×
20.01.2018
218.016.1b7e

Результат интеллектуальной деятельности: ГИБРИДНЫЙ МАГНИТНЫЙ ПОДШИПНИК С ИСПОЛЬЗОВАНИЕМ СИЛ ЛОРЕНЦА (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Изобретение относится к области энергомашиностроения и может быть использовано для обеспечения бесконтактного вращения ротора электрических машин. Отличие по первому варианту гибридного магнитного подшипника с использованием сил Лоренца состоит в том, что введены две управляющие m-фазные обмотки, расположенные одна над другой, при этом нижняя m-фазная обмотка выполнена со скосом, а верхняя m-фазная обмотка - без скоса, на левом конце вала установлен радиально аксиальный магнитный подшипник на постоянных магнитах, состоящий из внутреннего и внешнего наборов радиальных магнитных колец, установленных концентрично относительно друг друга с воздушным зазором, и аксиального магнитного кольца, установленного с радиальным воздушным зазором относительно вала и аксиальным воздушным зазором относительно внутреннего и внешнего наборов радиальных магнитных колец, а на правом конце вала - радиальный магнитный подшипник на постоянных магнитах, состоящий из внутреннего и внешнего наборов радиальных магнитных колец, установленных концентрично относительно друг друга с воздушным зазором, при этом наборы внутренних постоянных магнитов запрессованы в бандажную втулку, которая выполнена из электропроводящего материала и выполняет функцию пассивного демпфера. Отличие по второму варианту гибридного магнитного подшипника с использованием сил Лоренца состоит в том, что на левом конце вала установлен левый радиальный магнитный подшипник на постоянных магнитах, состоящий из внутреннего и внешнего наборов радиальных магнитных колец, установленных концентрично относительно друг друга с воздушным зазором, в котором расположена кольцевая обмотка, а на правом конце вала - правый радиальный магнитный подшипник на постоянных магнитах, состоящий из внутреннего и внешнего наборов радиальных магнитных колец, установленных концентрично относительно друг друга с воздушным зазором, в котором расположена кольцевая обмотка, при этом наборы внутренних постоянных магнитов запрессованы в бандажную втулку, которая выполнена из электропроводящего материала и выполняет функцию пассивного демпфера. Технический результат: повышение устойчивости ротора на гибридных магнитных подшипниках и его управляемости, а также снижение потребления энергии на управление положением ротора. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области энергомашиностроения и может быть использовано для обеспечения бесконтактного вращения ротора электрических машин.

Известен магнитный подшипник (патент РФ №2089761 С1, F16C 32/04, 10.09.1997), содержащий вал, ротор из двух колец из постоянного магнита, намагниченный в осевом направлении, статор, включающий полюсный элемент и две кольцевые катушки. В осевом зазоре между кольцами ротора установлен кольцевой диск из немагнитного материала с высокой электропроводностью.

Недостатками данного устройства являются ограниченные функциональные возможности, обусловленные отсутствием управления положением ротора электрической машины.

Известен упорный магнитный подшипник с подмагничиванием постоянным магнитным полем смещения (патент РФ №2138706 С1, F16C 32/04, F16C 39/06, 27.09.1999), содержащий вращающийся элемент (или вал) с ободом (или опорным участком) кольцевой формы, находящимся между парой зубцов подковообразного управляющего элемента. Постоянным магнитом создается магнитное поле, распространяющееся через нависающую консоль и порождающее силу притяжения между подмагниченными поверхностью консоли и верхней торцевой поверхностью вала. Эта смещающая сила притяжения поддерживает вал в равновесии так, что обод находится между поверхностями пары зубцов и равноудален от них. Внутри подковообразного управляющего элемента вокруг вала намотаны обмотки.

Недостатками данного устройства являются сложность системы управления, а также значительные потери на вихревые токи в магнитном подшипнике при высоких частотах вращения ротора.

Известна опора (патент РФ №2178243 С2, Н05Н 1/00, 10.01.2002), содержащая установленный в корпусе цилиндрический аксиально намагниченный магнит, размещенную на роторе соосно ферромагнитную втулку, расположенную напротив нижнего торца магнита, и кольцевую камеру с демпфирующей жидкостью. Камера снабжена внутри радиально подвижным кольцевым элементом, подвешенным на гибких нитях и состоящим из внутреннего ферромагнитного кольца и связанного с ним наружного немагнитного кольца.

