×
20.01.2018
218.016.1a58

Результат интеллектуальной деятельности: УСТРОЙСТВО ОХЛАЖДЕНИЯ ОДИНОЧНОГО МОЩНОГО СВЕТОДИОДА С ИНТЕНСИФИЦИРОВАННОЙ КОНДЕНСАЦИОННОЙ СИСТЕМОЙ

Вид РИД

Изобретение

№ охранного документа
0002636385
Дата охранного документа
23.11.2017
Аннотация: Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры. Технический результат - обеспечение высокоэффективного отвода тепла при минимальном значении сопротивления теплопередачи от одиночного полупроводникового светодиода мощностью от 5 до 25 Вт. Достигается тем, что в устройстве охлаждения одиночного мощного светодиода с интенсифицированной конденсационной системой, включающем основание со светодиодом, паровой канал примыкает к поверхности основания, образующей в максимальной близости к p-n-переходам светодиода интенсифицирующую поверхность теплообмена. Радиатор выполнен из замкнутого тонкостенного гофрированного листового профиля в форме многолепесткового барабана. Лепестки радиатора имеют скругленные вершины с радиусом кривизны, r, лежащим в диапазоне 0,25×k≤r≤1×k, где k - капиллярная постоянная теплоносителя, каналы между лепестками радиатора имеют постоянную ширину и скругленные основания, радиусы вершин лепестков в 2-3 раза больше радиусов оснований каналов. 2 ил.

Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры.

Мощные светодиодные нагрузки, составляющие десятки и сотни Вт/см2, которые необходимы, например, в видеопроекторах, прожекторах, специальной светосигнальной аппаратуре, требуют для эффективного отвода тепла использовать радиаторы с тепловым сопротивлением, составляющим десятые-сотые доли К/Вт. Добиться такого малого теплового сопротивления позволяют только жидкостные системы охлаждения.

Известна плоская тепловая труба [US №3613778, 19.10.1971, B64G 1/50; B64G 1/58; F28D 15/02], заполненная пористым металлическим фитилем или сеткой в паровом канале.

Толщина фитиля способствует увеличению теплопередающей способности тепловой трубы. Однако с ростом толщины фитиля увеличивается его термическое сопротивление в радиальном направлении, что препятствует росту теплопередающей способности трубы в целом и снижает допустимую максимальную плотность теплового потока в испарителе.

Известно устройство для охлаждения электронных компонентов [US №4975803, 04.12.1990, H05K 7/20], которое имеет сэндвич конструкцию и представляет собой заключенные в металлический корпус (параллелепипед) множество пластин, параллельных плоскости установки электронных компонентов и выполненных из пористого материала с диагональными микроканалами, причем микроканалы соседних пластин имеют противоположные направления. Пористое ядро с микроканалами заполнено жидким теплоносителем. Тепло передается на торцевые части корпуса, где находится радиатор.

В такой конструкции отвод тепла в основном на торцевую часть не обеспечивает эффективную теплоотдачу к радиатору. Эффективная теплопроводность насыщенного жидкостью пористого материала в направлении, перпендикулярном плоскости установки электронных компонентов, существенно меньше, чем в направлении, параллельном плоскости установки электронных компонентов.

Наиболее близким по технической сущности заявляемой системе является устройство охлаждения светодиодного модуля [RU №2546676, 05.09.2013, H05K 1/00, H05K 7/20], состоящее из высокотеплопроводного основания, выполненного из металла, металлокерамики или материала, имеющего структуру изолированных проводников внутри металла, с установленными на нем светодиодами, к которому примыкает наполнитель из микропористого материала с миниканалами, расположенными под светодиодами перпендикулярно плоскости их установки так, что части теплопроводящего основания, примыкающие к торцам миниканалов, образуют в максимальной близости к р-n-переходам светодиодов интенсифицирующую поверхность теплообмена, интенсифицируемую за счет радиального оребрения, представляющего собой микроканалы треугольного сечения.

