×
13.02.2018
218.016.2071

Результат интеллектуальной деятельности: ИНФОРМАЦИОННО-ИЗМЕРИТЕЛЬНАЯ СИСТЕМА ДЛЯ ИЗМЕРЕНИЯ РАСХОДА И КОЛИЧЕСТВА ГАЗА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерительной техники и может быть преимущественно использовано для измерения расхода и количества природного газа при коммерческом учете. В информационно-измерительной системе для измерения расхода и количества газа, состоящей из основного измерительного трубопровода с вихревым расходомером, датчиков давления и температуры, контроллера и запоминающего устройства, согласно изобретению параллельно основному измерительному трубопроводу установлен байпасный измерительный трубопровод с установленным в нем образцовым ультразвуковым расходомером и краном, управляемым контроллером. При этом контроллер выполнен с возможностью осуществления алгоритма вычисления расхода по формуле: где Q - расход, измеряемый вихревым преобразователем; q - расход, измеряемый ультразвуковым расходомером; ƒ - частота, снимаемая, пропорциональная расходу Q; ƒ - частота, снимаемая, пропорциональная расходу Q-q. Технический результат - повышение точности измерения расхода. 1 ил.

Изобретение относится к области измерительной техники и может быть преимущественно использовано для измерения расхода и количества природного газа при коммерческом учете.

Известны вихревые расходомеры, принцип действия которых основан на измерении частоты следования вихрей, образующихся за помещенным в поток текучей среды плохообтекаемым телом. Они характеризуются большим диапазоном измерений и стабильностью метрологических характеристик. Основными узлами вихревого расходомера являются тело обтекания и чувствительный элемент, преобразующий колебательное изменение давления или скорости потока в вихревом следе в электрический сигнал. В качестве преобразователя может использоваться термоанемометр («Вихревой расходомер - счетчик газа» Козицкий А.И., Моргунов В.М.) [Козицкий А.И., Моргунов В.М. Вихревой расходомер - счетчик газа» [Электронный ресурс]. - URL: www.gorgaz.ru/download/publicatcii/publ2.zip? PHPSESSID]. В другом случае вторичным преобразователем являются два пьезоэлемента, установленные диаметрально противоположно за телом обтекания (Патент RU №2515129 G01F 1/32 (2006.01), опубл. 10.05.2014).

Существенным недостатком указанных расходомеров является то, что в них отсутствует возможность расчета количества газа и приведение его к нормальным условиям.

От указанного недостатка свободен выбранный в качестве прототипа вихревой расходомер ВРСГ-1 («Вихревой расходомер - счетчик газа ВРСГ-1. Опыт создания и эксплуатации» Гайнанов Л.Э., Гоголадзе З.Д., Кратиров Д.В.) [Гайнанов Л.Э., Гоголадзе З.Д., Кратиров Д.В. Вихревой расходомер - счетчик газа ВРСГ-1. Опыт создания и эксплуатации [Электронный ресурс]. - URL: http://npk-pmo.ru/rs42]. Расходомер состоит из корпуса в виде участка трубопровода, тела обтекания для создания областей вихреобразования, расположенного в трубопроводе перпендикулярно оси трубопровода. В ВРСГ-1, помимо частоты срыва вихрей, измеряется давление и температура среды в измерительном участке. Кроме того, расходомер снабжен устройством стандартного интерфейса, осуществляющим связь с контроллером, реализующим алгоритм вычисления количества газа и введение поправки по температуре и давлению.

Недостаток устройства-прототипа - недостаточная точность измерения, возникающая вследствие мультипликативной составляющей погрешности вихревого расходомера. Ее наличие объясняется следующим образом.

