×
20.01.2018
218.016.176c

Результат интеллектуальной деятельности: СПОСОБ СИНТЕЗА МАГНИТНОЙ ЖИДКОСТИ НА ОСНОВЕ ВОДЫ И МАГНИТНЫХ НАНОЧАСТИЦ НА УГЛЕРОДНОЙ МАТРИЦЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области нанотехнологий и может быть использовано в обогащении полезных ископаемых для извлечения ценных минералов, а также их очистки от магнитных примесей, регенерации магнитных суспензий при гравитационном обогащении. Способ синтеза магнитной жидкости на основе воды и магнитных металл-углеродных наночастиц включает стабилизацию магнитных наночастиц поверхностно-активным веществом, сепарацию и ультразвуковое диспергирование полученного раствора. В обработанный в ультразвуковой ванне при температуре 25-30°С в течение 20-40 минут водный раствор неонола аф 9-12 концентрацией 1-5 мас. % добавляют магнитные металл-углеродные наночастицы до получения раствора магнитной жидкости концентрацией 2-10 мас. %. Магнитную жидкость обрабатывают в ультразвуковой ванне при температуре 25-30°С в течение 60-120 минут. Отстаивают в течение 72 часов и сливают сверху 80 % объема. Слитую суспензию обезвоживают в ультразвуковой ванне при температуре 80°С, оставляя 25 мас. %. Металл-углеродные наночастицы имеют размеры 3-15 нм и представляют собой магнитные наночастицы металла, окруженные аморфным углеродным материалом. Изобретение позволяет синтезировать магнитную жидкость на основе воды и магнитных наночастиц на углеродной матрице, устойчивую к коагуляции магнитных частиц. 6 ил.

Изобретение относится к области нанотехнологий. Изобретение относится к области обогащения полезных ископаемых для решения задач извлечения ценных минералов, а также очистки их от магнитных примесей, регенерации магнитных суспензий при гравитационном обогащении и др. Изобретение относится к способам синтеза магнитной жидкости, предназначенной для магнитной сепарации дефектных алмазов.

Особенностью всех известных способов синтеза магнитной жидкости является то, что магнитные наночастицы синтезируют либо непосредственно в жидкости, либо осаждаются на некоторых поверхностях и затем по определенной технологии собираются для диспергирования в жидкости. При этом обеспечение стабильности магнитных жидкостей к коагуляции магнитных частиц достигается использованием стабилизаторов поверхностно активных веществ (ПАВ). Стабилизатор играет ключевую роль при синтезе магнитной жидкости. Как правило, выбор того или иного стабилизатора тесно связан со свойствами несущей жидкости.

Так, для магнитной жидкости на основе углеводородов (керосин, предельные углеводороды, жидкий парафин, вакуумные масла) используют в качестве стабилизатора поверхностно-активные вещества типа высших спиртов, аминов, жирных кислот. В настоящее время магнитные жидкости на углеводородной основе хорошо изучены и получили широкое практическое применение. Они наиболее агрегативно устойчивы и обладают высокими магнитными свойствами.

Особенностью получения магнитных жидкостей на основе воды является необходимость использования водорастворимых ПАВ. Для магнитных жидкостей на основе воды используют в качестве стабилизатора мыла жирных кислот, сульфонаты, эфиры и высокоатомные спирты.

Основным недостатком известных способов получения магнитных жидкостей на основе воды и традиционно используемых ПАВ является то, что получаемые магнитные жидкости имеют низкую устойчивость.

Кроме того, недостатком известных способов является отсутствие возможности транспортировки магнитной компоненты в сухом виде, что важно, так как вес собственно магнитной составляющей не превышает 30%. Транспортировка магнитной жидкости от производителя к потребителю в жидком состоянии существенно увеличивает транспортные расходы, а также требует специальных мер предосторожности при транспортировке магнитной жидкости на основе горючих жидкостей, например керосина.

