×
20.01.2018
218.016.1e24

Результат интеллектуальной деятельности: Способ получения легированного монокристалла алмаза

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению монокристаллов алмазов, в частности, легированных азотом и фосфором, при высоких давлениях и температурах, которые могут быть использованы в устройствах электроники. Способ выращивания легированных азотом и фосфором монокристаллов алмаза в области высоких давлений 5,5-6,0 ГПа и температур 1600-1750°С осуществляют на затравочном кристалле, который предварительно запрессовывают в подложке из хлорида цезия и отделяют от источника углерода, азота и фосфора металлом-растворителем, в качестве которого используют сплав железа, алюминия и углерода. Между источником углерода, азота и фосфора и затравочным кристаллом создают разность температур 20-50°С. Сплав железа, алюминия и углерода в металле-растворителе берут при следующем соотношении компонентов, вес.%: железо 92,5-95,0; алюминий 2,5-0,5; углерод 5,0-4,0. Смесь источника углерода, азота и фосфора берут при следующем соотношении компонентов, вес.%: углерод (графит) 95,0-97,0; фосфор 5,0-3,0; адсорбированный азот 0,001±0,0005. Нагрев осуществляют до начальной температуры в зоне роста на 100-250°С выше температуры плавления сплава металла-растворителя, производят выдержку при этой температуре от 50 до 150 ч. Массовая скорость роста кристаллов составляет более 2 мг/ч. Технический результат заключается в контролируемом легировании выращиваемого на затравке монокристалла алмаза примесями фосфора и азота в условиях воздействия высоких давления и температуры. Полученные крупные монокристаллы алмаза (весом более 0,6 карат) содержат примесь азота в концентрации 0,1-17,8 частей на миллион атомов углерода и фосфор в концентрации 0,5-5 частей на миллион атомов углерода. 2 ил., 3 пр.

Изобретение относится к получению монокристаллов алмазов, в частности, легированных азотом и фосфором, при высоких давлениях и температурах, которые могут быть использованы в устройствах электроники. Атомы фосфора способны замещать атомы углерода в кристаллической решетке алмаза подобно тому, как это происходит в кремнии. Будучи элементом V группы, фосфор является донорной примесью в легированном кремнии. Алмаз как углеродная форма относится к IV-й группе элементов, также как и кремний, и имеет одинаковый с кремнием кубический тип кристаллической структуры. Закономерно, что фосфор выбирают в качестве донорной легирующей примеси при синтезе кристаллов алмаза с электронным типом электрической проводимости.

Для применений в изделиях активной электроники, оптоэлектроники и акустоэлектроники требуются, в первую очередь, высококачественные синтетические монокристаллы алмаза.

Известен способ выращивания монокристаллов алмаза в области его термодинамической стабильности на затравочном кристалле, который отделяют от источника углерода металлом-растворителем, в качестве которого используют сплав железа, алюминия и углерода, при создании температурного градиента между источником углерода и затравочным кристаллом 20-30°С, причем сплав железа, алюминия и углерода берут при следующем соотношении компонентов, вес. %: железо 89-92, алюминий 4-6, углерод 4-5, при этом нагрев осуществляют до начальной температуры в зоне роста, величина которой на 10-20°С выше температуры плавления сплава металла-растворителя, производят выдержку при этой температуре до 20 ч, а затем проводят периодически повторяющиеся циклы изменения температуры, включающие этап скачкообразного повышения температуры на 10-25°С выше начальной и этап понижения температуры до начальной со скоростью 0,2-3 градуса в минуту [С.А. Терентьев, В.Д. Бланк, С.А. Носухин, М.С. Кузнецов. Способ выращивания монокристаллов алмаза, Патент РФ на изобретение №2320404, МПК С01В 31/06, опубл. 27.03.2008 г.]. Таким способом выращивают крупные монокристаллы алмаза (весом более 3 карат) с массовой скоростью роста более 2 мг/ч, содержащие примесь азота не более 0,1 части на миллион атомов углерода (чнм). Легирование монокристаллов алмаза фосфором по этому способу выращивания не предусмотрено.