Однако предлагаемая система обеспечивает эффективный отвод тепла от модуля (группы светодиодов). Наполнитель из микропористого материала является общим для всего модуля. При выделении из модуля одиночного светодиода эффективность такой системы падает. Наполнитель из микропористого материала в этом случае может быть расположен только по периферии парового канала и объем его существенно уменьшается. Если в системе охлаждения модуля в пористом слое содержалось достаточно много жидкости, которая могла быть быстро транспортирована в испарительную область, то для одиночного светодиода движение жидкости должно происходить в относительно тонком слое пористой среды от зоны конденсации до зоны испарения и скорость жидкости может быть лимитирована.

Задачей настоящего изобретения является обеспечение высокоэффективного отвода тепла при минимальном значении сопротивления теплопередачи от одиночного полупроводникового светодиода мощностью от 5 до 25 Вт.

Поставленная задача решается тем, что в устройстве охлаждения одиночного мощного светодиода с интенсифицированной конденсационной системой, включающей высокотеплопроводящее основание с установленным на нем светодиодом, паровой канал, примыкающий к поверхности теплопроводящего основания, образующей в максимальной близости к p-n-переходам светодиода интенсифицирующую поверхность теплообмена, радиатор, представляющий собой герметичный корпус, выполненный из замкнутого тонкостенного гофрированного листового профиля, согласно изобретению:

1) радиатор интенсифицированной конденсационной системы выполнен в форме многолепесткового барабана с большой поверхностью теплообмена и установлен соосно с паровым каналом, выполненным в форме цилиндра, примыкающего одним торцом к теплопроводящему основанию,

2) лепестки радиатора интенсифицированной конденсационной системы имеют скругленные вершины с радиусом кривизны, r, лежащим в диапазоне от 0,25×k до 1×k (0,25×k≤r≤1×k), где k - капиллярная постоянная используемого теплоносителя,

3) каналы между лепестками радиатора интенсифицированной конденсационной системы выполнены узкими с постоянной шириной и имеют скругленные основания,

4) радиусы вершин лепестков в 2-3 раза больше радиусов оснований каналов радиатора интенсифицированной конденсационной системы.

На фиг. 1 изображена схема интенсифицированной конденсационной системы охлаждения одиночного мощного светодиода, вид сбоку.

На фиг. 2 показано сечение А-А интенсифицированной конденсационной системы охлаждения одиночного мощного светодиода, вид сверху.

Где: 1 - теплопроводящее основание, 2 - светодиод, 3 - паровой канал, 4 - радиатор, 5 - вершины лепестков радиатора, 6 - основания каналов радиатора, 7 - интенсифицирующая поверхность теплообмена.

В предлагаемой конструкции система охлаждения одиночного светодиода состоит из теплопроводящего основания 1, на которое установлен одиночный мощный светодиод 2, парового канала 3, примыкающего к теплопроводящему основанию, и радиатора 4.

Паровой канал 3 выполнен в виде цилиндра, примыкающего одним торцом к теплопроводящему основанию 1.

Теплопроводящее основание 1, являющееся торцом парового канала 3, образует в максимальной близости к р-n-переходам светодиода интенсифицирующую поверхность теплообмена 7.

Поверхность 7, интенсифицирующая кипение и испарение, может иметь оребрение или покрытие, например нанопокрытие. На такой поверхности кипение начинается при существенно меньших температурах перегрева, а коэффициент теплоотдачи выше, чем на гладкой поверхности. Например, эксперименты на нагревателях диаметром 5 мм с гладкой и оребренной поверхностями показали, что на оребренных поверхностях перегрев относительно температуры насыщения уменьшается до трех раз. До двух раз возрастает коэффициент теплоотдачи на оребренной поверхности по сравнению с гладкой.

