×
20.01.2018
218.016.186d

Результат интеллектуальной деятельности: Способ получения лигатуры на медно-никелевой основе

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии и может быть использовано при производстве лигатур на основе меди, никеля, магния и алюминия. При производстве лигатуры шихтовые материалы в виде гранул чистых металлов размером от 1 до 10 мм, таких как никель, медь и магний смешивают в требуемых пропорциях и подвергают брикетированию, при этом размер гранул каждого компонента уменьшается пропорционально увеличению температуры его плавления. Дополнительно в состав лигатуры вводится алюминий в виде гранул размером от 2 до 5 мм. Количество алюминия составляет от 0,1 до 0,2% от общей массы металлов, входящих в состав лигатуры. Изобретение позволяет снизить время растворения лигатуры в расплаве, повысить усвояемость компонентов, снизить затраты на производство лигатуры. 3 пр.

Изобретение относится к металлургии, в частности к способам получения лигатур, и может быть использовано при производстве лигатур на основе меди, никеля, магния и алюминия.

Известен способ (Выплавка качественной стали для фасонного литья, Колокольцев В.М., Бахметьев В.В., Вдовин К.Н. и др. Магнитогорск: ГОУ ВПО «МГТУ», 2007, с. 162-164) легирования сплавов чистыми, в том числе и тугоплавкими металлами заключающийся в ведении их в расплав в начальную стадию плавки в жидкую ванну или непосредственно в завалку, как одного из шихтовых материалов, закладываемых в печь до начала плавки.

Недостатком такого способа является необходимость перегрева расплава и увеличение продолжительности времени плавки, что приводит к увеличенному расходу электроэнергии и сокращению стойкости футеровки печи. Использование некоторых металлов в завалке может привести к повышенному угару, а также к недостаточной усвояемости, что отрицательно сказывается на экономической эффективности процесса.

Также известен способ (патент RU 2232827, опубл. 20.07.2004) получения лигатур алюминий-тугоплавкие металлы, с помощью обработки алюминиевого расплава галогенидом тугоплавкого металла при одновременном воздействии наносекундными электромагнитными импульсами, который позволяет увеличить жаростойкость, прочностные и пластические характеристики получаемых лигатур, а также их жидкотекучесть путем повышения растворимости и равномерности распределения тугоплавких легирующих элементов.

Недостатком данного способа является необходимость использования в процессе дополнительного оборудования для обработки электромагнитными импульсами, а также применения в качестве компонентов солей тугоплавких металлов, что в реальном производстве при единичном использовании данной технологии будет не рентабельно. Также данный способ не подходит для производства лигатур с низким содержанием алюминия.

Также известен способ (патент RU 2269586, опубл. 10.02.2006) приготовления лигатур и раскислителей заключающиеся в смешении тугоплавкого металла с расплавом наполнителя, который выбирают из группы, включающей Fe, Ni, Ti, SI, В, Mn.

Недостатком данного способа является плохое смешение в случае низкого содержания связующего элемента в получаемой литературе. При этом не произойдет полное смешение наполнителя с расплавом, что приведет к рассыпанию полученной лигатуры и невозможности ее применения.

Наиболее близким к предлагаемому по технической сущности и достигаемому результату является применение лигатуры (патент SU 1020453А, опубл. 30.05.1983), содержащей в своем составе чистые металлы (никель, медь, алюминий и др.). Данная лигатура за счет содержания алюминия позволяет снизить время растворимости в расплаве и повысить усвояемость.

Недостатком данного способа является предварительное расплавление шихтовых материалов с целью получения лигатуру, что требует использования дополнительного агрегата для выплавки лигатуры, а также приводит к увеличенному расходу электроэнергии.

Технической задачей изобретения является создание способа получения медно-никелевых лигатур без использования плавильных агрегатов, позволяющего исключить потери металла за счет угара, а также снизить затраты на производство лигатур.

Техническим результатом изобретения является уменьшение времени растворимости лигатуры в расплаве, повышении усвояемости, а также снижение затрат на получение лигатуры.

Технический результат достигается следующим образом.

