×
13.02.2018
218.016.1e91

Результат интеллектуальной деятельности: ДВУХСТЕПЕННОЙ ПОПЛАВКОВЫЙ ГИРОСКОП

Вид РИД

Изобретение

№ охранного документа
0002641018
Дата охранного документа
15.01.2018
Аннотация: Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве двухстепенных поплавковых гироскопов. Сущность изобретения заключается в том, что электроды на внутренней поверхности цилиндра двухстепенного поплавкового гироскопа устанавливают таким образом, что плоскость симметрии i-той пары электродов в каждой системе, проходящая через продольную ось корпуса, составляет с плоскостью, проходящей через ось вращения ротора гиромотора и продольную ось корпуса, угол, равный α=180⋅(2i+1)/m, где m - количество электродов в одной системе, i=0, 1, 2… - порядковый номер плоскости симметрии пары электродов. Технический результат – уменьшение времени готовности гироскопа, расширение диапазона функционирования гироскопа без потери точности. 3 ил.

Изобретение относится к области точного приборостроения и может быть использовано при разработке и производстве прецизионных двухстепенных поплавковых гироскопов (далее - гироскоп).

Известен двухстепенной поплавковый гироскоп [1]. Гироскоп содержит герметичный корпус, цилиндрическую поплавковую камеру с гиромотором, установленную в жидкости внутри корпуса, бесконтактный подвес поплавковой камеры электромагнитного типа, включающий два конусных ротора, размещенных по торцам камеры, и два статора, установленных на соответствующих торцевых крышках. Обмотки статоров подключены к блоку управления положением камеры относительно корпуса. На внешней цилиндрической части корпуса размещены обмотка обогрева и обмотка термодатчика. На торцевой крышке установлен сильфон для компенсации объемного расширения жидкости.

Недостатком гироскопа является низкая точность, обусловленная нестабильностью момента, действующего со стороны электромагнитного подвеса. Причиной нестабильности момента является нестабильность параметров материала - феррита, применяемого для изготовления элементов подвеса, его чувствительность к изменениям внешних условий.

Известен также двухстепенной поплавковый гироскоп [2], который принимаем за прототип. Гироскоп содержит герметичный корпус с двумя торцевыми крышками, цилиндрическую поплавковую гирокамеру, установленную в корпусе на ограничительных камневых опорах. Зазор между корпусом гироскопа и гирокамерой заполнен поддерживающей жидкостью, радиальный электростатический подвес гирокамеры, включающий цилиндр с двумя идентичными системами пар электродов, установленными на внутренней поверхности цилиндра вдоль поплавковой камеры, изолированных от корпуса. В каждой системе плоскость симметрии первой пары электродов, проходящая через продольную ось корпуса гироскопа, совпадает с плоскостью, проходящей через ось вращения ротора гиромотора и продольную ось корпуса. Плоскость симметрии второй пары электродов, проходящая через продольную ось корпуса гироскопа, совпадает с плоскостью, проходящей через измерительную ось и продольную ось корпуса. Гироскоп содержит также систему управления электростатическим подвесом, обмотку обогрева и обмотку термодатчика, размещенные на наружной цилиндрической поверхности корпуса, датчик угла, датчик момента.

Недостатками гироскопа-прототипа являются:

- длительное время готовности, определяемое временем приведения поплавковой гирокамеры в положение центрирования;

- малый диапазон угловых скоростей, в котором гироскоп функционирует без потери точности, определяемый способностью подвеса компенсировать силы от действия гироскопического момента, возникающего при вращении гироскопа вокруг продольной оси подвеса поплавковой камеры. Превышение сил от действия гироскопического момента, сил, прикладываемых со стороны электростатического подвеса, приводит к развороту камеры до механического контакта в ограничительных опорах, что обуславливает снижение точности гироскопа.

Указанные недостатки обусловлены недостаточной силой, действующей со стороны электростатического подвеса.

Задачей настоящего изобретения является совершенствование конструкции поплавкового двухстепенного гироскопа.

Достигаемый технический результат - уменьшение времени готовности гироскопа, расширение диапазона функционирования гироскопа без потери точности.