Радиатор 4 выполнен из замкнутого тонкостенного гофрированного листового профиля с гофрами в форме многолепесткового барабана и установлен соосно с паровым каналом 3. Такая форма радиатора позволяет максимально увеличить поверхность теплообмена, что, в свою очередь, позволяет осуществлять процессы конденсации пара с естественной циркуляцией воздуха. Лепестки радиатора имеют скругленные вершины 5, а каналы между ними имеют скругленные основания 6, причем радиусы вершин лепестков в 2-3 раза больше радиусов оснований каналов, что обеспечивает интенсивную конденсацию пара на внутренней поверхности лепестков в области вершин 5. Радиатор 4 установлен соосно с паровым каналом 3.

Чтобы обеспечить передачу тепла, выделяемого светодиодом, в зону охлаждения, паровой канал 3 частично заполнен жидким теплоносителем, например водой. Теплоноситель осуществляет передачу тепла из зоны нагрева светодиода в зону охлаждения за счет скрытой теплоты парообразования.

При подаче электрического напряжения на светодиод 2 происходит нагрев, кипение и испарение теплоносителя на поверхности теплообмена 7. Возникающая при этом разность давлений побуждает пар двигаться по паровому каналу 3 в верхнюю часть радиатора, где пар конденсируется за счет охлаждения воздухом внешних стенок радиатора, отдавая при этом скрытую теплоту парообразования. Пар из парового канала 3 поступает и конденсируется на внутренней поверхности лепестков радиатора. Конденсат стекает вниз и поступает в слой кипящей на поверхности 7 жидкости (теплоносителя). Наиболее интенсивная конденсация пара происходит в области вершин лепестков 5 радиатора, так как в результате движения пара неконденсируемые примеси перемещаются в область основания лепестков 6, где уменьшают интенсивность конденсации. Радиус лепестков в области вершин больше, чем радиус оснований каналов, в 2-3 раза. В результате конденсат по мере стекания к зоне нагрева (поверхность 7), где происходит кипение теплоносителя, не перекрывает сечение лепестков в области вершин, а движется в виде тонкой пленки, обеспечивая высокую интенсивность конденсации.

В случае оребрения интенсифицирующей поверхности теплообмена 7 при достижении поверхности раздела фаз жидкость-пар уровня оребрения возникает капиллярное давление, которое совместно с гравитационными силами заставляет сконденсировавшуюся жидкость возвращаться обратно в зону нагрева. Например, на поверхности с радиальным оребрением в виде микроканалов треугольного сечения, размеры которых уменьшаются по направлению к центру тепловыделяющего светодиода, при осушении микроканалов в центральной части капиллярный напор возрастает, обеспечивая более интенсивный подвод жидкости к окрестности светодиода и, соответственно, более высокие значения отводимых тепловых потоков.

Так непрерывно осуществляется перенос тепла из зоны нагрева в зону охлаждения.

Таким образом, обеспечение высокоэффективного отвода тепла от полупроводниковых светодиодов при минимальном значении сопротивления теплопередачи достигается тем, что:

1) интенсивное кипение и испарение жидкости происходит вблизи р-n-перехода светодиодов;

2) интенсивное кипение и испарение жидкости происходит на интенсифицирующей поверхности с радиальным оребрением;

3) форма радиатора позволяет максимально увеличить поверхность теплообмена и осуществлять процессы конденсации пара с естественной циркуляцией воздуха.

Работоспособность предложенной конструкции системы охлаждения светодиодного модуля подтверждается экспериментальными данными и выполненными оценками и расчетами.

Согласно выполненным расчетным и экспериментальным данным радиус кривизны лепестка радиатора должен быть сравним с величиной капиллярной постоянной используемого теплоносителя, а каналы между лепестками должны быть узкими. Радиус кривизны лепестка радиатора, сравнимый с величиной капиллярной постоянной, позволяет свободно стекать конденсату без заполнения всего пространства. Узкие каналы между лепестками позволяют организовать течение воздуха с высокой скоростью, что обеспечивает хорошую теплоотдачу к воздуху.