Известен способ синтеза магнитной жидкости на основе магнитных наночастиц феррита кобальта в инертной оболочке из диоксида кремния [Odenbach, S. (Ed.), Colloidal Magnetic Fluids: Basics, Development and Application of Ferrofluids, Lect. Notes Phys. 763 (Springer, Berlin Heidelberg 2009)], который включает два этапа. На первом магнитные наночастицы феррита кобальта покрываются диоксидом кремния в процессе поликонденсации Штойбера (Stoeber polycondensation) тетраэтоксилана. На втором наночастицы феррита кобальта в оболочке из диоксида кремния растворяют в воде и диспергируют с использованием ультразвуковой обработки. В этом случае изменяя кислотность воды, можно обеспечить стабильность без использования ПАВ, либо может быть использован додецил сульфат натрия. В результате получают частицы феррита кобальта с характерным размером 14-15 нм в оболочке из диоксида кремния диаметром 100-150 нм.

Основной недостаток способа - трудоемкость синтеза собственно магнитных наночастиц в инертной оболочке. Получить таким способом магнитную жидкость с намагниченностью выше 10 КА/м невозможно, так как жидкость превращается в гель. Данным способом синтезируют наночастицы в жидкой фазе, и, следовательно, перевозка такой жидкости возможна только в жидком состоянии.

В качестве прототипа выбран способ синтеза магнитной жидкости на основе воды и магнитных наночастиц Fe3O4 [CN 101209860, 02.07.2008, C01G 45/08; H01F 1/44], который имеет отношение к методам синтеза сунерпарамагнитных жидкостей. Последовательность шагов изобретения:

1. FeCl3 и FeCl3 растворяются в деионизованной воде при подгонке РН раствора.

2. Смесь нагревают в масленой ванне до 120-180°С, NaOH капают в инертной атмосфере и раствор изолируют на 0,5-2 часа.

3. Проводят очистку в деионизованной воде и диспергирование ультразвуком.

4. Раствор подвергают центрофугированию, взбалтывают и концентрируют при скорости вращения 300 оборотов в минуту в течение 3-6 часов при температуре 100-160°С в среде защитного газа.

5. Вязкость синтезированной жидкости менее 10 мПа, размер частиц 3-10 нм, намагниченность более 60 КА/м. Получаемая магнитная жидкость является суперпарамагнитной, имеет хорошую стабильность и биосовместимость. Способ прост, легок и удобен для индустриальных приложений. Данным способом синтезируют наночастицы в жидкой фазе и сразу готовят магнитную жидкость. Перевозка такой жидкости возможна только в жидком виде. Для синтеза необходимы высокие температуры и инертный газ.

В предлагаемом в заявке решении синтез магнитной жидкости идет в воздушной атмосфере при температурах не выше 80°С. При этом исходный нанопорошок для синтеза магнитной жидкости хранится в сухом виде и может быть легко транспортирован. Размеры наночастиц составляют 3-15 нм. При этом получаемая жидкость имеет предельную намагниченность 5-50 кА/м.

Задачей изобретения является разработка способа синтеза магнитной жидкости на основе воды и магнитных наночастиц на углеродной матрице устойчивой к коагуляции магнитных частиц.

Указанную задачу решают путем разработки способа синтеза магнитной жидкости на основе воды и магнитных наночастиц на углеродной матрице, включающего стабилизацию магнитных наночастиц поверхностно-активным веществом, сепарацию, осуществляемую путем отстаивания и слива отстоянного раствора магнитной жидкости, и несколько этапов ультразвукового диспергирования получаемых в технологической цепочке растворов, а именно водного раствора неонола аф 9-12 концентрацией 1-5 мас. %, магнитной жидкости концентрацией 2-10 мас. % и суспензии, которая остается после сепарации.

Способ синтеза магнитной жидкости на основе воды и магнитных металл-углеродных наночастиц согласно изобретению включает последовательное выполнение ряда шагов. На первом шаге в обработанный в ультразвуковой ванне при температуре 25-30°С в течение 20-40 минут водный раствор неонола аф 9-12 концентрацией 1-5 мас. % добавляют магнитные металл-углеродные наночастицы до получения раствора магнитной жидкости концентрацией до 2-10 мас. %. На следующих шагах магнитную жидкость обрабатывают в ультразвуковой ванне при температуре 25-30°С в течение 60-120 минут, отстаивают в течение 72 часов и сливают сверху 80% объема, слитую суспензию обезвоживают в ультразвуковой ванне при температуре 80°С, оставляя 25 мас %.

