×
13.02.2018
218.016.206d

Результат интеллектуальной деятельности: ГИБКИЙ ТЕПЛОЗВУКОИЗОЛЯЦИОННЫЙ ВОЛОКНИСТЫЙ МАТЕРИАЛ НИЗКОЙ ПЛОТНОСТИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к теплозвукоизоляционным материалам, в частности к волокнистым материалам авиационного назначения с пониженным удельным весом, высокими тепловыми свойствами, отвечающим требованиям пожарной безопасности. Обеспечение надежной работы теплоизоляции в условиях циклических тепловых нагрузок и вибраций и возможность противостоять экстремальным нагревам в случаях возгорания - важная задача при создании материалов для перспективных самолетов. Техническим результатом изобретения является значительное снижение удельного веса материала и повышение его гибкости при сохранении прочностных и теплозащитных свойств материала, а также обеспечение требований пожаробезопасности в случае возгорания. Для достижения заявленного технического результата предложен гибкий теплозвукоизоляционный волокнистый материал, содержащий в качестве основы минеральные волокна и волокна растительного происхождения, причем в качестве волокон растительного происхождения материал содержит котонизированные волокна льна, а в качестве минеральных волокон - волокна диаметром не более 5 мкм, выбранные из группы, содержащей базальтовые, кварцевые, кремнеземные волокна или волокна на основе оксида алюминия, кроме того, материал содержит органическое связующее, при этом плотность материала составляет не более 15 кг/м. 5 з.п. ф-лы, 1 табл.

Изобретение относится к теплозвукоизоляционным материалам, в частности к волокнистым материалам авиационного назначения с пониженным удельным весом, высокими тепловыми свойствами, отвечающим требованиям пожарной безопасности.

Обеспечение надежной работы теплоизоляции в условиях циклических тепловых нагрузок и вибраций и возможность противостоять экстремальным нагревам в случаях возгорания - важная задача при создании материалов для перспективных самолетов.

Известен высокотермостойкий изоляционный материал, включающий два вида волокон: тугоплавкие керамические волокна и стекловолокна, а также органическое или неорганическое связующее (US 2016244001 A1, B60R 13/08, опубл. 25.08.2016).

Недостатком данного материала является высокая плотность, обусловленная плотностью составляющих его волокон. Кроме того, если использовать органическое связующее, то материал не будет обладать достаточной термостойкостью из-за низкой температуры разложения органического связующего, а если использовать неорганическое связующее, то материал утратит гибкие свойства.

Известен гибкий тепло- и огнестойкий материал, включающий органические волокна и терморасширяющееся вещество, а также, если необходимо, неорганические волокна (RU 2111779 C1, B32B 3/26, опубл. 27.05.1998). Огнестойкими свойствами материал обладает благодаря обеспечению процесса совместного образования углей волокон и расширяющегося наполнителя. Органические волокна, содержащиеся в таком материале, должны быть подвергнуты специальной обработке замедляющим воспламенение веществом для обеспечения доминирования реакции карбонизации над процессом механической деградации. Разработчики материала выяснили, что при совместном обугливании органического волокна и расширяемого наполнителя в интервале температур от 200 до 500°С происходит смачивание поверхности волокна жидкими кислотными веществами разлагающегося расширяемого наполнителя. В результате создается усиленная волокнами аморфная структура с углеродными связями, способная к дальнейшему расширению. С ростом температуры выше 500°С на воздухе окисление угля начинается на поверхности и распространяется внутрь со скоростью, зависящей от диффузии кислорода в структуру. При этом находящиеся в составе гибридного материала неорганические термостойкие волокна задерживают полное окисление угля в материале на срок от 2 до 10 минут при температурах до 1200°С. Неорганические волокна образуют скелетную структуру, которая сохраняет свойства теплоизоляции даже после полной газификации всех углеродсодержащих компонентов в материале.