Способ получения лигатуры на медно-никелевой основе, дополнительно содержащей магний и алюминий, включает получение лигатуры методом брикетирования чистых компонентов, при этом компоненты лигатуры представляют собой гранулы чистых металлов, размер гранул меди, никеля и магния составляет от 1 до 10 мм и уменьшается пропорционально увеличению температуры плавления чистого металла для каждого компонента, содержание алюминия составляет от 0,1 до 0,2% от общей массы металлов, входящих в состав лигатуры, размер частиц алюминия составляет 2-5 мм.

Поставленная задача решена следующим образом: получение лигатуры происходит смешением гранул чистых металлов с последующим брикетированием. В качестве шихтовых материалов применяются гранулы чистых металлов (никеля, меди, магния) размером от 1 до 10 мм, при этом размер гранул уменьшается пропорционально увеличению температуры плавления металла.

Указанный размер гранул чистого металла обусловлен тем, что гранулы фракции менее 1 мм практически не деформируются, что приводит к потерям до 10-20% металла в процессе брикетирований. Использование гранул размером более 10 мм приводит к увеличению времени расплавления лигатуры, что снижает экономический эффект. Также использование одновременно мелких и крупных гранул не обеспечивает достаточную прочность брикета.

Размер гранул чистых шихтовых материалов обратно пропорционален значению температуры плавления чистого металла для каждого компонента. Температура плавления никеля 1455°С, температура плавления меди 1085°С, температура плавления магния 2852°С, тогда отношение между температурами никеля и меди составляет 1,34, никеля и магния - 0,5. Соответственно при размере гранул никеля 2 мм размер гранул меди составляет 2,68 мм, размер гранул магния - 1 мм.

Дополнительно в лигатуру вводится алюминий в виде гранул размером до 5 мм в количестве от 0,1 до 0,2% от общей массы металлов, входящих в состав лигатуры. Указанный размер гранул алюминия обусловлен тем, что гранулы фракции менее 2 мм просыпаются между крупными гранулами чистых шихтовых компонентов, что приводит к потерям до 5-10% металла в процессе брикетирования. Использование гранул размером более 5 мм не позволяет получить плотную механическую лигатуру.

Указанные интервалы содержания алюминия основаны на том, что введение алюминия менее 0,1% не достаточно для обеспечения раскисления металла, так как остаточное содержание алюминия при таком количестве добавки не превышает 0,005-0,01%. Введение алюминия более 0,2% приведет к повышенному содержанию алюминия в расплаве и может достигать до 0,1%, что для ряда марок сплавов превышает требуемые значения. Введение алюминия в указанном количестве позволяет повысить усвояемость компонентов лигатуры.

Данный способ позволяет получить лигатуру без использования плавильного агрегата и тем самым значительно сэкономить электроэнергию, сократить потери за счет отсутствия угара металла и уменьшить время на производство.

Ниже приведены конкретные примеры исполнения способа.

Пример 1. Приготовление лигатуры на основе медь-никель в форме цилиндрического брикета диаметром 20 мм, высотой 20 мм, общим весом 0,1 кг, диаметр гранул меди 2,68 мм, диаметр гранул никеля 2 мм, диаметр гранул магния 1 мм, диаметр гранул алюминия 2 мм, содержание алюминия 0,20%.

Гранулы меди, никеля, магния и алюминия загрузили в пресс-форму, подвергли прессованию, затем извлекли брикет.

При использовании брикетов для выплавки сплавов на основе никель-медь в количестве 10% от шихтовых материалов отмечено, что усвоение никеля и меди из брикета составило 100%, магния - 30%, алюминия - 30%.;

Пример 2. Приготовление лигатуры на основе медь-никель в форме цилиндрического брикета диаметром 20 мм, высотой 20 мм, общим весом 0,1 кг, диаметр гранул меди 10 мм, диаметр гранул никеля 7,46 мм, диаметр гранул магния 3,73 мм, диаметр гранул алюминия 5 мм, содержание алюминия 0,10%.

Гранулы меди, никеля, магния и алюминия загрузили в пресс-форму, подвергли прессованию, затем извлекли брикет.

При использовании брикетов для выплавки сплавов на основе никель-медь в количестве 10% от шихтовых материалов отмечено, что усвоение никеля и меди из брикета составило 100%, магния - 27%, алюминия - 30%.