Уравнение измерения расхода газа для вихревого расходомера выглядит следующим образом [Рекомендация. Расход и количество газа. Методика выполнения измерений ФР.1.29.2003.00885. Казань: ВНИИР, 2003. 23 с.]:

,

где Kпр=KQFh - коэффициент преобразования расходомера;

KQ - поправочный коэффициент преобразователя расходомера;

F - площадь поперечного сечения проточного тракта расходомера;

h - диаметр характерного тела, за которым образуются вихри Бенара-Кармана;

KT - поправочный коэффициент на изменение размеров элементов конструкции расходомера, вызванных отклонением температуры от 20°С;

- поправочный коэффициент на влияние расширения газа за телом обтекания (коэффициент расширения);

ƒ - частота вихреобразования;

- условно-постоянная величина, учитывающая конструктивные особенности расходомера и параметры среды;

γ - показатель адиабаты;

R - универсальная газовая постоянная;

μF - коэффициент сужения за телом обтекания;

- коэффициент характеризует отличие давления в измерительном сечении от давления в расчетном сечении;

- число Маха;

а - скорость звука;

ν - скорость движения газа;

Р, Т и K - давление, температура и коэффициент сжимаемости газа;

РC=101325 Па и ТC=293,15 K - стандартные условия.

Коэффициенты Kпр, KE, KT для каждого конкретного расходомера при конкретных условиях являются постоянными, и расход Q зависит только от частоты ƒ. Однако при изменении параметров измеряемой среды изменятся такие показатели, как: коэффициент сжимаемости газа, коэффициент сужения за телом обтекания, коэффициент, характеризующий отличие давления в измерительном сечении от давления в расчетном сечении. Это в свою очередь приведет к изменению коэффициентов Kпр, KE, KT, из-за чего возникнет мультипликативная составляющая погрешности, что приведет к снижению точности измерений. В устройстве-прототипе отсутствует механизм, позволяющий исключить данную составляющую погрешности.

Техническим результатом предлагаемого изобретения является повышение точности измерения расхода.

Технический результат достигается тем, что в информационно-измерительной системе для измерения расхода и количества газа, состоящей из основного измерительного трубопровода с вихревым расходомером, датчиков давления и температуры, контроллера и запоминающего устройства, согласно изобретению параллельно основному измерительному трубопроводу установлен байпасный измерительный трубопровод с установленным в нем образцовым ультразвуковым расходомером и краном, управляемым контроллером. Также изменен алгоритм вычисления расхода газа, за счет чего устранена мультипликативная составляющая погрешности вихревого расходомера. При этом периодическое подключение ультразвукового расходомера позволяет при необходимости осуществлять калибровку вихревого расходомера.

Система состоит из основного измерительного трубопровода 1 с вихревым расходомером 2, который образует вихри Бенара-Кармана, байпасного измерительного трубопровода 3 малого диаметра с установленным на нем образцовым ультразвуковым расходомером 4. На байпасном трубопроводе 3 установлен кран 5, осуществляющий подключение байпасного трубопровода. Вихревой расходомер 2 соединен с преобразователем 6, преобразующим частоту вихрей в кодовую комбинацию. Ультразвуковой расходомер 4 подключен к преобразователю 7. Каналы измерения давления и температуры реализованы преобразователями 8 и 9. Преобразователи 6, 7, 8 и 9 подключены к программируемому контроллеру 10 по стандартному интерфейсу и протоколу. Контроллер 10 реализует алгоритм вычисления расхода и количества газа и соединен с запоминающим устройством 11 для хранения информации и с дисплеем 12 оператора для визуализации полученных результатов. При этом контроллер 10 также соединен с краном 5 с целью программного управления подключением байпасного трубопровода 3.

Устройство работает следующим образом. Работа системы осуществляется в два такта. В первом такте кран 5 на измерительном трубопроводе 1 закрыт, весь расход Q проходит через вихревой расходомер 2. Частота ƒ1, соответствующая данному расходу, снимается преобразователем 6 и хранится в запоминающем устройстве 11 контроллера 10. Затем на втором такте контроллер 10 подает сигнал на открытие крана 5 и часть потока газа начинает идти через байпасный трубопровод 3. Система во время второго такта создает избыточную информацию за счет включения расходомера 4. Расходомер 4 измеряет расход q, который преобразуется в код при помощи преобразователя 7. Частота ƒ2, пропорциональная величине расхода Q-q, также измеряется преобразователем 6. Периодичность смены тактов зависит от периодичности изменения параметров измеряемой среды, и, как правило, байпасный трубопровод 3 подключается не чаще чем раз в сутки. Кроме того, в трубопроводе 1 постоянно происходит измерение давления и температуры преобразователями 8 и 9 соответственно. После обработки в контроллере 10 вся информация о расходе и количестве газа отображается на дисплее 12 оператора.