Недостатками данного устройства являются ограниченные функциональные возможности, обусловленные отсутствием управления положением ротора электрической машины.

Известен радиальный подшипник на магнитной подвеске (патент РФ 2264565 С2, F16C 32/04, 20.11.2005), содержащий вал, корпус, кольцевые постоянные магниты, страховочные радиальные механические подшипники, торцевой подшипник, внешние экраны из диамагнетика, наружные и внутренние кольца кольцевых постоянных магнитов снабжены экранами для обеспечения одного работающего полюса. Кольцевой постоянный магнит внутреннего кольца расположен на оси с возможностью создания неэкранированным полюсом магнитного поля впереди себя в радиальном направлении, а кольцевой постоянный магнит наружного кольца - с возможностью создания неэкранированным полюсом магнитного поля, направленного навстречу полю кольцевого постоянного магнита внутреннего кольца.

Недостатками данного устройства являются повышенные массогабаритные показатели электрической машины, вызванные способом установки механических подшипников, и ограниченные функциональные возможности, обусловленные отсутствием управления положением ротора электрической машины.

Наиболее близким по технической сущности и достигаемому результату к гибридному магнитному подшипнику с использованием сил Лоренца (Novel High-Speed, Lorentz-Type, Slotless Self Bearing Motor // 2010 IEEE Energy Conversion Congress and Exposition pp. 3971-3977) является подшипник, содержащий беспазовый статор, в котором уложена основная обмотка, n-полюсный ротор с бандажной втулкой, управляющую m-фазную обмотку, установленную поверх основной обмотки электрической машины, в которой установлен гибридный магнитный подшипник, электрически соединенную с системой управления, при этом основная обмотка выполнена для n-полюсного ротора, а управляющая обмотка подшипника - для 2n-полюсного ротора, причем частота тока основной обмотки и дополнительной равны.

Недостатками данного устройства являются невысокая тяговая сила в воздушном зазоре магнитных подшипников, перегрев ротора, обусловленный током, протекающим по дополнительной обмотке, возможность управления положением ротора только в радиальном направлении.

Задача изобретения - расширение функциональных возможностей за счет введения управления положением ротора и в осевом направлении, снижение массогабаритных показателей гибридного магнитного подшипника и перегрева ротора при одновременном увеличении его тяговой силы в воздушном зазоре благодаря использованию совместно с магнитными подшипниками на силах Лоренца магнитных подшипников на постоянных магнитах, снижение уровня вибраций в гибридном магнитном подшипнике благодаря применению пассивного демпфера.

Техническим результатом является повышение устойчивости ротора на гибридных магнитных подшипниках и его управляемости, а также снижение потребления энергии на управление положением ротора.

Поставленная задача решается и указанный технический результат по первому варианту достигается тем, что в гибридном магнитном подшипнике с использованием сил Лоренца, содержащем беспазовый статор, в котором уложена основная обмотка, n-полюсный ротор с бандажной втулкой, управляющую m-фазную обмотку, установленную поверх основной обмотки электрической машины, в которой установлен гибридный магнитный подшипник, электрически соединенную с системой управления, при этом основная обмотка выполнена для n-полюсного ротора, а управляющая обмотка подшипника - для 2n-полюсного ротора, причем частота тока основной обмотки и дополнительной равны, согласно изобретению введены две управляющие m-фазные обмотки, расположенные одна над другой, при этом нижняя m-фазная обмотка выполнена со скосом, а верхняя m-фазная обмотка - без скоса, на левом конце вала установлен радиально аксиальный магнитный подшипник на постоянных магнитах, состоящий из внутреннего и внешнего наборов радиальных магнитных колец, установленных концентрично относительно друг друга с воздушным зазором, и аксиального магнитного кольца, установленного с радиальным воздушным зазором относительно вала и аксиальным воздушным зазором относительно внутреннего и внешнего наборов радиальных магнитных колец, а на правом конце вала - радиальный магнитный подшипник на постоянных магнитах, состоящий из внутреннего и внешнего наборов радиальных магнитных колец, установленных концентрично относительно друг друга с воздушным зазором, при этом наборы внутренних постоянных магнитов запрессованы в бандажную втулку, которая выполнена из электропроводящего материала и выполняет функцию пассивного демпфера.