Пример 3. Приготовление лигатуры на основе медь-никель в форме цилиндрического брикета диаметром 20 мм, высотой 20 мм, общим весом 0,1 кг, диаметр гранул меди 6,7 мм, диаметр гранул никеля 5 мм, диаметр гранул магния 2,5 мм, диаметр гранул алюминия 5 мм, содержание алюминия 0,20%.

Гранулы меди, никеля, магния и алюминия загрузили в пресс-форму, подвергли прессованию, затем извлекли брикет.

При использовании брикетов для выплавки сплавов на основе никель-медь в количестве 10% от шихтовых материалов отмечено, что усвоение никеля и меди из брикета составило 100%, магния - 30%, алюминия - 25%.

Способ получения лигатуры на медно-никелевой основе, содержащей магний и алюминий, отличающийся тем, что получение лигатуры осуществляют путем брикетирования смеси компонентов в виде гранул чистых металлов, причем размер гранул меди, никеля и магния составляет от 1 до 10 мм и уменьшается пропорционально увеличению температуры плавления чистого металла для каждого компонента, а размер гранул алюминия составляет от 2 до 5 мм, при этом содержание алюминия составляет от 0,1 до 0,2% от общей массы металлов, входящих в состав лигатуры.
Источник поступления информации: Роспатент

Показаны записи 271-280 из 327.
07.09.2019
№219.017.c8d5

Деформируемый алюминиево-кальциевый сплав

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано для изготовления деформированных полуфабрикатов, предназначенных для получения деталей ответственного назначения, работающих под действием высоких нагрузок при температурах до 300-350°С. Среди...
Тип: Изобретение
Номер охранного документа: 0002699422
Дата охранного документа: 05.09.2019
12.09.2019
№219.017.ca36

Способ получения композиционного материала на основе ванадиевого сплава и стали

Изобретение относится к области промышленных технологий получения композиционных материалов, а именно к деформационно-термической обработке композиционных материалов на основе металлов и сплавов. Способ получения композиционного материала, состоящего из внутреннего слоя из ванадиевого сплава V...
Тип: Изобретение
Номер охранного документа: 0002699879
Дата охранного документа: 11.09.2019
12.09.2019
№219.017.ca64

Способ модуляции лазерного излучения и устройство для его осуществления

Группа изобретений относится к акустооптике и лазерной технике. Способ модуляции лазерного излучения включает возбуждение в монокристалле группы KRE(WO) амплитудно-модулированной бегущей квазисдвиговой акустической волны. Волна поляризована ортогонально оси N и распространяется в плоскости NmNg...
Тип: Изобретение
Номер охранного документа: 0002699947
Дата охранного документа: 11.09.2019
12.09.2019
№219.017.ca76

Способ определения вязкости микроразрушения тонких аморфно-нанокристаллических плёнок

Изобретение относится к области исследования и анализа пластических свойств тонких лент аморфных многокомпонентных металлических сплавов после их перехода из аморфного в аморфно-нанокристаллическое состояние в результате термической обработки. Сущность: проводят предварительную первую серию...
Тип: Изобретение
Номер охранного документа: 0002699945
Дата охранного документа: 11.09.2019
02.10.2019
№219.017.cc2d

Способ дефосфорации карбонатных марганцевых руд и концентратов

Изобретение относится к черной металлургии. Способ дефосфорации расплава карбонатных марганцевых концентратов включает осуществление расплавления концентрата в электрической печи. После его расплавления в расплав добавляют кварцит из расчета получения основности оксидного расплава CaO/SiO,...
Тип: Изобретение
Номер охранного документа: 0002701245
Дата охранного документа: 25.09.2019
18.10.2019
№219.017.d7d5

Магнитомягкий нанокристаллический материал на основе железа

Изобретение относится к области металлургии, в частности к аморфным и нанокристаллическим магнитомягким сплавам на основе железа, получаемым в виде тонкой ленты литьем расплава на поверхность охлаждающего тела и его скоростной закалкой и используемым, в основном, для изготовления из ленты...
Тип: Изобретение
Номер охранного документа: 0002703319
Дата охранного документа: 16.10.2019
24.10.2019
№219.017.da36