Недостатком данного материала является то, что он практически полностью состоит из полимерных органических волокон, имеющих невысокую температуру эксплуатации, в результате чего данный материал, хотя и способен сдерживать процесс распространения пламени в случае возгорания от 2 до 10 минут, но при стандартной работе в качестве изоляции данный материал способен выдерживать циклические тепловые нагрузки в режиме «нагрев-охлаждение» без деградации в узком температурном интервале, не включающим отрицательные температуры и кратковременные забросы до 200°С и выше.

Известен также волокнистый теплоизоляционный материал, принятый за прототип, включающий минеральное и целлюлозное волокно в соотношении (96-99):(1-4) и предназначенный для многоразового использования в качестве высокотемпературной теплоизоляции изделий, эксплуатируемых при температурах до 1200°С (SU 956686 A1, D21H 5/18, опубл. 07.09.1982). В качестве минерального волокна материал содержит кварцевое или кремнеземное стекловолокно диаметром 0,5-3,0 мкм и содержанием оксида кремния от 99,0 до 99,9%, а в качестве целлюлозного волокна лиственную беленую целлюлозу.

Недостатком данного материала является то, что используемая здесь лиственная целлюлоза имеет низкое отношение длины к диаметру и ярко выраженную "ленточную" форму волокон, придающую им чрезмерно высокую гибкость и склонность к флокуляции. В то время как в разрабатываемом в заявляемом изобретении суперлегковесном материале для обеспечения стабильности их структуры необходимы волокна, обладающие высокой устойчивостью к изгибу в сочетании с достаточно большой относительной длиной, при условии сохранения эластичности, стойкости к растрескиванию и связующих свойств целлюлозных волокон, в результате чего теплоизоляционный материал будет обладать недостаточной механической прочностью в условиях вибрации.

Данный недостаток может быть устранен использованием волокон льна, обладающих формой длинных гладких стержней и сохраняющих все положительные свойства, связанные с их целлюлозным составом (гибкость и эластичность, набухаемость в воде и связующие свойства).

Технической задачей данного изобретения является получение гибкого теплоизоляционного материала низкой плотности.

Техническим результатом изобретения является значительное снижение удельного веса материала и повышение его гибкости при сохранении прочностных и теплозащитных свойств материала, а также обеспечение требований пожаробезопасности в случае возгорания.

Для достижения заявленного технического результата предложен гибкий теплозвукоизоляционный волокнистый материал, содержащий в качестве основы минеральные волокна и волокна растительного происхождения, причем в качестве волокон растительного происхождения материал содержит котонизированные волокна льна, а в качестве минеральных волокон - волокна диаметром не более 5 мкм, выбранные из группы, содержащей базальтовые, кварцевые, кремнеземные волокна или волокна на основе оксида алюминия, кроме того, материал содержит органическое связующее, при этом плотность материала составляет не более 15 кг/м3.

Предпочтительно содержание котонизированного льняного волокна составляет 5-15% вес. от общего веса волокна в материале.

Предпочтительно в качестве органического связующего использован раствор сульфоэфира целлюлозы с концентрацией 0,01-3%.

Предпочтительно в качестве органического связующего использован раствор карбоксиметилцеллюлозы с концентрацией 0,01-3%.

Предпочтительно в качестве органического связующего использована эмульсия поливинилацетата с концентрацией 5-15%.

Предпочтительно в качестве органического связующего применяются термопластичные полиэфирные волокна в количестве 1-5% вес. от общего веса волокна в материале.

Теплозащитный волокнистый слой должен иметь малую теплопроводность, быть легким, пористым, достаточной толщины для обеспечения надежной теплоизоляции. Структура теплоизоляционного слоя должна обеспечить сравнительную неподвижность заключенного в нем воздуха. Наличие в волокнистом теплоизоляционном слое возможно большего количества неподвижного воздуха, являющегося плохим проводником тепла, способствует повышению изоляционной способности материала. Поэтому теплоизоляционный материал должен быть более рыхлым и пористым для увеличения содержания в нем сравнительно неподвижного воздуха и сохранять заданную толщину в процессе эксплуатации.