Поставленная задача решается и указанный технический результат по второму варианту достигается тем, что в гибридном магнитном подшипнике с использованием сил Лоренца, содержащем беспазовый статор, в котором уложена основная обмотка, n-полюсный ротор с бандажной втулкой, управляющую m-фазную обмотку, установленную поверх основной обмотки электрической машины, в которой установлен гибридный магнитный подшипник, электрически соединенную с системой управления, при этом основная обмотка выполнена для n-полюсного ротора, а управляющая обмотка подшипника - для 2n-полюсного ротора, причем частота тока основной обмотки и дополнительной равны, согласно изобретению на левом конце вала установлен левый радиальный магнитный подшипник на постоянных магнитах, состоящий из внутреннего и внешнего наборов радиальных магнитных колец, установленных концентрично относительно друг друга с воздушным зазором, в котором расположена кольцевая обмотка, а на правом конце вала - правый радиальный магнитный подшипник на постоянных магнитах, состоящий из внутреннего и внешнего наборов радиальных магнитных колец, установленных концентрично относительно друг друга с воздушным зазором, в котором расположена кольцевая обмотка, при этом наборы внутренних постоянных магнитов запрессованы в бандажную втулку, которая выполнена из электропроводящего материала и выполняет функцию пассивного демпфера.

Существо изобретения поясняется чертежами. На фиг. 1 изображен продольный разрез гибридного магнитного подшипника с использованием сил Лоренца по первому варианту. На фиг. 2 изображен продольный разрез гибридного магнитного подшипника с использованием сил Лоренца по второму варианту.

Предложенное устройство по первому варианту содержит (фиг. 1): беспазовый статор 1, в котором уложена основная обмотка 2, n-полюсный ротор 3 с бандажной втулкой 4, правый радиальный магнитный подшипник на постоянных магнитах 5, состоящий из внутреннего 6 и внешнего 7 наборов радиальных магнитных колец, установленных концентрично относительно друг друга с воздушным зазором, систему управления 8, электрически соединенную с верхней управляющей m-фазной обмоткой 9 и нижней управляющей m-фазной обмоткой 10, выполненной со скосом, установленные поверх основной обмотки 2 левый радиально аксиальный магнитный подшипник на постоянных магнитах 11, состоящий из внутреннего 12 и внешнего 13 наборов радиальных магнитных колец, установленных концентрично относительно друг друга с воздушным зазором, и аксиального магнитного кольца 14, установленного с радиальным воздушным зазором относительно вала и аксиальным воздушным зазором относительно внутреннего и внешнего наборов радиальных магнитных колец, при этом наборы внутренних постоянных магнитов запрессованы в бандажную втулку 4, которая выполнена из электропроводящего материала и выполняет функцию пассивного демпфера.

Предложенное устройство по второму варианту содержит (фиг. 2): беспазовый статор 1, в котором уложена основная обмотка 2, n-полюсный ротор 3 с бандажной втулкой 4, правый радиальный магнитный подшипник на постоянных магнитах 5, состоящий из внутреннего 6 и внешнего 7 наборов радиальных магнитных колец, установленных концентрично относительно друг друга с воздушным зазором, систему управления 8, электрически соединенную с управляющей m-фазной обмоткой 9, установленные поверх основной обмотки 2, внутренний 12 и внешний 13 набор радиальных магнитных колец, образующих левый радиальный магнитный подшипник на постоянных магнитах 15, установленных концентрично относительно друг друга с воздушным зазором, при этом наборы внутренних постоянных магнитов запрессованы в бандажную втулку 4, которая выполнена из электропроводящего материала и выполняет функцию пассивного демпфера, вдобавок в воздушном зазоре правого радиального магнитного подшипника на постоянных магнитах 5 расположена кольцевая обмотка 16, а в воздушном зазоре левого радиального магнитного подшипника на постоянных магнитах 15 расположена кольцевая обмотка 17.