Способ раскатки гильзы в трубу

Изобретение относится к области горячей прокатки труб. Способ раскатки гильзы в трубу включает прокатку нагретой гильзы в калибре валков, оси которых перпендикулярны направлению прокатки, с деформированием ее на оправке, размещенной в калибре, последующий реверс валков, кантовку гильзы на 90° и...
Тип: Изобретение
Номер охранного документа: 0002703929
Дата охранного документа: 22.10.2019
24.10.2019
№219.017.daa4

Способ определения напряженного состояния массива горных пород

Изобретение относится к горному делу и предназначено для определения величины вертикального напряжения в конструктивных элементах систем разработки, например целиках. Способ включает бурение скважины с отбором керна, который подвергают направленному вдоль диаметра возрастающему механическому...
Тип: Изобретение
Номер охранного документа: 0002704086
Дата охранного документа: 23.10.2019
04.11.2019
№219.017.de38

Способ обратимого ингибирования в опухолевых клетках гепатоцеллюлярной карциномы экспрессии гена, кодирующего синтез аполипопротеина в

Изобретение относится к области биотехнологии, а именно к обратимому ингибированию в опухолевых клетках гепатоцеллюлярной карциномы экспрессии гена, кодирующего синтез аполипопротеина В. Способ включает введение в среду, содержащую опухолевые клетки Huh7 гепатоцеллюлярной карциномы человека,...
Тип: Изобретение
Номер охранного документа: 0002704998
Дата охранного документа: 01.11.2019
04.11.2019
№219.017.de7e

Способ получения металлургического глинозема кислотно-щелочным способом

Изобретение может быть использовано при переработке низкосортного высококремнистого алюмосодержащего сырья. Для получения металлургического глинозема каолиновые глины выщелачивают в автоклаве соляной кислотой в течение 60-180 мин при температуре 130-190°C. Пульпу после выщелачивания фильтруют...
Тип: Изобретение
Номер охранного документа: 0002705071
Дата охранного документа: 01.11.2019
Показаны записи 181-185 из 185.
04.04.2018
№218.016.352f

Электросталеплавильный агрегат ковш-печь (эса-кп)

Изобретение относится к области металлургии, а конкретнее к области электрометаллургии стали и, в частности, к агрегатам ковш-печь (АКОС). Агрегат содержит футерованный ковш со сводом, установленные в его днище шиберные блоки с топливно-кислородными горелками (ТКГ) для нагрева и расплавления...
Тип: Изобретение
Номер охранного документа: 0002645858
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.35f0

Металлополимерные подшипники скольжения, выполненные из ориентированного полимерного нанокомпозиционного материала

Изобретение относится к машиностроению и может применяться в узлах трения, работающих в условиях сухого трения и химически агрессивных средах. Металлополимерный подшипник скольжения состоит из металлической втулки, на которую нанесен слой антифрикционного полимерного нанокомпозиционного...
Тип: Изобретение
Номер охранного документа: 0002646205
Дата охранного документа: 01.03.2018
20.04.2019
№219.017.3509

Литейный никелевый сплав с равноосной структурой

Изобретение относится к области металлургии, а именно к литейным сплавам на никелевой основе, и может быть использовано для изготовления деталей, применяемых в газотурбинном двигателестроении, например заготовок дисков и других деталей специального назначения. Литейный никелевый сплав с...
Тип: Изобретение
Номер охранного документа: 0002685455
Дата охранного документа: 18.04.2019
23.07.2019
№219.017.b71c

Деформируемый жаропрочный сплав на основе никеля

Изобретение относится к области металлургии, в частности к жаропрочным сплавам на никелевой основе, и может быть использовано для изготовления дисков турбин газотурбинных двигателей и установок, предназначенных для работы в условиях активного воздействия высоких термических напряжений,...
Тип: Изобретение
Номер охранного документа: 0002695097
Дата охранного документа: 19.07.2019
20.04.2023
№223.018.4b28

Жаропрочный сплав на основе молибдена

Изобретение относится к металлургии, а именно к жаропрочным сплавам на основе молибдена, обладающим высокой прочностью, и может быть использован для изготовления изделий, подвергающихся в процессе эксплуатации в условиях вакуума или среды, не содержащей кислород, нагреву до высоких температур,...
Тип: Изобретение
Номер охранного документа: 0002774718
Дата охранного документа: 22.06.2022
+ добавить свой РИД