Наиболее эффективными являются радиаторы с радиусом кривизны лепестка, лежащим в диапазоне от 0,25 до 1k, где k - капиллярная постоянная.

Например, для воды, наиболее эффективным является радиатор с 24 лепестками, радиус лепестка которого составляет 2,5 мм, т.к. обеспечивает:

1) максимальную площадь теплообмена, 837,5 см2,

2) максимальное количество каналов для охлаждения воздухом с достаточно большой шириной (около 2 мм).

Устройство охлаждения одиночного мощного светодиода с интенсифицированной конденсационной системой, включающее высокотеплопроводящее основание с установленным на нем одиночным мощным светодиодом, паровой канал, примыкающий к поверхности теплопроводящего основания, образующей в максимальной близости к p-n-переходам светодиода интенсифицирующую поверхность теплообмена, радиатор, представляющий собой герметичный корпус, выполненный из замкнутого тонкостенного гофрированного листового профиля, отличающееся тем, что радиатор интенсифицированной конденсационной системы имеет форму многолепесткового барабана с большой поверхностью теплообмена и установлен соосно с паровым каналом, выполненным в форме цилиндра, лепестки радиатора интенсифицированной конденсационной системы имеют скругленные вершины с радиусом кривизны, r, лежащим в диапазоне 0,25×k≤r≤1×k, где k - капиллярная постоянная используемого теплоносителя, каналы между лепестками радиатора интенсифицированной конденсационной системы выполнены узкими с постоянной шириной и имеют скругленные основания, причем радиусы вершин лепестков в 2-3 раза больше радиусов оснований каналов радиатора интенсифицированной конденсационной системы.
УСТРОЙСТВО ОХЛАЖДЕНИЯ ОДИНОЧНОГО МОЩНОГО СВЕТОДИОДА С ИНТЕНСИФИЦИРОВАННОЙ КОНДЕНСАЦИОННОЙ СИСТЕМОЙ
УСТРОЙСТВО ОХЛАЖДЕНИЯ ОДИНОЧНОГО МОЩНОГО СВЕТОДИОДА С ИНТЕНСИФИЦИРОВАННОЙ КОНДЕНСАЦИОННОЙ СИСТЕМОЙ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 96.
25.08.2017
№217.015.ab29

Способ ввода пучка электронов в среду с повышенным давлением

Изобретение относится к способу ввода пучка электронов в среду с повышенным давлением, при котором подачу газа осуществляют через систему напуска в сопловой блок, состоящий из двух кольцевых сопел (внутреннего и внешнего, по оси внутреннего кольцевого сопла имеется отверстие для прохождения...
Тип: Изобретение
Номер охранного документа: 0002612267
Дата охранного документа: 03.03.2017
25.08.2017
№217.015.abc0

Оппозитный ветротеплогенератор

Изобретение относится к агрегатированию ветродвигателей с теплогенератором. Оппозитный ветротеплогенератор, в котором теплогенератор расположен между двумя однотипными роторными ветродвигателями, валы которых сочленены с осями верхнего и нижнего однотипных соосных многоцилиндровых роторов...
Тип: Изобретение
Номер охранного документа: 0002612237
Дата охранного документа: 03.03.2017
25.08.2017
№217.015.ac06

Способ измерения полного вектора скорости в гидропотоках с помощью лазерного доплеровского анемометра (лда)

Изобретение относится к контрольно-измерительной технике и позволяет исследовать кинематические характеристики гидропотоков. В заявленном способе измерения полного вектора скорости в гидропотоках с помощью лазерного доплеровского анемометра (далее - ЛДА) ЛДА и иммерсионный оптический контейнер...
Тип: Изобретение
Номер охранного документа: 0002612202
Дата охранного документа: 03.03.2017
25.08.2017
№217.015.b75b