Поставленная задача решается тем, что в известном двухстепенном поплавковом гироскопе, содержащем корпус с двумя торцевыми крышками; цилиндрическую поплавковую гирокамеру, установленную в корпусе на ограничительных камневых опорах; поддерживающую жидкость, заполняющую зазор между корпусом гироскопа и гирокамерой; радиальный электростатический подвес гирокамеры, включающий цилиндр, установленный внутри корпуса соосно с ним, на внутренней поверхности которого вдоль поплавковой камеры изолированно от корпуса установлены две идентичные системы электродов, жестко связанных с цилиндром; систему управления электростатическим подвесом; обмотку обогрева и обмотку термодатчика, размещенные на наружной цилиндрической поверхности корпуса; датчик угла; датчик момента. При этом электроды на внутренней поверхности цилиндра установлены таким образом, что плоскость симметрии i-й пары электродов в каждой системе, проходящая через продольную ось корпуса, составляет с плоскостью, проходящей через ось вращения ротора гиромотора и продольную ось корпуса, угол, равный:

α=180⋅(2i+1)/m,

где i=0, 1, 2… - порядковый номер плоскости симметрии пары электродов;

m - количество электродов в одной системе.

Предлагаемое изобретение поясняется фиг. 1, 2, 3.

На фигурах 1, 2, 3 приняты следующие обозначения:

1 - гироскоп,

2 - корпус,

3, 4 - торцевые крышки,

5 - цилиндр,

6 - цилиндрическая поплавковая гирокамера (далее - гирокамера),

7 - ограничительные камневые опоры (далее - опоры),

81-111, 82-112 - электроды,

12 - жидкость,

13 - датчик угла,

14 - датчик момента,

15 - обмотка обогрева,

16 - обмотка термодатчика,

17, 18 - блоки управления,

19 - схема измерения линейного перемещения гирокамеры (далее - емкостной датчик),

20 - высоковольтный усилитель (далее - усилитель),

21 - генератор,

22 - сильфон,

n - количество систем в подвесе (в данном случае n=2),

А - плоская развертка двух ортогональных систем электродов,

X, Y, Z - оси симметрии двух ортогональной системы координат,

O - центр двух ортогональных системы координат,

A1 - плоская развертка первой ортогональной системы из m=4,

X1, Y1, Z1 - оси симметрии первой ортогональной системы координат,

O1 - центр первой ортогональной системы координат,

А2 - плоская развертка второй ортогональной систем из m=4,

Х2, Y2, Z2 - оси симметрии второй ортогональной системы координат,

О2 - центр второй ортогональной системы координат,

С - конденсаторы системы измерения перемещения,

α - угол между осью ортогональной системы координат и осью,

ζ - ось из начала координат и центром электрода.

Предлагаемый гироскоп 1 (фиг. 1) состоит из корпуса 2 с двумя торцевыми крышками 3, 4; цилиндра 5 (выполнен из материала с электроизоляционными свойствами, например, из керамики), установленного внутри корпуса 2 соосно с ним; цилиндрической поплавковой гирокамеры 6, установленной внутри корпуса 2 соосно с цилиндром 5 на ограничительных камневых опорах 7. На внутренней поверхности цилиндра 5 вдоль цилиндрической поверхности гирокамеры 6 установлены две системы при n=2, m=2(n+2)=8 электродов. Электроды жестко связаны с цилиндром 5.

Зазор между блоком электродов и гирокамерой 6 заполнен жидкостью 12 с удельным весом, близким к удельному весу поплавковой гирокамеры 6. Опоры 7 необходимы для обеспечения технологичности сборки гироскопа 1, кроме того, они ограничивают перемещения гирокамеры 6 в рабочем зазоре гироскопа 1. На оси гирокамеры 6 установлены датчик угла 13 и датчик момента 14. Обмотка обогрева 15 и обмотка термодатчика 16 размещены на наружной цилиндрической поверхности корпуса 2 и подключены к системе регулирования температуры гироскопа 1 (не показана). Система регулирования температуры настроена на поддержание температуры в рабочем зазоре гироскопа 1, близкой к температуре нулевой плавучести гирокамеры 6. На торцевой крышке 4 установлен сильфон 22 для компенсации объемных расширений жидкости 12.