Известно, что для улучшения теплоизоляционной способности материала при его изготовлении используют различные волокна и нити, в т.ч. в различных смесях и сочетаниях между собой, при широком варьировании структурных характеристик материала, его толщины, поверхностной плотности, пористости, объемного веса. При этом удается повысить теплозащитные свойства материала, однако значительное улучшение теплозащитных свойств достигают за счет увеличения толщины материала и, следовательно, его массы, что отрицательно влияет на эксплуатационные характеристики изделия.

В предложенном материале, минеральные волокна, такие как базальтовые, кварцевые, кремнеземные или волокна на основе оксида алюминия, служат для создания теплоизолирующей и звукоизолирующей структуры материала и предотвращения разрушения материала и распространения пламени при пожарах с температурой горения до 1200°С в течении не менее 15 минут и являются основой предлагаемого материала.

Теплозвукоизоляционный волокнистый материал в качестве наполнителя содержит обработанные растительные волокна льна (котонизированное льняное волокно) или других растений, служащие для снижения удельного веса материала при сохранении гибкости и прочностных качеств. Наличие растительного волокна в массе минеральных волокон при воздействии пламени и высоких температур приведет к обугливанию котонизированного волокна, что не будет способствовать распространению огня через слой материала. При необходимости котонизированное льняное волокно может быть обработано антипиреновыми составами.

Для улучшения крепления волокон в материале в него в процессе получения волокнистого мата вводят связующее в виде раствора и/или в виде термопластичных полиэфирных волокон.

В качестве связующего используются растворы сульфоэфира целлюлозы, карбоксиметилцеллюлозы, поливинилацетатная эмульсия и термопластичные полиэфирные волокна. Термопластичные полиэфирные волокна вводятся на этапе приготовления волокнистой массы, после чего проводится раскладка волокон посредством струи сжатого воздуха. Введение раствора сульфоэфира целлюлозы, карбоксиметилцеллюлозы и поливинилацетатаной эмульсии происходит распылением при раскладке волокнистого мата или распылением непосредственно на мат, после чего волокнистый мат проходит низкотемпературную термообработку в интервале температур 80-180°С для активации связующего компонента.

Такой вариант сочетания термостойких минеральных волокон и легковесных растительных волокон в количестве от 5 до 15% вес позволяет достичь оптимального сочетания эксплуатационных свойств. При существенном снижении удельного веса (не более 15 кг/м3) материал сохраняет свои тепло- и звукоизоляционные свойства, обладает повышенной гибкостью и отвечает требованиям пожарной безопасности. Снижение общего веса самолета и, в частности, снижение веса теплозвукоизоляции позволит экономить топливные ресурсы.

Данное изобретение обеспечивает значительное снижение удельного веса материала при сохранении гибкости и прочности, материал предназначен для использования в авиационной промышленности.

Изобретение иллюстрируется следующими примерами его осуществления.

Пример 1

Гибкий теплозвукоизоляционный волокнистый материал изготовлен из смеси 85%(вес) базальтовых волокон материала марки БУТВ со средним диаметром 2-4 мкм, 10%(вес) котонизированных льняных волокон и 5%(вес) термопластичных полиэфирных волокон и термообработан при температуре 180°С. Была определена плотность материала и его гибкость по ГОСТ 17177, результаты представлены в таблице.

Пример 2

Гибкий теплозвукоизоляционный волокнистый материал изготовлен из смеси 70%(вес) кварцевых волокон ТКВ со средним диаметром 3-5 мкм, 25%(вес) волокон на основе оксида алюминия, 5%(вес) котонизированных льняных волокон, в качестве связующего использовали раствор сульфоэфира целлюлозы концентрацией 3%. Материал термообработан при температуре 100°С и определены его свойства аналогично примеру 1. Свойства материала представлены в таблице.

Пример 3

Гибкий теплозвукоизоляционный волокнистый материал изготовлен из смеси 85%(вес) кварцевых волокон ТКВ средним диаметром 2-4 мкм, 15%(вес) котонизированных льняных волокон и пропитан раствором сульфоэфира целлюлозы концентрацией 0,01% в качестве связующего, а затем термообработан при температуре 120°С. Свойства материала представлены в таблице.