Конденсатор-сепаратор для двухкомпонентных двухфазных систем

Изобретение относится к области мини- и микросистем, которые используются в энергетике и на транспорте и могут применяться в устройствах для охлаждения электроники. В конденсаторе-сепараторе для двухкомпонентных двухфазных систем, содержащем конденсатор, сепаратор, согласно изобретению...
Тип: Изобретение
Номер охранного документа: 0002614897
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.bc43

Способ и устройство для плазменной газификации твёрдого углеродсодержащего материала и получения синтез-газа

Изобретение относится к способу и устройству для получения синтез-газа из твердых углеродсодержащих топлив и может быть применено в энергетике, химической промышленности, металлургии, коммунальном хозяйстве, экологии. Способ получения синтез-газа включает шлюзовую загрузку материала,...
Тип: Изобретение
Номер охранного документа: 0002616079
Дата охранного документа: 12.04.2017
25.08.2017
№217.015.c5a1

Способ эксплуатации алюминий-воздушного гальванического элемента

Изобретение относится к области электротехники, а более конкретно к металл-воздушным химическим источникам тока с анодами из алюминиевого сплава. Задачей изобретения является увеличение удельной емкости алюминий-воздушных элементов и повышение степени использования анодов. Поставленная задача...
Тип: Изобретение
Номер охранного документа: 0002618440
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.c6fc

Способ получения гелия на основе сжигания природного газа с полезным использованием тепловой энергии

Изобретение относится к области получения гелия из природного газа и может использоваться в газовой, нефтяной, химической и других отраслях промышленности и науке. Способ включает получение обогащенного до 90-95 об. % гелием газа путем сжигания природного газа, последующим пропусканием...
Тип: Изобретение
Номер охранного документа: 0002618818
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.ca16

Мельница-сушилка для дробления, селективного помола и сушки полиминеральных отходов

Изобретение относится к горно-обогатительной технике и предназначено для дробления, селективного помола и сушки отходов обогащения углей, углистых аргиллитов, а также других полиминеральных отходов, в частности отходов флотационного обогащения железных руд, каолинов, песков и др....
Тип: Изобретение
Номер охранного документа: 0002619905
Дата охранного документа: 19.05.2017
25.08.2017
№217.015.ce03

Способ одновременного определения расходов жидкой и газовой фаз потока газожидкостной смеси

Изобретение относится к контрольно-измерительной технике и может быть использовано для определения величин расходов фаз в двухфазных потоках, например, при добыче или переработке углеводородного топлива. Способ одновременного определения расходов жидкой и газовой фаз потока газожидкостной смеси...
Тип: Изобретение
Номер охранного документа: 0002620776
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.cec6

Устройство формирования пристенных капельных течений жидкости в микро- и мини-каналах

Изобретение относится к области электроники, в частности к микромасштабным охлаждающим устройствам таким, как микроканальные теплообменники, которые обеспечивают высокие значения коэффициента теплопередачи при течении жидкостей в относительно небольших объемах. В устройстве, включающем плоский...
Тип: Изобретение
Номер охранного документа: 0002620732
Дата охранного документа: 29.05.2017
Показаны записи 41-50 из 63.
25.08.2017
№217.015.ab29

Способ ввода пучка электронов в среду с повышенным давлением

Изобретение относится к способу ввода пучка электронов в среду с повышенным давлением, при котором подачу газа осуществляют через систему напуска в сопловой блок, состоящий из двух кольцевых сопел (внутреннего и внешнего, по оси внутреннего кольцевого сопла имеется отверстие для прохождения...
Тип: Изобретение
Номер охранного документа: 0002612267
Дата охранного документа: 03.03.2017
25.08.2017
№217.015.abc0

Оппозитный ветротеплогенератор

Изобретение относится к агрегатированию ветродвигателей с теплогенератором. Оппозитный ветротеплогенератор, в котором теплогенератор расположен между двумя однотипными роторными ветродвигателями, валы которых сочленены с осями верхнего и нижнего однотипных соосных многоцилиндровых роторов...
Тип: Изобретение
Номер охранного документа: 0002612237
Дата охранного документа: 03.03.2017
25.08.2017
№217.015.ac06