Гибридный магнитный подшипник с использованием сил Лоренца по первому варианту работает следующим образом: при протекании тока по нижней управляющей m-фазной обмотке 10 на ротор воздействуют радиальные силы, которые его уравновешивают в радиальном направлении, направление данных сил определяется правилом левой руки, при этом благодаря скосу нижней m-фазной обмотки 10 на ротор воздействует и аксиальная сила, которую уравновешивает радиально аксиальный магнитный подшипник на постоянных магнитах 11 за счет сил отталкивания между аксиальным магнитным кольцом 14 и набором радиальных магнитных колец 12. Величина радиальных и аксиальных сил, создаваемых нижней управляющей m-фазной обмоткой 10, пропорциональна силе тока, протекающей по ней. При смещении ротора в аксиальном направлении сила тока в нижней m-фазной обмотке 6 изменяется, при этом изменяются силы в аксиальном направлении, что позволяет компенсацию смещения ротора в аксиальном направлении, но при этом также изменяются силы и в радиальном направлении, для компенсации которых системой управления подается ток на верхнюю управляющую m-фазную обмотку 9. Тем самым достигается возможность управления положением ротора в осевом направлении. При этом для увеличения тяговой силы и снижения потребляемого тока верхней m-фазной обмоткой 9 и нижней управляющей m-фазной обмоткой 10, а также для снижения перегрева ротора используются радиально аксиальный магнитный подшипник на постоянных магнитах 11 и радиальный магнитный подшипник на постоянных магнитах 5, которые обеспечивают левитацию ротора при минимальном токе в управляющей m-фазной верхней обмотке 9 и нижней управляющей m-фазной обмотке 10. Кроме того, так как в управляющей m-фазной верхней обмотке 9 ток протекает только для компенсации радиальных сил, то перегрев ротора минимален. Так как бандажная втулка выполнена из электропроводящего материала, то при вибрациях ротора в ней будут наводиться вихревые токи, которые будут снижать уровень вибраций в гибридном магнитном подшипнике, то есть бандажная оболочка выполняет функцию пассивного демпфера.

Гибридный магнитный подшипник с использованием сил Лоренца по второму варианту работает следующим образом: при протекании тока по управляющей m-фазной обмотке 9 на ротор воздействуют радиальные силы, которые его уравновешивают в радиальном направлении, направление данных сил определяется правилом левой руки, при этом благодаря протеканию тока по кольцевым обмоткам 16 и 17 возникают аксиальные силы, которые уравновешивает ротор в аксиальном направлении. Величина радиальных и аксиальных сил, создаваемых управляющей m-фазной обмоткой 9 и кольцевыми обмотками 16, 17, пропорциональна силе тока, протекающей по ним. При смещении ротора в аксиальном направлении сила тока в кольцевых обмотках 16 или 17 (в зависимости от направления смещения) изменяется, при этом изменяются силы в аксиальном направлении, что позволяет компенсацию смещения ротора в аксиальном направлении. Тем самым достигается возможность управления положением ротора в осевом направлении. При этом для увеличения тяговой силы и снижения потребляемого тока m-фазной обмоткой 9, а также для снижения перегрева ротора используются левый радиальный магнитный подшипник на постоянных магнитах 15 и правый радиальный магнитный подшипник на постоянных магнитах 5, которые обеспечивают левитацию ротора при минимальном токе в управляющей m-фазной обмотке 9. Так как бандажная втулка выполнена из электропроводящего материала, то при вибрациях ротора в ней будут наводиться вихревые токи, которые будут снижать уровень вибраций в гибридном магнитном подшипнике, то есть бандажная оболочка выполняет функцию пассивного демпфера.

Итак, заявляемое изобретение позволяет расширить функциональные возможности за счет введения управления положением ротора в осевом направлении, снизить массогабаритные показатели гибридного магнитного подшипника и перегрев ротора при одновременном увеличении его тяговой силы в воздушном зазоре благодаря использованию совместно с магнитными подшипниками на силах Лоренца магнитных подшипников на постоянных магнитах, снизить уровень вибраций в гибридном магнитном подшипнике благодаря применению пассивного демпфера, выполненного в виде бандажной втулки ротора.