Для ведения фосфора в алмаз использован метод роста на затравке в реакционной системе графит-фосфор при высоком давлении более 6,5 ГПа и высокой температуре 1800-2200°С [Akaishi М.; Kanda Н.; Yamaoka S. Phosphorus - An elemental catalyst for diamond synthesis and growth. - Science 1993, 259, P. 1592-1593; Michau D.; Kanda H.; Yamaoka S. Crystal growth of diamond from a phosphorus solvent under high pressure-high temperature conditions. - Diam. Relat. Mater. 1999, 8, P. 1125-1129; патент JP 5123562 (A), МПК: B01J 3/06, опубл. 1993.05.21]. В реакционной системе Fe-Ni-P-C монокристаллы алмаза с максимальными размерами в сечении до 4×4 мм2 выращены при давлении 5.4-5.8 GPa и температуре 1280-1360°С [Н.М. - Hua, В. Ning, L. Shang-Sheng, S. Tai-Chao, Z.A. - Guo, H. Qiang, J. Xiao-Peng, M. Hong-An. Effects of FeNi-phosphorus-carbon system on crystal growth of diamond under high pressure and high temperature conditions. Chin. Phys. B, 2015, 24, No. 3, 038101]. Однако концентрация фосфора в выращенных кристаллах не исследована.

Легированные фосфором алмазы получены методом химического осаждения из газовой фазы, содержащей фосфор [Koizumi S.; Kamo М.; Sato Y.; Ozaki H.; Inuzuka Т. Growth and characterization of phosphorous doped {111} homoepitaxial diamond thin films. - Appl. Phys. Lett., 1997, 71, P. 1065-1067] и методом ионной имплантации ионов фосфора в кристаллы алмаза [Р.С. Нельсон, Д.А. Хадсон, Д.Д. Мейзи, Способ получения полупроводникового алмаза, патент SU 1083915 А, МПК С30В 31/22, опубл. 01.06.1978; патент US 5609926, МПК С01В 31/06, опубл. 03.11.1997].

При этом, несмотря на уместную аналогию легирования алмаза фосфором подобно кремнию, в действительности вхождение атомов фосфора в кристаллическую решетку алмаза сильно затруднено из-за значительного несовпадения атомных радиусов углерода и фосфора, в отличие от системы кремний-фосфор. В связи с чем внедрение атомов фосфора в кристаллическую решетку алмаза сопровождается возникновением различных дефектов структуры, что ухудшает оптические и электронные свойства кристаллов.

Для компенсации локальных напряжений вблизи атомов фосфора и улучшения кристаллической структуры легированных фосфором кристаллов алмаза, выращиваемых методом роста при высоких давлении и температуре, предложена методика одновременного легирования фосфором и азотом [B. Yan, X. Jia, С. Fang, N. Chen, Y. Li, S. Sun, H.A. Ma, The effect of phosphorus and nitrogen co-doped on the synthesis of diamond at high pressure and high temperature, Int. J. Refractory Metals and Hard Materials, 2016, 54, Р. 309-314]. Таким способом выращены монокристаллы алмаза с максимальными размерами в сечении до 3×3 мм2 в системе NiMnCo-C с добавлением P3N5 в концентрации до 0.4 вес. % и с добавлением до 1.5 вес. % фосфора в системе с порошкообразным карбонильным железом. Методом ИК-спектроскопии была определена достаточно высокая концентрация азота в полученных кристаллах, которая составила 860 чнм (частей на миллион) в виде пар азота и 1260 чнм в виде одиночных замещающих атомов. Однако концентрация фосфора не была определена.

Наиболее близким из известных аналогов техническим решением, выбранным в качестве прототипа, является способ получения алмаза, легированного фосфором, включающий воздействие высоких давления и температуры на реакционную систему из графита и фосфора, отличающийся тем, что реакционную систему из графита и фосфора предварительно отжигают в токе водорода при температурах 200-280°С и осуществляют синтез алмаза в области температур 1450-1650°С и в области давлений 6,3-7,5 ГПа, ограниченной при 6,3 ГПа интервалом 1550-1650°С, а при 7,5 ГПа ограниченной интервалом 1450-1550°С при длительности не менее 40 ч [Пальянов Ю.Н., Куприянов И.Н., Сокол А.Г., Хохряков А.Ф., Борздов Ю.М., Калинин А.А. Способ получения алмаза, легированного фосфором (варианты), патент RU 2476375 С1, МПК С01В 31/06, С30В 29/04, опубл. 27.02.2013]. Технический результат данного изобретения заключается в повышении качества кристаллов алмаза и снижении температуры и давления роста алмазов размером 200-300 мкм с различной концентрацией примеси, получаемых в системе фосфор-углерод.