Способ измерения полного вектора скорости в гидропотоках с помощью лазерного доплеровского анемометра (лда)

Изобретение относится к контрольно-измерительной технике и позволяет исследовать кинематические характеристики гидропотоков. В заявленном способе измерения полного вектора скорости в гидропотоках с помощью лазерного доплеровского анемометра (далее - ЛДА) ЛДА и иммерсионный оптический контейнер...
Тип: Изобретение
Номер охранного документа: 0002612202
Дата охранного документа: 03.03.2017
25.08.2017
№217.015.b75b

Конденсатор-сепаратор для двухкомпонентных двухфазных систем

Изобретение относится к области мини- и микросистем, которые используются в энергетике и на транспорте и могут применяться в устройствах для охлаждения электроники. В конденсаторе-сепараторе для двухкомпонентных двухфазных систем, содержащем конденсатор, сепаратор, согласно изобретению...
Тип: Изобретение
Номер охранного документа: 0002614897
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.bc43

Способ и устройство для плазменной газификации твёрдого углеродсодержащего материала и получения синтез-газа

Изобретение относится к способу и устройству для получения синтез-газа из твердых углеродсодержащих топлив и может быть применено в энергетике, химической промышленности, металлургии, коммунальном хозяйстве, экологии. Способ получения синтез-газа включает шлюзовую загрузку материала,...
Тип: Изобретение
Номер охранного документа: 0002616079
Дата охранного документа: 12.04.2017
25.08.2017
№217.015.c5a1

Способ эксплуатации алюминий-воздушного гальванического элемента

Изобретение относится к области электротехники, а более конкретно к металл-воздушным химическим источникам тока с анодами из алюминиевого сплава. Задачей изобретения является увеличение удельной емкости алюминий-воздушных элементов и повышение степени использования анодов. Поставленная задача...
Тип: Изобретение
Номер охранного документа: 0002618440
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.c6fc

Способ получения гелия на основе сжигания природного газа с полезным использованием тепловой энергии

Изобретение относится к области получения гелия из природного газа и может использоваться в газовой, нефтяной, химической и других отраслях промышленности и науке. Способ включает получение обогащенного до 90-95 об. % гелием газа путем сжигания природного газа, последующим пропусканием...
Тип: Изобретение
Номер охранного документа: 0002618818
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.ca16

Мельница-сушилка для дробления, селективного помола и сушки полиминеральных отходов

Изобретение относится к горно-обогатительной технике и предназначено для дробления, селективного помола и сушки отходов обогащения углей, углистых аргиллитов, а также других полиминеральных отходов, в частности отходов флотационного обогащения железных руд, каолинов, песков и др....
Тип: Изобретение
Номер охранного документа: 0002619905
Дата охранного документа: 19.05.2017
25.08.2017
№217.015.ce03

Способ одновременного определения расходов жидкой и газовой фаз потока газожидкостной смеси

Изобретение относится к контрольно-измерительной технике и может быть использовано для определения величин расходов фаз в двухфазных потоках, например, при добыче или переработке углеводородного топлива. Способ одновременного определения расходов жидкой и газовой фаз потока газожидкостной смеси...
Тип: Изобретение
Номер охранного документа: 0002620776
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.cec6

Устройство формирования пристенных капельных течений жидкости в микро- и мини-каналах

Изобретение относится к области электроники, в частности к микромасштабным охлаждающим устройствам таким, как микроканальные теплообменники, которые обеспечивают высокие значения коэффициента теплопередачи при течении жидкостей в относительно небольших объемах. В устройстве, включающем плоский...
Тип: Изобретение
Номер охранного документа: 0002620732
Дата охранного документа: 29.05.2017
+ добавить свой РИД