Таким образом, достигается повышение устойчивости ротора на гибридных магнитных подшипниках и его управляемости, а также снижение потребления энергии на управление положением ротора.


ГИБРИДНЫЙ МАГНИТНЫЙ ПОДШИПНИК С ИСПОЛЬЗОВАНИЕМ СИЛ ЛОРЕНЦА (ВАРИАНТЫ)
Источник поступления информации: Роспатент

Показаны записи 121-130 из 214.
17.11.2018
№218.016.9e4f

Многофазный синхронный генератор с однополупериодным выпрямителем

Изобретение относится к области энергомашиностроения, в частности к устройствам, использующимся в системах автономного электроснабжения. Технический результат: повышение надежности многофазного синхронного генератора с возможностью подключения в трехфазную сеть, а также повышение...
Тип: Изобретение
Номер охранного документа: 0002672562
Дата охранного документа: 16.11.2018
16.01.2019
№219.016.afd0

Способ получения износостойкого покрытия на основе интерметаллида системы ti-al

Изобретение относится к области машиностроения, в частности к получению износо-, ударо-, тепло-, трещино- и коррозионностойких покрытий, и может быть использовано для повышения надежности и долговечности широкого ассортимента деталей машин и инструмента. Способ получения износостойкого...
Тип: Изобретение
Номер охранного документа: 0002677043
Дата охранного документа: 15.01.2019
24.01.2019
№219.016.b2d7

Способ химико-термической обработки детали из легированной стали

Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из легированных сталей, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения, режущего инструмента и штамповой...
Тип: Изобретение
Номер охранного документа: 0002677908
Дата охранного документа: 22.01.2019
24.01.2019
№219.016.b388

Устройство для выведения малых космических аппаратов

Изобретение относится к системам разделения космических аппаратов (КА) и м.б. использовано для запуска на орбиту малых КА массой от 1 до 50 кг. Устройство для выведения КА (2) содержит основание (3), на котором КА удерживается гибкими токопроводящими пластинами (1). Пластины подключены к блоку...
Тип: Изобретение
Номер охранного документа: 0002677974
Дата охранного документа: 22.01.2019
14.02.2019
№219.016.ba48

Способ автоматизированной очистки солнечных панелей

Изобретение относится к области электроэнергетики, энергосбережения и может быть использовано для очистки солнечных панелей от снега и льда в зимнее время. Технический результат: повышение эффективности работы солнечных панелей и увеличение их кпд, а также возможность постоянного использования...
Тип: Изобретение
Номер охранного документа: 0002679771
Дата охранного документа: 12.02.2019
26.02.2019
№219.016.c815

Способ ионно-имплантационной обработки моноколеса компрессора с лопатками из титановых сплавов

Изобретение относится к способу упрочнения рабочих лопаток моноколеса компрессора ГТД из титановых сплавов и может быть использовано в авиационном двигателестроении и энергетическом турбостроении. Способ включает установку моноколеса на валу держателя, помещение его внутрь вакуумной установки...
Тип: Изобретение
Номер охранного документа: 0002680630
Дата охранного документа: 25.02.2019
14.03.2019
№219.016.df01

Система автоматического управления углом курса и ограничения угла крена летательного аппарата

Система автоматического управления углом курса и ограничения угла крена летательного аппарата содержит задатчик угла курса, четыре элемента сравнения, вычислитель заданного угла крена, алгебраический селектор минимального сигнала, вычислитель автопилота угла крена, сервопривод элеронов, датчик...
Тип: Изобретение
Номер охранного документа: 0002681817
Дата охранного документа: 12.03.2019
20.03.2019
№219.016.e2e7

Способ упрочнения лопаток моноколеса из титанового сплава

Изобретение относится к способу упрочнения лопаток моноколеса из титанового сплава. Способ включает ионно-имплантационную обработку материала поверхностного слоя лопаток энергией от 20 кэВ до 35 кэВ и дозой от 1,6⋅10 см до 2,0⋅10 см с последующим нанесением ионно-плазменного многослойного...
Тип: Изобретение
Номер охранного документа: 0002682265
Дата охранного документа: 18.03.2019
20.04.2019
№219.017.357f

