×
23.04.2019
219.017.36af

СПОСОБ СИНТЕЗА НАНОЧАСТИЦ МЕТАЛЛОВ ОСАЖДЕНИЕМ НА ПОРИСТЫЙ УГЛЕРОДНЫЙ МАТЕРИАЛ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002685564
Дата охранного документа
22.04.2019
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к получению наночастиц металла. Способ включает испарение мишени из металла электронным пучком в вакууме и осаждение наночастиц металла. Испарение мишени из металла ведут электронным пучком, направленным под углом 30-90 градусов к поверхности мишени. Обеспечивают пространственное сканирование электронного пучка по двум координатам на мишени с частотами в пределах 5-200 Гц и амплитудой 5 мм в течение 10-1000 секунд и временную модуляцию тока пучка с частотой 10-100 Гц со скважностью 1-10. Осаждение наночастиц металла осуществляют из направленного потока на подложку, покрытую пористым углеродным материалом толщиной 0,1-2 мм, насыпной плотностью 0,04-0,06 г/см и установленную на водоохлаждаемом медном экране. Обеспечивается уменьшение поглощения энергии в парах металла, что увеличивает производительность распыления. 3 ил.
Реферат Свернуть Развернуть

Изобретение относится к области нанотехнологий. Изобретение относится к способам получения наночастиц металлов и может применяться в медицине, химической промышленности, микро- и наноэлектронике, приборостроении.

При синтезе наночастиц металлов известными из области техники способами, например, плазменным распылением, взрывом проволочек, термическим распылением, лазерным распылением и др., основанными на нагреве исходного образца до температур, при которых происходит его интенсивное распыление в молекулярном, либо атомарном виде, приходится решать следующие задачи:

- минимизация потерь энергии и вещества при нагреве;

- отвод тепла при охлаждении продуктов распыления и выделения теплоты конденсации;

- реализация механизма конденсации, который приводит к формированию наночастиц нужного размера;

- сбор, хранение и транспортировка наночастиц металлов. Использование мощных электронных пучков для синтеза наночастиц

имеет ряд преимуществ, связанных с их высоким КПД, малым энергопотреблением (возможностью подвода энергии без потерь к необходимой области образца), низкой ценой оборудования и эксплуатационных расходов. Способ является универсальным относительно материалов мишени, т.к. позволяет испарять практически любые материалы, включая органические.

При использовании ускорителей с высокой энергией электронов (более 2 МэВ) возможно испарение мишеней в газе высокого давления, что упрощает вопросы охлаждения паровой фазы. Преимуществами являются также высокий КПД процесса вследствие прямого преобразования электрической энергии в тепловую энергию в нагреваемом материале, темп нагрева испаряемого материала выше 1000 град/сек и химическая чистота пучка электронов.

Однако сбор наночастиц из газовой среды представляет определенные трудности.

Электронно-лучевые установки с энергией электронов до 100 КэВ доступны, однако в этом случае вывод пучка в атмосферу невозможен. Сечение взаимодействия электронов с атомами другого вещества достаточно большое, в результате чего необходимо выводить пучок из электронной пушки в глубокий вакуум (10-3 - 10-4 торр), что позволяет вкладывать большую энергию в малый объем, т.к. длина пробега электронов в твердом материале составляет несколько микрон.

Расширение паров металла в газ низкого давления позволяет получить высокие скорости охлаждения пара и одновременного уменьшения его концентрации, что приводит к протеканию процессов гомогенной конденсации и формированию потоков наночастиц.

Одной из самых сложных и не решенных до сих пор проблем при синтезе наночастиц металлов остается их сбор, хранение и транспортировка. Высокая поверхностная энергия наночастиц способствует их активному взаимодействию с окружающей средой и быстрому коагулированию. Для хранения и транспортировки необходимы специальные контейнеры, содержащие инертную среду, пригодную для данного нанопорошка (газообразную, жидкую или твердую). Инертную окружающую среду для хранения наночастиц создать достаточно сложно.

Известны технические решения, когда наночастицы, помещают в органическую жидкость, полимерную матрицу, инкапсулируют углеродом или солью, чтобы предохранить их от коагулирования. При этом органическая жидкость или полимер не должны менять свойства наночастиц, и при необходимости должны удаляться и освобождать наночастицы с сохранением их свойств и размеров.