Пример 4

Гибкий теплозвукоизоляционный волокнистый материал изготовлен из смеси 60%(вес) кварцевых волокон ТКВ средним диаметром 2-4 мкм, 28%(вес) базальтовых волокон материала марки БУТВ средним диаметром 3-5 мкм, 12%(вес) котонизированных льняных волокон и пропитан раствором карбоксиметилцеллюлозы концентрацией 0,01%, затем термообработан при температуре 70°С. Свойства материала представлены в таблице.

Пример 5

Гибкий теплозвукоизоляционный волокнистый материал изготовлен из смеси 40%(вес) кремнеземных волокон диаметром 3-4 мкм, 55%(вес) базальтовых волокон материала марки БУТВ диаметром 3-5 мкм, 5%(вес) котонизированных льняных волокон и пропитан раствором карбоксиметилцеллюлозы концентрацией 3% в качестве связующего, затем термообработан при температуре 120°С. Свойства материала представлены в таблице.

Пример 6

Гибкий теплозвукоизоляционный волокнистый материал изготовлен из смеси 70%(вес) кварцевых волокон ТКВ диаметром 2-4 мкм, 15%(вес) муллитовых волокон диаметром 1-3 мкм и 15%(вес) котонизированных льняных волокон. В качестве связующего пропитан эмульсией поливинилацетата концентрацией 5%, термообработан при 110°С. Свойства материала представлены в таблице.

Пример 7

Гибкий теплозвукоизоляционный волокнистый материал изготовлен из 90%(вес) базальтовых волокон материала марки БУТВ средним диаметром 3-5 мкм и 10%(вес) котонизированных льняных волокон, пропитан эмульсией поливинилацетата концентрацией 15%, термообработан при 115°С. Свойства материала представлены в таблице.

Пример 8

Гибкий теплозвукоизоляционный волокнистый материал изготовлен из 89%(вес) базальтовых волокон материала марки БУТВ средним диаметром 3-5 мкм, 5%(вес) котонизированных льняных волокон, 1%(вес) термопластичных эфирных волокон и термообработан при 150°С. Свойства материала представлены в таблице.

Пример 9 (по прототипу)

Материал изготовлен из смеси 99%(вес) кварцевого волокна диаметром 0,5-3,0 мкм и 1%(вес) лиственной целлюлозы, полученной из березовой древесины, получен по бумажной технологии и испытан аналогично примерам 1-5.

Все полученные материалы были испытаны на гибкость по ГОСТ17177, был определен удельный вес материалов.

Характеристики представлены в таблице.

Из таблицы видно, что предложенный материал имеет низкую плотность (менее 15 кг/м3), очень высокую гибкость (до 20 мм) и будет востребован в качестве легковесной самолетной теплоизоляции.

Источник поступления информации: Роспатент

Показаны записи 281-290 из 371.
29.03.2019
№219.016.f646

Состав для защитного покрытия

Изобретение относится к полимерным составам для получения защитных покрытий на основе эпоксидных связующих, для защиты конструкций из различных металлов и полимерных композиционных материалов. Состав включает: эпоксидную диановая смолу, полиамидный отвердитель, наполнители - мелкодисперсный...
Тип: Изобретение
Номер охранного документа: 0002402585
Дата охранного документа: 27.10.2010
29.03.2019
№219.016.f64b

Препрег антифрикционного органопластика и изделие, выполненное из него

Изобретение относится к области производства металлополимерных антифрикционных материалов и изделий и может быть использовано при изготовлении высоконагруженных подшипников скольжения в машино- и судостроении, авиационной промышленности и других областях техники. Препрег антифрикционного...
Тип: Изобретение
Номер охранного документа: 0002404202
Дата охранного документа: 20.11.2010
29.03.2019
№219.016.f659

Способ получения жаропрочных никелевых сплавов

Изобретение относится к области металлургии, а именно к получению жаропрочных никелевых сплавов, и может быть использовано для изготовления сварных корпусов, кожухов высоконагруженных деталей авиационных газотурбинных двигателей. Способ включает расплавление в вакууме шихтовых материалов,...
Тип: Изобретение
Номер охранного документа: 0002404273
Дата охранного документа: 20.11.2010
05.04.2019
№219.016.fd3f