На фиг. 2 показана развертка цилиндра для n=2, содержащая электроды 81-111 (82-112).

Электроды на внутренней поверхности цилиндра 5 установлены таким образом, что плоскость симметрии i-й пары электродов в каждой системе, проходящая через продольную ось ОХ корпуса 2, составляет с плоскостью, проходящей через ось вращения ротора гиромотора OZ и продольную ось ОХ корпуса 2, угол, равный α=180⋅(2i+1)/m.

На фиг. 3 показана система для m=4. В этом случае плоскость симметрии OXξ11(OXξ12) электродов 91 (92) располагается под углом α1=45° к плоскости OXZ, проходящей через ось вращения ротора OZ гиромотора и продольную ось ОХ корпуса 2; плоскость симметрии OXξ21(OXξ22) электродов 81 (82) располагается соответственно под углом α2=135°.

Противолежащая пара электродов в каждой системе (на фиг. 3 пара 81-101 и пара 91-111) подключена к соответствующему блоку управления (на фиг. 3 к блокам управления 17 и 18) положением гирокамеры 6 относительно соответствующих электродов. Каждый блок управления, например блок 17, содержит схему измерения перемещения гирокамеры 6 относительно этих электродов (емкостной датчик 19), усилитель 20, генератор 21 для питания емкостного датчика 19. Принцип построения генератора 21, емкостного датчика 19 и усилителя 20 аналогичен принципу построения устройств, приведенных в [2].

Работа гироскопа 1 происходит следующим образом. Гироскоп 1 ориентируют в положение, при котором его продольная ось ОХ горизонтальна. Осуществляют нагрев гироскопа 1 до расчетного (заданного) значения температуры. Приводят гирокамеру 6 в центрируемое положение (положение, в котором сигналы емостного датчика 19 электростатического подвеса равны нулю, а механический контакт в опорах 7 отсутствует); параметры центрируемого положения определяют и фиксируют заранее, для чего включают электростатический подвес. С учетом предлагаемой ориентации электродов, для случая m=8, n=2 (фиг. 3) в каждой n-й системе, установленной по торцам гирокамеры 6, на гирокамеру будет действовать сила R=(Fsinα1+Fsinα2), где F - сила, действующая со стороны двух электродов одной системы n. Со стороны двух систем n будет действовать сила, равная P=2R. Под действием равнодействующей силы Р гирокамера 6 начнет перемещается в центрируемое положение. Время перемещения гирокамеры 6 определяется величиной силы Р.

При вращении основания с гироскопом 1 вокруг продольной оси ОХ возможность перемещения гирокамеры 6 в рабочем зазоре под действием сил гироскопического момента исключается установкой двух систем электродов, создающих угловую жесткость подвеса. Причем диапазон скоростей, при котором гироскоп функционирует без потери точности, без возникновения механического контакта в опорах 7 определяется величиной силы, прикладываемой к гирокамере 6 со стороны электродов 101, 91 (102, 92). С учетом предлагаемой ориентации электродов, для случая m=8, n=2 (фиг. 3) со стороны одной и второй системы на камеру будут действовать силы одного порядка и направленные в противоположные стороны, предотвращающие разворот гирокамеры.

По сравнению с прототипом:

- Время готовности гироскопа, определяемое временем центрирования поплавковой гирокамеры, уменьшается. Уменьшение времени достигается за счет увеличения силы, прикладываемой к поплавковой гирокамере со стороны двух систем электростатического подвеса. В прототипе эта сила равна P1=2F. Для случая m=8, . Увеличение силы достигается путем изменения ориентации электродов.

- Увеличивается диапазон функционирования гироскопа без потери точности. Увеличение диапазона происходит за счет увеличения силы, прикладываемой со стороны электростатического подвеса для компенсации сил от гироскопического момента при вращении гироскопа с основанием вокруг его продольной оси ОХ. В прототипе эта сила равна P3=F. В предлагаемом гироскопе (фиг. 3) . Увеличение силы достигается также путем изменения ориентации электродов.