Уравнение измерения расхода газа для вихревого расходомера, которое выглядит следующим образом:

,

где Kпр - коэффициент преобразования расходомера;

KT - поправочный коэффициент на изменение размеров элементов конструкции расходомера, вызванных отклонением температуры от 20°С;

KE - поправочный коэффициент на влияние расширения газа за телом обтекания (коэффициент расширения);

ƒ - частота вихреобразования;

Р, Т и K - давление, температура и коэффициент сжимаемости газа;

РC=101325 Па и TC=293,15 K - стандартные условия.

Для нахождения функции преобразования, согласно которой должен выполняться алгоритм измерения расхода, решим следующую систему уравнений:

,

Возьмем отношение двух уравнений системы и разрешим ее относительно расхода Q. Коэффициенты преобразователя расходомера Kпр, температурные поправочные коэффициенты KT, коэффициенты расширения KE и параметры среды исключаются из функции преобразования системы, потому что носят постоянный характер в обоих тактах измерения расхода. Решение системы будет представлено следующей формулой:

,

где Q - расход, измеряемый вихревым преобразователем;

q - расход, измеряемый ультразвуковым расходомером;

ƒ1 - частота, снимаемая, пропорциональная расходу Q;

ƒ2 - частота, снимаемая, пропорциональная расходу Q-q.

Использование предлагаемого алгоритма вычисления расхода позволяет добиться повышения точности измерения расхода за счет исключения мультипликативной составляющей погрешности вихревого расходомера.


ИНФОРМАЦИОННО-ИЗМЕРИТЕЛЬНАЯ СИСТЕМА ДЛЯ ИЗМЕРЕНИЯ РАСХОДА И КОЛИЧЕСТВА ГАЗА
ИНФОРМАЦИОННО-ИЗМЕРИТЕЛЬНАЯ СИСТЕМА ДЛЯ ИЗМЕРЕНИЯ РАСХОДА И КОЛИЧЕСТВА ГАЗА
ИНФОРМАЦИОННО-ИЗМЕРИТЕЛЬНАЯ СИСТЕМА ДЛЯ ИЗМЕРЕНИЯ РАСХОДА И КОЛИЧЕСТВА ГАЗА
ИНФОРМАЦИОННО-ИЗМЕРИТЕЛЬНАЯ СИСТЕМА ДЛЯ ИЗМЕРЕНИЯ РАСХОДА И КОЛИЧЕСТВА ГАЗА
Источник поступления информации: Роспатент

Показаны записи 151-160 из 168.
15.05.2023
№223.018.5757

Способ скважинной инклинометрии и скважинная система для его реализации

Изобретение относится к инклинометрии скважин, в частности к способу и системе скважинной инклинометрии для определения пространственного положения ствола скважины феррозондовым инклинометром, в том числе в процессе бурения наклонных и горизонтальных скважин. Технический результат заключается в...
Тип: Изобретение
Номер охранного документа: 0002770874
Дата охранного документа: 22.04.2022
15.05.2023
№223.018.5889

Акустический влагомер наклонных и горизонтальных скважин

Изобретение относится к аппаратуре для геофизических и гидродинамических исследований в нефтяной промышленности при исследовании действующих скважин. Устройство включает цилиндрический корпус, который по продольной оси разделен на n равных секторов, электрически изолированных друг от друга...
Тип: Изобретение
Номер охранного документа: 0002764609
Дата охранного документа: 18.01.2022
16.05.2023
№223.018.5f73

Смазочная добавка для буровых промывочных жидкостей на водной основе

Изобретение относится к области бурения нефтегазовых скважин, в частности к смазочным добавкам для регулирования свойств буровых промывочных жидкостей на водной основе. Технический результат – улучшение смазочных, противоприхватных, гидрофобизирующих и поверхностно-активных свойств глинистых и...
Тип: Изобретение
Номер охранного документа: 0002744890
Дата охранного документа: 16.03.2021
16.05.2023
№223.018.61af

Автоматизированная система управления процессом компаундирования разносортных нефтей с регулированием подкачки и сброса сернистой нефти