Задачей настоящего технического решения является контролируемое легирование выращиваемого на затравке монокристалла алмаза примесями фосфора и азота в условиях воздействия высоких давления и температуры.

Технический результат достигается тем, что из реакционной системы углерод-азот-фосфор в виде смеси графита и фосфора с адсорбированным азотом в концентрации около 0,001±0,0005 вес. % при соотношении фосфора к углероду 3-5 вес. % готовят заготовку в виде шайбы и размещают ее на заготовке в виде шайбы из сплава металла-растворителя, в качестве которого используют сплав железа, алюминия и углерода при соотношении компонентов, вес. %: железо - 92,5-95,0, алюминий - 0,5-2,5, углерод - 4-5, под которой размещают подложку из хлорида цезия с предварительно запрессованным в ней затравочным кристаллом алмаза, причем затравочный монокристалл алмаза ориентируют гранью (100) параллельно плоскости шайбы металла-растворителя. В результате добавления алюминия в реакционную систему концентрация азота в выращенных кристаллах уменьшается за счет известной химической реакции образования нитрида алюминия, и в то же время фосфор частично замещает азот в структуре легированного алмаза. В отсутствие алюминия в металле-растворителе концентрация примеси фосфора в выращенных алмазах не превышает 0,1 чнм, а концентрация азота максимальна: около 100 чнм. При концентрации алюминия более 2.5 вес. % в металле-растворителе концентрация фосфора в выращенных алмазах также не превышает 0,1 чнм, при этом и концентрация азота снижается ниже 0,1 чнм. Только при концентрации алюминия в металле-растворителе 0.5-2.5 вес. % получают кристаллы алмаза, в которых одновременно присутствует азот в количестве 0,1-17,8 чнм и фосфор в количестве 0,5-5 чнм. Температуру в зоне роста алмаза задают на 100-250°С выше температуры плавления сплава металла-растворителя и производят выдержку при этой температуре от 50 до 150 часов, причем получение алмаза осуществляют в области давлений 5,5-6,0 ГПа и в области температуры 1600-1750°С. Монокристаллы легированного алмаза выращивают в условиях разности температур между источником углерода и затравочным кристаллом 20-50°С. При соблюдении указанных условий выращивают кристаллы алмаза весом более 0,6 каратов с массовой скоростью роста более 2 мг/ч. Кристаллы содержат 0,1-17,8 чнм примеси азота и 0,5-5 чнм примеси фосфора.

Технический результат изобретения заключается в выращивании крупных монокристаллов алмаза, легированных азотом и фосфором, для применения в элементах электронной техники.

Решение технической задачи подтверждается Фиг. 1, 2, на которых показаны выращенные монокристаллы алмазов, зафиксированные в кольцевой обойме с полимерным связующим (Фиг. 1), и величина концентрации атомов фосфора в зависимости от глубины относительно поверхности кристаллов по данным масс-спектроскопии вторичных ионов ВИМС (Фиг. 2). В диапазоне глубины 0-80 нм результаты (Фиг. 2) показывают завышенную концентрацию фосфора, связанную с инструментальной погрешностью измерений, и не должны приниматься во внимание. Об этом свидетельствует кривая 4, относящаяся к контрольному кристаллу №4, выращенному без добавления фосфора в ростовую среду.

Результаты измерения концентрации фосфора по глубине относительно поверхности {111} кристаллов №№1-4 приведены на Фиг. 2. Номера кривых соответствуют номерам кристаллов в примерах 1-3.

Примеры осуществления способа.

Пример 1

Для роста монокристалла алмаза, легированного азотом и фосфором, используют аппарат высокого давления типа "тороид", аналогично [С.А. Терентьев, В.Д. Бланк, С.А. Носухин, М.С. Кузнецов. Способ выращивания монокристаллов алмаза, Патент РФ на изобретение №2320404, МПК С01В 31/06, опубл. 27.03.2008 г.], в котором реализован метод температурного градиента роста алмаза на затравочном кристалле.