В качестве магнитной составляющей используют металлсодержащие магнитные наночастицы на углеродной матрице, синтезированные при совместном распылении металл-графитового электрода в электрической дуге постоянного тока при пониженном давлении буферного газа.

Плазменно-дуговой способ отличается простотой реализации синтеза магнитных наночастиц. В результате такого синтеза получают магнитные наночастицы, окруженные аморфным углеродным материалом, который предотвращает их непосредственный контакт и коагуляцию. Такие наночастицы могут храниться длительное время и транспортироваться в виде порошка.

Для синтеза магнитной жидкости может быть использован как непосредственно металл-углеродный материал, полученный в процессе плазменно-дугового синтеза, так и материал, полученный после отжига металл-углеродного материала в кислородсодержащей среде при атмосферном давлении и при температурах до 300°С.

Однако вследствие чрезвычайной пористости этого вещества (насыпная плотность составляет 0,05-0,09 г/см3) при синтезе магнитной жидкости на основе воды возникают трудности с подбором поверхностно активного вещества. Так, наиболее популярное ПАВ, додецил сульфат натрия, не позволяет добиться устойчивости магнитной жидкости на основе воды и магнитных металл-углеродных наночастиц.

Для синтеза магнитной жидкости на основе воды и магнитных металл-углеродных наночастиц в качестве ПАВ предлагается использовать неонол аф 9-12. Экспериментальные исследования показали, что другие ПАВ, в том числе и традиционно используемый для воды додецил сульфат натрия, при ультразвуковом диспергировании магнитной жидкости на основе воды и магнитных металл-углеродных наночастиц не позволяют получать устойчивую магнитную жидкость.

Магнитные свойства магнитных жидкостей определяются магнитными свойствами примененных наночастиц и их объемным содержанием в жидкости. Увеличение размеров частиц ограничено возможностью слипания частиц вследствие их большого магнитного момента или нарушения условия однодоменности.

В случае синтеза магнитной жидкости на основе воды, магнитных металл-углеродных наночастиц и неонол аф 9-12 в качестве ПАВ увеличение объемной концентрации магнитных металл-углеродных наночастиц свыше 10 мас. % ограничено резким увеличением вязкости и однородности жидкости.

Способ синтеза магнитной жидкости на основе воды и магнитных наночастиц на углеродной матрице включает несколько последовательно выполняемых стадий.

На первой стадии готовят 1-5 мас. % водный раствор неонола аф 9-12. Затем этот раствор обрабатывают в ультразвуковой ванне в течение 20-40 минут при температуре 25-30°С.

На второй стадии на основе полученного раствора неонола аф 9-12 готовят 2-10 мас. % раствор магнитной жидкости путем добавления в обработанный ультразвуком водный раствор неонола аф 9-12 магнитного металл-углеродного нанопорошка до полного растворения. Затем полученный раствор магнитной жидкости обрабатывают в ультразвуковой ванне в течение 60-120 минут при температуре 25-30°С.

На следующей стадии раствор магнитной жидкости, полученный после ультразвуковой обработки, подвергают сепарации. Сначала его отстаивают в емкости в течение 72 часов. Затем осторожно, не взбалтывая, сливают сверху 80% объема отстоянного раствора. Слитую суспензию обезвоживают в ультразвуковой ванне при температуре 80°С, оставляя 25 мас %.

В результате обезвоживания в ультразвуковой ванне концентрация магнитных наночастиц в растворе достигает 2-10 мас. %, что позволяет получить магнитную жидкость на основе воды с предельной намагниченностью от 10 до 50 кА/м.