Изобретение относится к средствам автоматизации и может быть использовано в трубопроводном транспорте при перекачке нефти из нескольких трубопроводов в общую магистраль, по которой смесь нефтей транспортируется к потребителю. Автоматизированная система управления компаундированием разносортных...
Тип: Изобретение
Номер охранного документа: 0002746679
Дата охранного документа: 19.04.2021
16.05.2023
№223.018.6270

Способ измерения продукции нефтяной скважины

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения массового дебита нефти, а также газового фактора нефти с измерением остаточного количества растворенного газа в нефти в рабочих условиях измерений. Способ измерения продукции нефтяной скважины...
Тип: Изобретение
Номер охранного документа: 0002781205
Дата охранного документа: 07.10.2022
16.05.2023
№223.018.62f7

Байпасная и импульсная обвязки линейных кранов в составе крановых узлов многониточных магистральных газопроводов, проложенных в одном технологическом коридоре

Изобретение относится к области эксплуатации магистральных газопроводов и может быть использовано для безопасного выполнения предремонтных (опорожнение) и предпусковых (заполнение участков магистральных газопроводов природным газом) операций, а также для создания резервного питания импульсным...
Тип: Изобретение
Номер охранного документа: 0002777810
Дата охранного документа: 10.08.2022
16.05.2023
№223.018.6379

Блочно-модульный мобильный автономный малотоннажный комплекс подготовки и переработки попутного и природного газа

Изобретение относится к области формирования структуры производства по подготовке и переработке попутного и природного газа и может быть использовано на предприятиях нефтяной и газовой промышленности. Блочно-модульный мобильный автономный малотоннажный комплекс подготовки и переработки...
Тип: Изобретение
Номер охранного документа: 0002779480
Дата охранного документа: 07.09.2022
Тип: Изобретение
Номер охранного документа: 0002748711
Дата охранного документа: 31.05.2021
21.05.2023
№223.018.682d

Способ получения легких газообразных и жидких углеводородов путем каталитической конверсии бензина термического крекинга

Изобретение относится к способу получения легких газообразных и жидких углеводородов путем каталитической конверсии углеводородных соединений в среде неорганического расплавленного катализатора на основе двойных солей хлоридов металлов. В качестве углеводородных соединений используют бензин...
Тип: Изобретение
Номер охранного документа: 0002794942
Дата охранного документа: 25.04.2023
21.05.2023
№223.018.68b4

Способ оценки качества потенциально пригодного сырья для получения игольчатого кокса по интегральным параметрам оптических спектров поглощения

Изобретение относится к области нефтепереработки, в частности к способу оценки качества сырья для получения игольчатого кокса, и направлено на упрощение и ускорение процесса оценки качества сырья для получения игольчатого кокса. Способ осуществляют следующим образом. Различные виды сырья...
Тип: Изобретение
Номер охранного документа: 0002794435
Дата охранного документа: 18.04.2023
Показаны записи 41-43 из 43.
04.04.2018
№218.016.3424

Гербицидное средство

Изобретение относится к применению гетероциклических соединений, а именно к производным несимметричных триазинонов, в сельском хозяйстве. Сущность изобретения заключается в создании биологически активного гербицидного средства, содержащего в качестве активного ингредиента соединение...
Тип: Изобретение
Номер охранного документа: 0002645760
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3441

Способ разработки залежи высоковязкой нефти

Изобретение относится к технологиям разработки нефтяных пластов. Технический результат - обеспечение воздействия на нефть как в вертикальном, так и в горизонтальном направлениях, достижение более полной выработки пласта. В способе разработки залежи высоковязкой нефти, заключающемся в закачке в...
Тип: Изобретение
Номер охранного документа: 0002646151
Дата охранного документа: 01.03.2018
04.04.2018
№218.016.36c0

Глубинный штанговый насос

Изобретение относится к технике добыче нефти, в частности к глубинным штанговым насосам, для использования в нефтедобывающей промышленности. Насос включает цилиндр с плунжером, всасывающим и нагнетательным клапанами. В нижней части цилиндра размещен контейнер с технологической жидкостью,...
Тип: Изобретение
Номер охранного документа: 0002646522
Дата охранного документа: 05.03.2018
+ добавить свой РИД