В реакционном объеме ячейки высокого давления размещают шайбу общим весом 1,1 г, состоящую из графита чистоты 99,99%, содержащего 0,001±0,0005 вес. % адсорбированного азота, при этом графит составляет 97 вес. % шайбы, а остальные 3,0 вес. % - фосфор чистоты 99,99%. Диаметр шайбы 15 мм, высота 2,75 мм, под нее размещают шайбу сплава металла-растворителя диаметром 15 мм, высотой 4,5 мм со следующим соотношением компонентов, вес. %: железо - 94,5, алюминий - 0,5, углерод - 5,0. Затравочный монокристалл алмаза размером 0,5 мм, весом около 4 мг ориентируют гранью (100) параллельно плоскости шайбы металла-растворителя и запрессовывают в подложку из хлорида цезия, которую размещают под шайбой металла-растворителя. Собранную ячейку помещают в АВД типа «тороид», который размещают в рабочем пространстве гидравлического пресса ДО 044. Создают давление в реакционном объеме 5,5 ГПа и под управлением автоматизированной системы контроля процессом кристаллизации увеличивают подводимую электрическую мощность до величины, обеспечивающей достижение температуры в зоне роста на 100°С выше температуры плавления сплава металла-растворителя ~1500°С, при разнице температур между источником углерода и затравочным кристаллом 20°С. Разницу температур между источником углерода и затравочным кристаллом (зоной роста) задают при помощи верхнего и нижнего торцевых нагревателей разной высоты, изготовленных из смеси графита и двуокиси циркония. Указанный режим поддерживают 50 часов. Далее, под управлением автоматизированной системы контроля процессом кристаллизации осуществляют равномерное снижение подводимой электрической мощности в течение 3 часов, чем обеспечивают снижение температуры в реакционном объеме со скоростью 1 градус в минуту. Отключают подвод электрической мощности, снижают давление, разгружают АВД, извлекают реакционную ячейку. Отделяют шайбу металла-растворителя с выращенным алмазом и растворяют металл в смеси соляной и азотной кислот (царская водка) в течение 30 мин. Извлекают выращенный алмаз и отмывают в дистиллированной воде с поверхностно-активными веществами и деионизированной водой. Вес кристалла 123 мг (0.615 карата). Длительность процесса роста кристалла составила 50 часов, а средняя массовая скорость роста - 2,4 мг/ч. Концентрация примеси азота Nc, рассчитанная по величине коэффициента поглощения при 270 нм α270 в спектре, снятом на спектрометре CARY 4000: Nс [чнм]=0.517 α270 [см-1], составляет 17,8 чнм. Полученный кристалл закрепляют в связующем полимере внутри обоймы для проведения элементного анализа методом масс-спектроскопии вторичных ионов (SIMS) (Фиг. 1, №1). В кристалле №1 на глубине более 200 нм концентрация фосфора составила около 0.5 чнм.

Пример 2

Рост монокристалла алмаза, легированного азотом и фосфором, и анализ содержания фосфора выполняют аналогично примеру 1, но при увеличенной вдвое концентрации алюминия в сплаве-растворителе: 1.0 вес. %. Содержание остальных элементов следующее: 95,0 вес. % Fe, 4,0 вес. % С. Создают давление в реакционном объеме 5,5 ГПа и под управлением автоматизированной системы контроля процессом кристаллизации увеличивают подводимую электрическую мощность до величины, обеспечивающей достижение температуры в зоне роста на 100°С выше температуры плавления сплава металла-растворителя ~1500°С, при разнице температур между источником углерода и затравочным кристаллом 30°С. Суммарная длительность процесса выращивания кристалла составила 150 часов. Далее, как и в примере 1, под управлением автоматизированной системы контроля процессом кристаллизации осуществляют равномерное снижение подводимой электрической мощности в течение 3 часов, чем обеспечивают снижение температуры в реакционном объеме со скоростью 1 градус в минуту. Аналогично примеру 1 отделяют шайбу металла-растворителя с выращенным алмазом и растворяют металл в смеси соляной и азотной кислот (царская водка) в течение 30 мин. Извлекают выращенный алмаз и отмывают в дистиллированной воде с поверхностно-активными веществами и деионизированной водой. Вес выращенного кристалла составил 421 мг (2,1 карата), а средняя массовая скорость роста - 2,8 мг/ч. Концентрация примеси азота Nc, рассчитанная по величине коэффициента поглощения при 270 нм α270, составляет 1,3 чнм (частей на миллион). Полученный кристалл был закреплен в связующем полимере внутри обоймы для проведения элементного анализа методом масс-спектроскопии вторичных ионов (ВИМС) (Фиг. 1, №2). Результаты измерения концентрации фосфора по глубине относительно поверхности {111} кристалла приведены на Фиг. 2, кривая 2. На глубине более 200 нм концентрация фосфора составила около 5 чнм.