Для обработки раствора используют ультразвуковую ванну, например в проведенных экспериментальных исследованиях использовали ультразвуковую ванну Sonorex RK100H фирмы Bandelin (Германия) мощностью - 80 Вт и частотой - 35 КГц.

В экспериментах для синтеза магнитной жидкости на основе воды и магнитных металл-углеродных наночастиц были испытаны следующие ПАВ: поливиниловый спирт, олеат натрия, додецилсульфат натрия, неонол аф 9-12. Испытания показали, что использование первых трех ПАВ не позволяет создать устойчивую магнитную жидкость.

Была испытана также традиционная среда для магнитных жидкостей - керосин с использованием олеиновой кислоты в качестве ПАВ. Для всех испытанных вариантов, кроме использования неонола аф 9-12, суспензия расслаивалась за время от 1 часа до нескольких суток.

Для примера фиг. 1-3 показывают расслоение магнитной жидкости на основе керосина и олеиновой кислоты. На фиг. 1 - расслоение магнитной жидкости через 1 час после синтеза. На фиг. 2 - расслоение магнитной жидкости через 5 часов. На фиг. 3 - расслоение магнитной жидкости через 3 дня.

Фиг. 4-6 подтверждают устойчивость магнитной жидкости на основе воды и неонола аф 9-12, приготовленной по описанной методике:

1) был приготовлен 2 мас. % водный раствор неонола аф 9-12;

2) водный раствор неонола аф 9-12 был обработан в ультразвуковой ванне при температуре 25°С (температура поддерживалась термостатом) в течение 40 минут.

3) в обработанный ультразвуком 2 мас. % водный раствор неонола аф 9-12 был добавлен магнитный металл-углеродный нанопорошок до получения раствора магнитной жидкости концентрацией 2 мас. %;

4) полученная магнитная жидкость была обработана в ультразвуковой ванне при температуре 25°С в течение 120 минут;

5) обработанный ультразвуком 2 мас. % раствор магнитной жидкости отстаивался в течение 72 часов;

6) 80% объема раствора магнитной жидкости сливалось сверху;

6) слитая суспензия обезвоживалась в ультразвуковой ванне при температуре 80°С до 25 мас %.

На фиг. 4 - состояние полученной магнитной жидкости через 1 час после синтеза. На фиг. 2 - состояние магнитной жидкости через 5 часов. На фиг. 3 - состояние магнитной жидкости через 1 месяц.

Таким образом, синтезированная магнитная жидкость на основе воды и магнитных наночастиц на углеродной матрице и неонола аф 9-12 в качестве поверхностно активного вещества обладает высокой устойчивостью к коагуляции, достаточно высокой предельной намагниченностью. Транспортировка и хранение магнитных наночастиц могут быть осуществлены в виде порошка. Синтез собственно магнитной жидкости с необходимой концентрацией магнитной компоненты может быть реализован по мере необходимости.

Способ синтеза магнитной жидкости на основе воды и магнитных металл-углеродных наночастиц, включающий стабилизацию магнитных наночастиц поверхностно-активным веществом, сепарацию и ультразвуковое диспергирование полученного раствора, отличающийся тем, что в обработанный в ультразвуковой ванне при температуре 25-30°С в течение 20-40 минут водный раствор неонола аф 9-12 концентрацией 1-5 мас. % добавляют магнитные металл-углеродные наночастицы, имеющие размеры 3-15 нм, представляющие собой магнитные наночастицы металла, окруженные аморфным углеродным материалом, до получения раствора магнитной жидкости концентрацией 2-10 мас. %, магнитную жидкость обрабатывают в ультразвуковой ванне при температуре 25-30°С в течение 60-120 минут, отстаивают в течение 72 часов и сливают сверху 80 % объема, слитую суспензию обезвоживают в ультразвуковой ванне при температуре 80°С, оставляя 25 мас. %.
СПОСОБ СИНТЕЗА МАГНИТНОЙ ЖИДКОСТИ НА ОСНОВЕ ВОДЫ И МАГНИТНЫХ НАНОЧАСТИЦ НА УГЛЕРОДНОЙ МАТРИЦЕ
Источник поступления информации: Роспатент