Известен способ получения нанопорошков металлов, сплавов или соединений металлов с неметаллами (В, С, О, Si), инкапсулированных в инертную оболочку соли, [US 2008268178, 2008-10-30, С23С 14/30; С23С 16/00], включающий испарение материала и галогенида щелочного металла и конденсацию смеси из паровой фазы на поверхности подложки, выполняемые одновременно в замкнутом объеме. В нижней части закрытого объема располагают тигли со слитками соли и материала, а электронные и/или лазерные лучи используют в качестве источника для нагрева соли и материала вплоть до температуры их испарения. Получаемые инкапсулированные в инертную оболочку нанопорошки материалов имеют небольшую дисперсию распределения по размеру, не подвержены окислению в атмосфере, легко извлекаются путем растворения оболочки.

Недостатком указанного способа является то, что при выделении наночастиц металла они попадают в жидкую среду растворителя и могут либо коагулировать в ней, либо вступать в химическую реакцию с растворителем (в зависимости от металла).

Известен способ получения наночастиц металл-кислород путем испарения и конденсации электронным пучком в вакууме [UA 92556, 2010-11-10, С23С 14/24; С23С 14/54; В82В 3/00], включающий одновременное нагревание и испарение в вакуумной камере металла или сплавов металлов, а также твердого носителя, по меньшей мере из двух отдельных контейнеров, смешивание паровых потоков исходного материала и носителя, осаждение пара на подложке с фиксацией наночастиц исходного материала на подложке материалом упрочняющего носителя и образование конденсата наночастиц в носителе.

В изобретении заявлено, что применение указанного способа позволяет упростить процессы хранения, транспортировки и подготовки растворов без нарушения размера наночастиц со временем. Однако недостатком указанного способа является то, что при одновременном распылении углерода и металла (для большинства металлов) возможно образование карбидов, которые невозможно восстановить до чистого металла.

Наиболее близким по совокупности существенных признаков и получаемому результату является способ получения наночастиц никеля в углеродной оболочке [UA 104013 (С2) - 2013-12-25 С23С 14/28; С23С 14/54; С23С 14/58; С30В 30/00], заключающийся в испарении смеси углерода и никеля электронным пучком в вакууме до температуры, превышающей температуру плавления никеля (1455°С) с выдержкой в течение 20-30 мин. до образования стабильной жидкой фазы Ni3C, после чего увеличивают температуру выше 2300°С и проводят испарение в вакууме с последующим осаждением материала в виде закапсулированных углеродом наночастиц никеля на поверхности полупроводника с молекулярным типом связи и слоистой кристаллической структурой.

Изобретение обеспечивает получение инкапсулированных в углероде наночастиц никеля высокой плотности, однородности формы и геометрических размеров и легкое отделение этих частиц от подложки.

Недостатком указанного способа является то, что при попадании в атмосферу, диффузия кислорода приведет к формированию наночастиц оксидов металла. В случае, если конечным материалом является оксид металла, то это не является проблемой, в случае же использования наночастиц металлов, необходимо хранение закапсулированных углеродом наночастиц (на углеродной матрице) в инертной среде, например, в среде инертного газа.

Во всех известных технических решениях напыляют одновременно и матрицу и наночастицы.

В основу изобретения положена задача создания способа синтеза наночастиц металлов, позволяющего существенно упростить процессы сбора, хранения, транспортировки и выделения наночастиц чистых металлов, минимизировать потери энергии, чем увеличить производительность по распылению металла.

Задача решается путем создания способа синтеза наночастиц металлов осаждением из направленного потока на пористый углеродный материал, включающего испарение металла электронным пучком в вакууме и осаждение наночастиц на подложку, в котором, согласно изобретению, для сбора наночастиц металла в вакуумной камере на водоохлаждаемом медном экране устанавливают подложку, покрытую пористым углеродным материалом толщиной 0,1-2 мм, насыпной плотностью 0,04-0,06 г/см, пространственное сканирование электронного пучка осуществляют по двум координатам на мишени с частотами в пределах 5-200 Гц и амплитудой 5 мм, в течение 10-1000 секунд, временную модуляцию тока пучка осуществляют с частотой 10-100 Гц со скважностью (отношение длительности тока к длительности паузы) 1-10, при этом электронный пучок направляют под углом 30-90 градусов к поверхности металла.

Для распыления образцов электронным пучком в открытую вакуумную камеру помещают металл либо в виде пластины, либо металл в графитовом тигле. На водоохлаждаемом медном плоском экране устанавливают подложку с нанесенным углеродным покрытием. Подложка может быть выполнена из любого материала с высокой теплопроводностью, например, из тонкой медной фольги.