Пример 3

Рост монокристалла алмаза, легированного азотом и фосфором, и анализ содержания фосфора выполняют аналогично примеру 1, но при соотношении графита и фосфора в реакционной системе 95,0 вес. % и 5,0 вес. % соответственно. Содержание алюминия в сплаве-растворителе: 2,5 вес. %. Содержание остальных элементов следующее: 92,5 вес. % Fe, 5,0 вес. % С.Создают давление в реакционном объеме 6,0 ГПа и под управлением автоматизированной системы контроля процессом кристаллизации увеличивают подводимую электрическую мощность до величины, обеспечивающей достижение температуры в зоне роста на 250°С выше температуры плавления сплава металла-растворителя ~1500°С, при разнице температур между источником углерода и затравочным кристаллом 50°С. Далее под управлением автоматизированной системы контроля процессом кристаллизации осуществляют равномерное снижение подводимой электрической мощности в течение 5 часов, чем обеспечивают снижение температуры в реакционном объеме со скоростью 1 градус в минуту. Аналогично примеру 1 отделяют шайбу металла-растворителя с выращенным алмазом и растворяют металл в смеси соляной и азотной кислот (царская водка) в течение 30 мин. Извлекают выращенный алмаз и отмывают в дистиллированной воде с поверхностно-активными веществами и деионизированной водой.

Суммарная длительность процесса выращивания составила 50 часов, вес выращенного кристалла составил 132 мг (0,66 карата), а средняя массовая скорость роста - 2,6 мг/ч. Концентрация примеси азота Nc, рассчитанная по величине коэффициента поглощения при 270 нм α270, составляет 0,1 чнм (частей на миллион). Полученный кристалл был закреплен в связующем полимере внутри обоймы для проведения элементного анализа методом масс-спектроскопии вторичных ионов (SIMS) (Фиг. 1, №3). Результаты измерения концентрации фосфора по глубине относительно поверхности {111} кристалла приведены на Фиг. 2, кривая 3. На глубине более 200 нм концентрация фосфора составила около 2 чнм.

Предлагаемое техническое решение позволяет получать легированные монокристаллы алмаза весом более 0.6 карат с массовой скоростью роста более 2 мг/ч, содержащие примесь азота в концентрации 0,1-17.8 частей на миллион и фосфор в концентрации 0,5-5 частей на миллион. Полученные легированные монокристаллы алмаза могут применяться в изделиях активной электроники, оптоэлектроники и акустоэлектроники.

Способ получения легированного алмаза, включающий воздействие высоких давления и температуры на реакционную систему из углерода в виде графита и фосфора, отличающийся тем, что дополнительно в реакционную систему вводят азот в следующем соотношении компонентов, вес.%: углерод 95,0-97,0; фосфор 3,0-5,0; адсорбированный азот 0,001±0,0005, причем из порошков графита с примесью азота и фосфора готовят заготовку в виде шайбы и размещают ее на заготовке в виде шайбы из сплава металла-растворителя, выполненной из железа, алюминия и углерода со следующим содержанием компонентов, вес.%: железо 92,5-95,0; алюминий 0,5-2,5; углерод 4,0-5,0, при этом под шайбой из сплава металла-растворителя помещают подложку из хлорида цезия, в которую предварительно запрессовывают затравочный монокристалл алмаза, ориентированный гранью (100) параллельно плоскости шайбы металла-растворителя, а температуру в зоне роста алмаза задают на 100-250°C выше температуры плавления сплава металла-растворителя и производят выдержку при этой температуре от 50 до 150 ч, причем получение алмаза осуществляют в области давлений 5,5-6,0 ГПа при разности температур между затравочным кристаллом и источником углерода-азота-фосфора 20-50°C.
Способ получения легированного монокристалла алмаза
Источник поступления информации: Роспатент

Показаны записи 11-20 из 49.
20.01.2014
№216.012.98f7

Автоэмиссионный катод

Изобретение относится к устройствам вакуумной электроники, в частности к источникам для получения электронного потока - автоэмиттерам (холодным эмиттерам) электронов, материалам и способам их изготовления. Подобные катоды могут использоваться в качестве источников электронов в различных...
Тип: Изобретение
Номер охранного документа: 0002504858
Дата охранного документа: 20.01.2014
10.02.2014
№216.012.9ec4