Показаны записи 91-96 из 96.
24.06.2020
№220.018.2a09

Способ изготовления термоакустического излучателя на основе графена

Изобретение относится к области нанотехнологий. Изобретение относится к области использования новых материалов, таких как композиты полимер-графен, полученных методом химического осаждения из паровой фазы (ХОПФ). Изобретение может найти применение в акустике. Способ изготовления...
Тип: Изобретение
Номер охранного документа: 0002724227
Дата охранного документа: 22.06.2020
12.04.2023
№223.018.43f2

Теплопередающая стенка теплообменника и способ формирования покрытия для интенсификации теплообмена теплопередающей стенки теплообменника

Группа изобретений относится к теплопередающей стенке теплообменника и способу формирования покрытия для интенсификации теплообмена теплопередающей стенки теплообменника. Основа теплопередающей стенки теплообменника выполнена из содержащего алюминий материала и снабжена указанным покрытием,...
Тип: Изобретение
Номер охранного документа: 0002793671
Дата охранного документа: 04.04.2023
16.05.2023
№223.018.60ce

Паромасляное горелочное устройство

Изобретение относится к жидкотопливным горелочным устройствам, использующим для горения перегретый водяной пар. Паромасляное горелочное устройство содержит цилиндрический корпус, состоящий из двух частей, основания и цилиндрического корпуса, соединенных через теплоизоляционную прокладку. В дно...
Тип: Изобретение
Номер охранного документа: 0002740722
Дата охранного документа: 20.01.2021
16.05.2023
№223.018.6127

Термоанемометр для измерения скорости газа в противоточном газокапельном потоке

Изобретение относится к термоанемометрическим средствам измерения скорости газа и может быть применено при исследовании различных сред, в том числе агрессивных. Заявлен термоанемометр для измерения скорости газа в противоточном газокапельном потоке, содержащий один или более чувствительных...
Тип: Изобретение
Номер охранного документа: 0002747098
Дата охранного документа: 26.04.2021
16.06.2023
№223.018.7a66

Комплекс переработки твёрдых коммунальных отходов с автоматизированной сортировкой неорганической части и плазменной газификацией органического остатка

Изобретение относится к области переработки твердых коммунальных отходов (ТКО) IV - V класса опасности, включающей предварительную автоматизированную сортировку отходов с получением вторичного сырья и плазменную газификацию органической части с получением синтез-газа, пригодного для...
Тип: Изобретение
Номер охранного документа: 0002731729
Дата охранного документа: 08.09.2020
16.06.2023
№223.018.7b68

Вихревая камера для проведения химических реакций в псевдоожиженном слое частиц

Изобретение относится к вихревой камере для проведения химических реакций в псевдоожиженном слое частиц. Камера выполнена в виде двух соосных круговых усеченных конусов, образующих своими поверхностями кольцевой конический канал, стенки которого сходятся к верху к вертикальной оси камеры, а...
Тип: Изобретение
Номер охранного документа: 0002751943
Дата охранного документа: 21.07.2021
Показаны записи 61-70 из 70.
20.01.2018
№218.016.1e46

Плоский эффективный конденсатор-сепаратор для микрогравитации и транспортных приложений

Изобретение относится к области мини- и микросистем, которые используют в электронике, медицине, энергетике, аэрокосмической индустрии, на транспорте и могут применяться в устройствах для охлаждения электроники. Согласно изобретению конденсатор и сепаратор выполнены в виде плоского охлаждаемого...
Тип: Изобретение
Номер охранного документа: 0002640887
Дата охранного документа: 12.01.2018
04.04.2018
№218.016.2f1b

Оптический способ измерения поля толщины прозрачной наледи на лопастях ветрогенератора

Изобретение относится к области оптических измерений. Оптический способ измерения поля толщины прозрачной наледи на лопастях ветрогенератора заключается в освещении прозрачной наледи и фиксации видеокамерой изображения искаженного светового кольца, образованного на поверхности под наледью в...
Тип: Изобретение
Номер охранного документа: 0002644625
Дата охранного документа: 13.02.2018
14.03.2019
№219.016.df6d

