложке методом...
Тип: Изобретение
Номер охранного документа: 0002461093
Дата охранного документа: 10.09.2012
01.03.2019
№219.016.d0c1

Способ определения неоднородностей в полупроводниковом материале

Изобретение относится к области электронной техники и может быть использовано для контроля качества проводящих слоев и поверхностей полупроводниковых пленок, применяемых при изготовлении изделий микроэлектроники. Сущность изобретения: в способе определения неоднородностей в полупроводниковом...
Тип: Изобретение
Номер охранного документа: 0002461091
Дата охранного документа: 10.09.2012
03.03.2019
№219.016.d231

Способ изготовления мощного фотодетектора

Изобретение может быть использовано для создания СВЧ-фотодетекторов на основе эпитаксиальных структур GaAs/AlGaAs, чувствительных к излучению на длине волны 810-860 нм. Способ заключается в создании фоточувствительной области и контактной площадки для бондинга вне фоточувствительной области на...
Тип: Изобретение
Номер охранного документа: 0002680983
Дата охранного документа: 01.03.2019
10.04.2019
№219.017.0277

Способ формирования многослойного омического контакта фотоэлектрического преобразователя (варианты)

Изобретение относится к микроэлектронике. Сущность изобретения: в способе формирования многослойного омического контакта фотоэлектрического преобразователя на основе арсенида галлия электронной проводимости формируют фотолитографией топологию фоточувствительных областей и проводят травление...
Тип: Изобретение
Номер охранного документа: 0002391741
Дата охранного документа: 10.06.2010
16.05.2019
№219.017.5260

Способ изготовления фотоэлектрического преобразователя с антиотражающим покрытием

Изобретение относится к солнечной энергетике. Способ изготовления фотоэлектрического преобразователя включает последовательное формирование фоточувствительной полупроводниковой гетероструктуры АВ с пассивирующим слоем и контактным слоем GaAs, удаление контактного слоя над...
Тип: Изобретение
Номер охранного документа: 0002687501
Дата охранного документа: 14.05.2019
18.05.2019
№219.017.5967

Солнечный фотоэлектрический модуль на основе наногетероструктурных фотопреобразователей

Концентраторный фотоэлектрический модуль на основе наногетероструктурных солнечных элементов относится к области фотоэлектрического преобразования энергии, в частности к системам с расщеплением солнечного спектра. Модуль содержит корпус (1), имеющий фронтальную панель (2), содержащую...
Тип: Изобретение
Номер охранного документа: 0002426198
Дата охранного документа: 10.08.2011
29.05.2019
№219.017.689a

Концентраторный солнечный элемент

Концентраторный солнечный элемент (8) выполнен в форме в форме прямоугольника с соотношением длин сторон, находящимся в интервале от 1 до 1,5. Он содержит подложку (3), многослойную структуру (4), сформированную на подложке (3), с центральной фоточувствительной областью (12), контактный слой...
Тип: Изобретение
Номер охранного документа: 0002407108
Дата охранного документа: 20.12.2010
09.06.2019
№219.017.7c22

Способ получения структуры многослойного фотоэлектрического преобразователя

Способ получения многослойной структуры двухпереходного фотоэлектрического преобразователя, включающий последовательное осаждение из газовой фазы на подложку p-типа GaAs тыльного потенциального барьера из триметилгаллия (TMGa), триметилалюминия (TMAl), арсина (AsH) и источника p-примеси, базы...
Тип: Изобретение
Номер охранного документа: 0002366035
Дата охранного документа: 27.08.2009
+ добавить свой РИД