Таким образом, достигается заявленный технический результат.

На предприятии предлагаемое устройство изготовлено и испытано. Получены положительные результаты. Разработана техническая документация гироскопа. В настоящее время осуществляется подготовка производства поплавковых гироскопов с радиальным электростатическим подвесом поплавковой гирокамеры.

Литература

1. У. Ригли, У. Холлистер, У. Денхард. Теория, проектирование и испытания гироскопов // М.: Мир, 1972, с. 288, 292.

2. Патент РФ №2591287.

Двухстепенной поплавковый гироскоп, содержащий корпус с двумя торцевыми крышками, цилиндрическую поплавковую гирокамеру, установленную в корпусе на ограничительных камневых опорах, поддерживающую жидкость, заполняющую зазор между корпусом гироскопа и гирокамерой, радиальный электростатический подвес гирокамеры, включающий цилиндр, установленный внутри корпуса соосно с ним, на внутренней поверхности которого вдоль поплавковой камеры изолированно от корпуса установлены две идентичные системы электродов, жестко связанных с цилиндром, геометрический центр поверхности плоской развертки одной системы электродов лежит по одну сторону от плоскости, перпендикулярной продольной оси гироскопа, делит цилиндрическую поверхность встроенного цилиндра на две равные части и симметричен геометрическому центру поверхности плоской развертки второй системы, систему управления электростатическим подвесом, обмотку обогрева и обмотку термодатчика, размещенные на наружной цилиндрической поверхности корпуса, датчик угла, датчик момента, отличающийся тем, что электроды на внутренней поверхности цилиндра установливают таким образом, что плоскость симметрии i-той пары электродов в каждой системе, проходящая через продольную ось корпуса, составляет с плоскостью, проходящей через ось вращения ротора гиромотора и продольную ось корпуса, угол, равный α=180⋅(2i+1)/m, где m - количество электродов в одной системе, i=0, 1, 2… - порядковый номер плоскости симметрии пары электродов.
ДВУХСТЕПЕННОЙ ПОПЛАВКОВЫЙ ГИРОСКОП
ДВУХСТЕПЕННОЙ ПОПЛАВКОВЫЙ ГИРОСКОП
ДВУХСТЕПЕННОЙ ПОПЛАВКОВЫЙ ГИРОСКОП
ДВУХСТЕПЕННОЙ ПОПЛАВКОВЫЙ ГИРОСКОП
Источник поступления информации: Роспатент

Показаны записи 81-90 из 94.
15.04.2020
№220.018.1494

Способ определения динамической погрешности магнитного компаса, вызванной качкой, и устройство для его реализации

Группа изобретений относится к области измерительной техники и может быть использовано для определения значения динамической погрешности магнитного компаса (МК). Способ определения динамической погрешности магнитного компаса, вызванной качкой, заключается в том, что качка воспроизводится в...
Тип: Изобретение
Номер охранного документа: 0002718691
Дата охранного документа: 13.04.2020
24.06.2020
№220.018.2996

Способ изготовления заготовок кварцевых световодов

Изобретение относится к способу изготовления заготовок кварцевых световодов. Техническим результатом является уменьшение массоуноса заготовок кварцевых световодов и повышение прочности световодов. Способ изготовления заготовок кварцевых световодов включает нагрев кварцевой трубы с помощью...
Тип: Изобретение
Номер охранного документа: 0002724076
Дата охранного документа: 19.06.2020
25.06.2020
№220.018.2b2f

Способ осуществления гидроакустической связи между автономными подводными аппаратами

Изобретение относится к аппаратуре и способам гидроакустической связи (гидроакустической связи) между автономными подводными аппаратами (ПА). Решаемая техническая проблема - совершенствование гидроакустической связи между подводными аппаратами. Технический результат - повышение дальности и...
Тип: Изобретение
Номер охранного документа: 0002724300
Дата охранного документа: 22.06.2020
01.07.2020
№220.018.2d99