Магнитопровод статора электромеханических преобразователей энергии

Изобретение относится к электротехнике и может быть использовано в электромеханических преобразователях энергии автономных объектов. Техническим результатом является повышение надежности, энергоэффективности и минимизация тепловыделений, повышение к.п.д. на 1-2%. Магнитопровод статора содержит...
Тип: Изобретение
Номер охранного документа: 0002685420
Дата охранного документа: 18.04.2019
25.04.2019
№219.017.3b08

Способ изготовления электроконтактного провода для высокоскоростного железнодорожного транспорта

Изобретение относится к способам изготовления электроконтактного провода из термоупрочняемого сплава на основе меди. Способ включает подачу сплава в кристаллизатор, кристаллизацию сплава в виде непрерывнолитой заготовки, деформацию упомянутой заготовки на катанку, закалку, старение при...
Тип: Изобретение
Номер охранного документа: 0002685842
Дата охранного документа: 23.04.2019
Показаны записи 111-117 из 117.
05.02.2020
№220.017.fe87

Устройство для беспроводной чрескожной передачи энергии сердечному насосу

Изобретение относится к медицинской технике. Технический результат: повышение надежности устройства и эффективности за счет отказа от проводов передачи энергии и быстро выходящих из строя устройств передачи энергии. Сущность изобретения: использование двухрезонансных контуров, содержащих по две...
Тип: Изобретение
Номер охранного документа: 0002713108
Дата охранного документа: 03.02.2020
28.03.2020
№220.018.1167

Рабочее колесо центробежного вентилятора с пустотелыми лопатками

Изобретение относится к вентиляторостроению, в частности к рабочим колесам центробежных вентиляторов, и может быть использовано для проветривания помещений, в транспортном машиностроении и др. Рабочее колесо центробежного вентилятора, содержащее коренной и покрывной диски, лопатки с...
Тип: Изобретение
Номер охранного документа: 0002717866
Дата охранного документа: 26.03.2020
22.04.2020
№220.018.1761

Статор электрической машины с трубчатой системой охлаждения

Изобретение относится к электротехнике. Техническим результатом является повышение надежности, энергоэффективности, минимизация тепловыделений обмотки статора и, как следствие, повышение КПД электрической машины. Статор электрической машины с трубчатой системой охлаждения содержит магнитопровод...
Тип: Изобретение
Номер охранного документа: 0002719287
Дата охранного документа: 17.04.2020
31.07.2020
№220.018.39a4

Ротор магнитоэлектрической машины с низким уровнем нагрева постоянных магнитов (варианты)

Изобретение относится к области электромеханики и может быть использовано для изготовления роторов магнитоэлектрических машин. Технический результат - повышение энергоэффективности и снижение тепловыделений в роторе магнитоэлектрической машины. Ротор электрической машины с низким уровнем...
Тип: Изобретение
Номер охранного документа: 0002728276
Дата охранного документа: 29.07.2020
23.05.2023
№223.018.6c2c

Блок из двигателя и генератора для гибридной силовой установки самолета

Изобретение относится к области электротехники. Технический результат – повышение энергоэффективности. Система привода воздушного винта самолета состоит из двигателя, генератора и силовой электроники. При этом генератор и двигатель расположены в одном корпусе концентрично относительно друг...
Тип: Изобретение
Номер охранного документа: 0002736232
Дата охранного документа: 12.11.2020
23.05.2023
№223.018.6d6c

Стартер-генератор с обмоткой статора с проводниками разного поперечного сечения

Изобретение относится к электротехнике и может быть использовано в стартер-генераторных системах электрического транспорта. Технический результат: снижение нагрева обмотки статора благодаря выполнению части обмотки из провода большего сечения. Стартер-генератор содержит обмотку статора из...
Тип: Изобретение
Номер охранного документа: 0002760568
Дата охранного документа: 29.11.2021
01.06.2023
№223.018.74d2

Статор отказоустойчивой электрической машины

Изобретение относится к электротехнике, а именно к устройству статоров электрических машин. Технический результат заключается в повышении отказоустойчивости электрической машины благодаря применению конструкции статора, в котором при повышении температуры выше допустимых пределов обеспечиваются...
Тип: Изобретение
Номер охранного документа: 0002755922
Дата охранного документа: 23.09.2021
+ добавить свой РИД