Кристаллы на основе бромида таллия для детекторов ионизирующего излучения

Изобретение относится к области получения материалов детекторов для регистрации ионизирующего излучения, которые могут быть использованы для инфракрасной оптики, лазерной техники, акустооптики. Кристалл на основе бромида таллия дополнительно содержит бромид кальция при следующем соотношении...
Тип: Изобретение
Номер охранного документа: 0002506352
Дата охранного документа: 10.02.2014
10.04.2014
№216.012.b5c6

Способ формирования эффективного внутреннего геттера в монокристаллических бездислокационных пластинах кремния

Изобретение относится к технологии производства бездислокационных пластин полупроводникового кремния, вырезаемых из монокристаллов, выращенных методом Чохральского, и применяемых для изготовления интегральных схем и дискретных электронных приборов. Изобретение обеспечивает формирование...
Тип: Изобретение
Номер охранного документа: 0002512258
Дата охранного документа: 10.04.2014
20.07.2014
№216.012.de03

Способ получения кристаллов галогенидов таллия

Изобретение относится к области получения материалов, прозрачных в инфракрасной области спектра, которые могут быть использованы для изготовления оптических элементов, прозрачных в области длин волн от 0,4 до 25 мкм, неохлаждаемых детекторов χ- и γ - излучений для ядерно-физических методов...
Тип: Изобретение
Номер охранного документа: 0002522621
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e15b

Способ получения сверхтвердого композиционного материала

Изобретение может быть использовано при изготовлении инструментов для горнодобывающей, камнеобрабатывающей и металлообрабатывающей промышленности. Готовят исходную композицию, состоящую из следующих компонентов, мас.%: фуллерены С-60 или С-70 - 30-50; теплопроводящий компонент - 10-60;...
Тип: Изобретение
Номер охранного документа: 0002523477
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e161

Способ упрочнения углеродного волокна

Изобретение относится к технологии получения углеродных волокнистых композиционных материалов, в частности к способу упрочнения углеродного волокна, и имеет широкий спектр применения от спортивного инвентаря до деталей самолетов. Способ включает пропитку углеродного волокна раствором С или...
Тип: Изобретение
Номер охранного документа: 0002523483
Дата охранного документа: 20.07.2014
10.09.2014
№216.012.f3f9

Способ получения термоэлектрического материала

Изобретение относится к области получения термоэлектрических материалов, применяемых для изготовления термостатирующих и охлаждающих устройств, систем кондиционирования и в других областях техники. Сущность: способ включает механоактивационную обработку в планетарной шаровой мельнице твердых...
Тип: Изобретение
Номер охранного документа: 0002528280
Дата охранного документа: 10.09.2014
10.09.2014
№216.012.f433

Наноструктурный термоэлектрический материал

Изобретение относится к наноструктурному термоэлектрическому материалу. Материал содержит теллурид сурьмы в виде тройного твердого раствора состава ВiSbТе, где х имеет значения от 0,4 до 0,5, и дисперсный наполнитель, выполненый из ультрадисперсного алмаза со средним размером частиц от 3 до 5...
Тип: Изобретение
Номер охранного документа: 0002528338
Дата охранного документа: 10.09.2014
27.09.2014
№216.012.f6c9

Лампа вакуумная ультрафиолетового диапазона спектра

Изобретение относится к светотехнике и может быть использовано при создании и применении ультрафиолетовых вакуумных ламп, в частности для обеззараживания воды и воздуха, сортировки и анализа минералов, в лазерной технике, в оптоэлектронике. Технический результат- продление срока службы и...
Тип: Изобретение
Номер охранного документа: 0002529014
Дата охранного документа: 27.09.2014
10.01.2015
№216.013.17ab

Способ получения материала на основе углеродных нанотрубок

Изобретение может быть использовано при изготовлении изделий, работающих в агрессивных средах и повышенной температуре, таких как мембраны, фильтры, покрытия. Материал на основе углеродных нанотрубок получают газофазным осаждением в вертикальном CVD-реакторе 1, который предварительно...
Тип: Изобретение
Номер охранного документа: 0002537487
Дата охранного документа: 10.01.2015
Показаны записи 11-20 из 55.
20.07.2014
№216.012.e161

Способ упрочнения углеродного волокна

Изобретение относится к технологии получения углеродных волокнистых композиционных материалов, в частности к способу упрочнения углеродного волокна, и имеет широкий спектр применения от спортивного инвентаря до деталей самолетов. Способ включает пропитку углеродного волокна раствором С или...
Тип: Изобретение
Номер охранного документа: 0002523483
Дата охранного документа: 20.07.2014
10.09.2014
№216.012.f3f9