Способ определения координат морской шумящей цели

Изобретение относится к области гидроакустики, а именно к способам и устройствам обнаружения морских целей по их шумоизлучению, а точнее к способам определения координат целей с использованием интерференционных максимумов в автокорреляционной функции шума цели. Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002724962
Дата охранного документа: 29.06.2020
15.05.2023
№223.018.5888

Способ изготовления анизотропных одномодовых волоконных световодов

Изобретение относится к технологии изготовления сохраняющих поляризацию излучения одномодовых волоконных световодов с эллиптической напрягающей оболочкой. Заявленный способ изготовления анизотропных одномодовых волоконных световодов с эллиптичной напрягающей оболочкой включает получение MCVD...
Тип: Изобретение
Номер охранного документа: 0002764240
Дата охранного документа: 14.01.2022
15.05.2023
№223.018.58ef

Способ проводки судна через заминированный район моря

Изобретение относится к способам проводки судов через заминированный район моря. При подходе к заминированному району судно стопорит ход и спускает на воду автономный необитаемый подводный аппарат (АНПА), оснащённый аппаратурой поиска мин. АНПА под управлением собственной системы управления...
Тип: Изобретение
Номер охранного документа: 0002760802
Дата охранного документа: 30.11.2021
15.05.2023
№223.018.58f8

Способ определения класса шумящего морского объекта

Изобретение относится к области гидроакустики, а именно к гидроакустическим комплексам (ГАК), оснащенным пассивным и активным режимами работы, и предназначенным для обнаружения подводных и надводных объектов. Технический результат - повышение вероятности классификации на предельных дистанциях...
Тип: Изобретение
Номер охранного документа: 0002760912
Дата охранного документа: 01.12.2021
30.05.2023
№223.018.7372

Способ изготовления радиационно-стойких волоконных световодов

Изобретение относится к модифицированному методу химического парофазного осаждения для изготовления радиационно-стойких световодов с фторсиликатной оболочкой и сердцевиной из кварцевого стекла, обедненного кислородом. Заявленный способ изготовления радиационно-стойких волоконных световодов...
Тип: Изобретение
Номер охранного документа: 0002764038
Дата охранного документа: 12.01.2022
30.05.2023
№223.018.7421

Способ измерения фазового сигнала двулучевого волоконно-оптического интерферометра

Изобретение относится к области волоконно-оптических измерительных приборов и может быть использовано для повышения точности измерения фазового сигнала в двухлучевых интерферометрах Майкельсона или Маха-Цендера и массивах волоконно-оптических датчиков на их основе. Способ измерения фазового...
Тип: Изобретение
Номер охранного документа: 0002742106
Дата охранного документа: 02.02.2021
01.06.2023
№223.018.74be

Способ изготовления одномодовых световодов с германосиликатной сердцевиной

Изобретение относится к волоконной оптике, в частности технологии одномодовых кварцевых световодов с сердцевиной, легированных диоксидом германия. Способ включает нанесение слоев стекла сердцевины, высокотемпературное сжатие кварцевой трубы с осажденными слоями за несколько проходов горелки,...
Тип: Изобретение
Номер охранного документа: 0002764065
Дата охранного документа: 13.01.2022
Показаны записи 51-52 из 52.
01.06.2023
№223.018.7518

Способ управления подвесом ротора электростатического гироскопа

Изобретение относится к гироскопической технике, а именно к способам управления подвесом ротора электростатического гироскопа (ЭСГ), используемого для высокоточных измерений навигационных параметров подвижных объектов. В способе управления подвесом ротора ЭСГ парируют воздействие на ротор...
Тип: Изобретение
Номер охранного документа: 0002746313
Дата охранного документа: 12.04.2021
02.06.2023
№223.018.755b

Способ измерения параметров угловой скорости и ускорения микромеханическими гироскопами и акселерометрами

Изобретение относится к измерительной технике. Сущность изобретения заключается в том, что в способе измерения параметров угловой скорости и ускорения микромеханическими гироскопами и акселерометрами отсутствуют погрешности, вызванные угловой скоростью вращающегося модуля, так как измерения...
Тип: Изобретение
Номер охранного документа: 0002766833
Дата охранного документа: 16.03.2022
+ добавить свой РИД