Дуговой способ получения графена

Изобретение относится к области нанотехнологий и может быть использовано для получения композиционных материалов с высокой электро- и теплопроводностью. Графитовый стержень заполняют графитовым порошком с добавкой порошка кремния в концентрации 16,5-28 мас. % или карбида кремния в...
Тип: Изобретение
Номер охранного документа: 0002681630
Дата охранного документа: 11.03.2019
19.04.2019
№219.017.32eb

Способ синтеза наночастиц карбида вольфрама

Изобретение относится к способу синтеза наночастиц карбида вольфрама. Способ включает синтез кислородсодержащих соединений вольфрама углеводородами с использованием плазмы электрического разряда. При этом управление морфологией синтезируемых наночастиц осуществляют путем откачивания вакуумной...
Тип: Изобретение
Номер охранного документа: 0002433888
Дата охранного документа: 20.11.2011
23.04.2019
№219.017.36af

Способ синтеза наночастиц металлов осаждением на пористый углеродный материал

Изобретение относится к получению наночастиц металла. Способ включает испарение мишени из металла электронным пучком в вакууме и осаждение наночастиц металла. Испарение мишени из металла ведут электронным пучком, направленным под углом 30-90 градусов к поверхности мишени. Обеспечивают...
Тип: Изобретение
Номер охранного документа: 0002685564
Дата охранного документа: 22.04.2019
09.05.2019
№219.017.49b9

Устройство для вакуумной дезинтеграции золотоносных глинистых пород

Изобретение относится к обогащению полезных ископаемых, в частности к аппаратам для извлечения тонкого золота из глинистых золотосодержащих пород. Устройство для вакуумной дезинтеграции золотоносных глинистых пород содержит ресивер, вакуумный насос, подключенный к ресиверу, рабочую камеру,...
Тип: Изобретение
Номер охранного документа: 0002686976
Дата охранного документа: 06.05.2019
24.05.2019
№219.017.5d9f

Установка рулонного типа для синтеза графена

Изобретение относится к области нанотехнологий. Установка рулонного типа для синтеза графена включает блок подготовки газовой смеси 5, блок откачки 6, вакуумную рабочую камеру 1 с подогреваемым щелевым соплом 2, на выходе из которого реализуется ламинарное течение, перфорированную по краям...
Тип: Изобретение
Номер охранного документа: 0002688839
Дата охранного документа: 22.05.2019
05.07.2019
№219.017.a554

Способ вакуумной дезинтеграции золотоносных глинистых пород

Изобретение относится к обогащению полезных ископаемых, в частности к аппаратам для извлечения тонкого золота из глинистых золотосодержащих пород. Способ включает импульсное скоростное вакуумирование в вакуумной камере при помощи вакуумного насоса, ресивера, трубопроводов с быстродействующими...
Тип: Изобретение
Номер охранного документа: 0002693586
Дата охранного документа: 03.07.2019
10.07.2019
№219.017.af3d

Способ получения водорода и углеродных нанотрубок из углеводородного газа

Изобретение относится к химической промышленности и может быть использовано для получения водорода и углеродного наноструктурного материала. Предварительно в среде инертного газа осуществляют распыление катализатора до наноразмерных частиц путем испарения анодного графитового электрода, внутри...
Тип: Изобретение
Номер охранного документа: 0002414418
Дата охранного документа: 20.03.2011
23.02.2020
№220.018.0610

Способ повышения эффективности вакуумной дезинтеграции золотоносных глинистых пород

Изобретение относится к обогащению полезных ископаемых, в частности к аппаратам для извлечения тонкого золота из глинистых золотосодержащих пород. Способ вакуумной дезинтеграции золотоносных глинистых пород включает импульсное скоростное вакуумирование за время не более 1 секунды с достижением...
Тип: Изобретение
Номер охранного документа: 0002714787
Дата охранного документа: 19.02.2020
+ добавить свой РИД