Способ получения термоэлектрического материала

Изобретение относится к области получения термоэлектрических материалов, применяемых для изготовления термостатирующих и охлаждающих устройств, систем кондиционирования и в других областях техники. Сущность: способ включает механоактивационную обработку в планетарной шаровой мельнице твердых...
Тип: Изобретение
Номер охранного документа: 0002528280
Дата охранного документа: 10.09.2014
10.09.2014
№216.012.f433

Наноструктурный термоэлектрический материал

Изобретение относится к наноструктурному термоэлектрическому материалу. Материал содержит теллурид сурьмы в виде тройного твердого раствора состава ВiSbТе, где х имеет значения от 0,4 до 0,5, и дисперсный наполнитель, выполненый из ультрадисперсного алмаза со средним размером частиц от 3 до 5...
Тип: Изобретение
Номер охранного документа: 0002528338
Дата охранного документа: 10.09.2014
27.09.2014
№216.012.f6c9

Лампа вакуумная ультрафиолетового диапазона спектра

Изобретение относится к светотехнике и может быть использовано при создании и применении ультрафиолетовых вакуумных ламп, в частности для обеззараживания воды и воздуха, сортировки и анализа минералов, в лазерной технике, в оптоэлектронике. Технический результат- продление срока службы и...
Тип: Изобретение
Номер охранного документа: 0002529014
Дата охранного документа: 27.09.2014
10.01.2015
№216.013.17ab

Способ получения материала на основе углеродных нанотрубок

Изобретение может быть использовано при изготовлении изделий, работающих в агрессивных средах и повышенной температуре, таких как мембраны, фильтры, покрытия. Материал на основе углеродных нанотрубок получают газофазным осаждением в вертикальном CVD-реакторе 1, который предварительно...
Тип: Изобретение
Номер охранного документа: 0002537487
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.17af

Способ получения легированного алмаза

Изобретение относится к технологическим процессам получения легированных алмазов, которые могут быть использованы в электронике и приборостроении, а также в качестве ювелирного камня. Легированный алмаз получают методом химического осаждения из газовой фазы (ХОГФ) на подложку в реакционной...
Тип: Изобретение
Номер охранного документа: 0002537491
Дата охранного документа: 10.01.2015
20.01.2015
№216.013.1ee3

Способ получения кристаллических заготовок из галогенидов серебра и их твердых растворов для инфракрасных волоконных световодов

Изобретение относится к улучшенному способу получения заготовок из галогенидов серебра и их твердых растворов для волоконных инфракрасных световодов, включающему нанесение на кристалл-сердцевину из галогенида серебра кристаллической оболочки из кристаллического галогенида серебра с показателем...
Тип: Изобретение
Номер охранного документа: 0002539348
Дата охранного документа: 20.01.2015
20.02.2015
№216.013.28e6

Многочастотный резонатор на объемных акустических волнах

Изобретение относится к СВЧ электроакустике и является основой для создания стабилизированных генераторов сетки частот, узкополосных фильтров, высокочувствительных сенсоров и других СВЧ частотозадающих элементов для средств связи, автоматики и радиолокации. Технический результат - обеспечение...
Тип: Изобретение
Номер охранного документа: 0002541927
Дата охранного документа: 20.02.2015
10.03.2015
№216.013.3087

Высокотвердый углеродный материал и способ его получения

Изобретение предназначено для аэрокосмической отрасли, оборонной промышленности и обработки твёрдых и сверхтвёрдых материалов. На молекулярный фуллерен С или фуллеренсодержащую сажу с добавкой серосодержащего соединения воздействуют давлением от 0,2 до 12 ГПа и температурой от 0 до 2000 С. В...
Тип: Изобретение
Номер охранного документа: 0002543891
Дата охранного документа: 10.03.2015
10.04.2015
№216.013.3e7d

Способ получения сверхтвердого композиционного материала

Изобретение может быть использовано для изготовления элементов аппаратов высокого давления, материалов с высокой износостойкостью, режущих инструментов, инструментов для бурения. Готовят исходную смесь, содержащую, масс. %: фуллерит C и/или C - 30-70; бор с размерами частиц до 2 мкм - 70-30. На...
Тип: Изобретение
Номер охранного документа: 0002547485
Дата охранного документа: 10.04.2015
+ добавить свой РИД