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах до 700-1000°С. Жаропрочный литейный сплав на основе никеля содержит, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002684000
Дата охранного документа: 03.04.2019
06.04.2019
№219.016.fe23

Жаропрочный деформируемый сплав на основе никеля и изделие, выполненное из этого сплава

Изобретение относится к области металлургии жаропрочных деформируемых сплавов на основе никеля и изделий, выполненных из этих сплавов, и может быть использовано для изготовления дисков турбин газотурбинных двигателей и других узлов и деталей, работающих при температурах до 800°С во...
Тип: Изобретение
Номер охранного документа: 0002365657
Дата охранного документа: 27.08.2009
19.04.2019
№219.017.2ba8

Грунтовочная композиция для кремнийорганических герметиков

Настоящее изобретение относится к области химии полимеров, а именно к средствам для обеспечения адгезии кремнийорганических герметиков к разнообразным подложкам, и может применяться в авиационной и космической технике, приборостроении и других отраслях промышленности. Техническая задача -...
Тип: Изобретение
Номер охранного документа: 0002272059
Дата охранного документа: 20.03.2006
19.04.2019
№219.017.2bbc

Препрег и изделие, выполненное из него

Изобретение относится к препрегу и изделию, выполненному из него, используемому в качестве материала несущих элементов конструкций авиационной и космической техники. Препрег содержит 24-50 мас.% полимерного связующего и 50-76 мас.% волокнистого наполнителя. В качестве волокнистого наполнителя...
Тип: Изобретение
Номер охранного документа: 0002278028
Дата охранного документа: 20.06.2006
19.04.2019
№219.017.2c3f

Способ получения изделия из жаропрочного никелевого сплава

Изобретение относится к области металлургии, а именно к получению полуфабрикатов из жаропрочных высоколегированных деформируемых сплавов на основе никеля, предназначенных преимущественно для изготовления дисков газотурбинных двигателей или других изделий, работающих в условиях предельных...
Тип: Изобретение
Номер охранного документа: 0002285736
Дата охранного документа: 20.10.2006
19.04.2019
№219.017.2c52

Коррозионно-стойкая сталь и изделие, выполненное из нее

Изобретение относится к области металлургии, а именно к созданию коррозионно-стойкой стали, используемой в качестве листов или фольги в паяных сотовых панелях, деталях обшивки, в деталях внутреннего набора, работающих до 450°С. Предлагаемая коррозионно-стойкая сталь имеет следующий химический...
Тип: Изобретение
Номер охранного документа: 0002288966
Дата охранного документа: 10.12.2006
19.04.2019
№219.017.2d1e

Способ термомеханической обработки полуфабрикатов из алюминиевых сплавов

Изобретение относится к области металлургии сплавов на основе алюминия, в том числе сплавов системы Al-Mg-Li, используемых в виде тонкостенных прессованных полуфабрикатов для стрингерного и силового набора фюзеляжа в клепаных и сварных конструкциях авиакосмической техники и судостроения....
Тип: Изобретение
Номер охранного документа: 0002256720
Дата охранного документа: 20.07.2005
Показаны записи 281-290 из 344.
19.04.2019
№219.017.2dc6

Способ получения литых трубных изделий из сплавов на основе никеля и/или кобальта

Изобретение относится к области металлургической промышленности. Способ включает плавление шихтовых материалов и заливку расплава в предварительно нагретую литейную форму, осуществляемые в двухкамерной вакуумно-индукционной печи. Заливку литейной формы расплавом осуществляют со скоростью 20-50...
Тип: Изобретение
Номер охранного документа: 0002344019
Дата охранного документа: 20.01.2009
19.04.2019
№219.017.2dce

Способ получения алюминидного покрытия на поверхности изделия из жаропрочного сплава

Изобретение относится к металлургии и может быть использовано в авиационном и энергетическом турбиностроении для защиты лопаток турбин от высокотемпературного окисления и сульфидной коррозии. Размещают изделие и сплав на основе алюминия в зоне обработки. Создают вакуум в зоне обработки, подают...
Тип: Изобретение
Номер охранного документа: 0002348739
Дата охранного документа: 10.03.2009
19.04.2019
№219.017.2e73

Композиционный материал и изделие, выполненное из него

Изобретение относится к композиционным материалам, а именно к композиционным материалам на основе стекломатриц, армированных углеродными волокнистыми наполнителями, используемым для изготовления теплонагруженных деталей, например бандажных колец, применяющихся в авиационной, космической технике...
Тип: Изобретение
Номер охранного документа: 0002310628
Дата охранного документа: 20.11.2007
19.04.2019
№219.017.2ebc

Способ изготовления штамповок дисков из слитков высокоградиентной кристаллизации из никелевых сплавов

Изобретение относится к металлургии, а именно к получению изделий из жаропрочных деформируемых никелевых сплавов, полученных методом высокоградиентной кристаллизации, работающих при температурах выше 600°С, в частности дисков ГТД. Предлагаемый способ включает вакуумно-индукционную выплавку,...
Тип: Изобретение
Номер охранного документа: 0002389822
Дата охранного документа: 20.05.2010
19.04.2019
№219.017.2ed9

Способ получения пористого истираемого материала из металлических волокон

Изобретение относится к области машиностроения, а именно к способам получения истираемых материалов из металлических волокон, и может быть использовано при изготовлении уплотнений проточной части компрессора и турбины газотурбинного двигателя, в газонефтеперекачивающих установках для...
Тип: Изобретение
Номер охранного документа: 0002382828
Дата охранного документа: 27.02.2010
19.04.2019
№219.017.3218

Способ термомеханической обработки изделий из титановых сплавов

Изобретение относится к области цветной металлургии, в частности к термомеханической обработке изделий (полуфабрикатов, деталей, узлов и др.) из титановых сплавов Способ термомеханической обработки изделий из титановых сплавов включает термомеханическую обработку, которую проводят в двенадцать...
Тип: Изобретение
Номер охранного документа: 0002457273
Дата охранного документа: 27.07.2012
19.04.2019
№219.017.3246

Флюс для плавки и рафинирования магниевых сплавов, содержащих иттрий

Изобретение относится к металлургии цветных сплавов, в частности к флюсам для плавки и рафинирования деформируемых магниевых сплавов, содержащих иттрий. Флюс характеризуется повышенной рафинирующей способностью от металлических примесей, препятствует потере иттрия и имеет следующий состав,...
Тип: Изобретение
Номер охранного документа: 0002451762
Дата охранного документа: 27.05.2012
19.04.2019
№219.017.339e

Сплав на основе алюминия

Предлагаемое изобретение относится к области цветной металлургии и может быть использовано в авиакосмической промышленности и транспортном машиностроении. Сплав содержит следующие компоненты, мас.%: медь 3,50-4,50, магний 1,20-1,60, марганец 0,30-0,60, цирконий 0,01-0,15, серебро 0,01-0,50,...
Тип: Изобретение
Номер охранного документа: 0002447173
Дата охранного документа: 10.04.2012
19.04.2019
№219.017.339f

Теплостойкая подшипниковая сталь

Изобретение относится к области металлургии, а именно к созданию теплостойких сталей для подшипников, работающих при температуре до 500°С и используемых, например, для авиационных газотурбинных двигателей (ГТД) и редукторов вертолетов. Сталь содержит углерод, марганец, кремний, хром, вольфрам,...
Тип: Изобретение
Номер охранного документа: 0002447183
Дата охранного документа: 10.04.2012
27.04.2019
№219.017.3bb6

Жаропрочный литейный сплав на основе кобальта и изделие, выполненное из него

Изобретение относится к металлургии, в частности к жаропрочным сплавам для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах 750-1000°С. Жаропрочный литейный сплав на основе кобальта содержит, мас.%: углерод 0,15-0,35,...
Тип: Изобретение
Номер охранного документа: 0002685895
Дата охранного документа: 23.04.2019
+ добавить свой РИД