Предварительно на подложку осаждают углеродный материал толщиной 0,1-2 мм, насыпной плотностью 0,04 - 0,06 г/см. Осаждение пористого углеродного покрытия на подложку осуществляют, например, плазменно-дуговым синтезом. Предварительно напыленный пористый углеродный материал является матрицей для хранения и транспортировки наночастиц металла. Использование пористой сажи определяет наличие большого числа «разорванных» углеродных связей, что позволяет надежно удерживать наночастицы металла, предотвращая их коагуляцию. Слабая

адгезия сажи к подложке и высокая ее пористость являются существенным преимуществом при сборе наночастиц металла на углеродной матрице.

Распыление осуществляют электронной пушкой в вакууме.

Пространственное сканирование электронного пучка осуществляют по двум координатам на мишени с частотами в пределах 5-200 Гц и амплитудой 5 мм. Временную модуляцию тока пучка осуществляют с частотой 10-100 Гц со скважностью (отношение длительности тока к длительности паузы) 1-10. При этом электронный пучок направляют под углом 30-90 градусов к поверхности металла.

При интенсивном испарении для данной энергии электронов отсутствие модуляции (перемещение зоны взаимодействия электронного пучка с металлом по области диаметром около 1 см) приводит к поглощению определенной доли электронов пучка (энергии) уже в газовой фазе. Это приводит к уменьшению расхода испаренного вещества и увеличению энергии атомов металла в газовой фазе. Также могут происходить процессы ионизации атомов металла. Предотвращению указанных эффектов способствует наклонное падение пучка электронов на поверхность металла. Это приводит к уменьшению взаимодействия электронов пучка с атомами металла в газовой фазе.

Предложенные параметры сканирования позволяют достичь уменьшения поглощения энергии в парах металла и, следовательно, увеличения производительности распыления металла.

Для реализации способа используют электронно-лучевую установку. Распыление электронным пучком осуществляют в открытой вакуумной камере. Пучок электронов направляют на мишень через отверстие в охлаждаемом медном экране, на который установлена подложка для сбора распыленного материала.

К настоящему времени выполнены эксперименты по распылению различных металлов, в том числе, серебра, вольфрама, олова, железа,

которые показали, что подобным способом в углеродную матрицу можно осаждать любой металл.

Экспериментальная установка представляла собой источник пучка электронов с энергией 60 КэВ и регулируемым током в пределах 0 - 250 мА. Вакуумную камеру откачивали до давления 10-4 - 10-5 Тор. Для анализа результатов использовали: электронные просвечивающие микроскопы JEM-2010 (JEOL, Ltd, Japan) и JEM-2200FS (JEOL, Ltd, Japan); электронные сканирующие микроскопы S-3400N и JSM-6700F.

В качестве примера на фигуре 1 представлена фотография морфологии материала при напылении вольфрама на сажу (серые области). На фигуре видны в саже наночастицы вольфрама размером несколько нано метров (б) и скопления этих наночастиц (а). Размер частиц составляет 1-10 нм.

Результаты экспериментов по влиянию модуляции пучка электронов (перемещение зоны взаимодействия электронного пучка с металлом по области диаметром около 1 см) при распылении вольфрама представлены на фигуре 2 и на фигуре 3. На фигуре 2 представлена фотография среза кремниевой пластины без модуляции электронного пучка при испарении вольфрама. На фигуре 3 представлена фотография среза кремниевой пластины с модуляцией электронного пучка при испарении вольфрама. Толщина напыления с модуляцией электронного пучка заметно больше (540 нм) по сравнению со случаем отсутствия модуляции (350 нм).

Полученные результаты продемонстрировали уменьшение потерь энергии и увеличение производительности, упрощение процессов сбора, хранения, транспортировки и выделения наночастиц чистых металлов.

Способ получения наночастиц металла, включающий испарение мишени из металла электронным пучком в вакууме и осаждение наночастиц металла, отличающийся тем, что испарение мишени из металла ведут электронным пучком, направленным под углом 30-90 градусов к поверхности мишени, при этом обеспечивают пространственное сканирование электронного пучка по двум координатам на мишени с частотами в пределах 5-200 Гц и амплитудой 5 мм в течение 10-1000 секунд и временную модуляцию тока пучка с частотой 10-100 Гц со скважностью 1-10, причем осаждение наночастиц металла осуществляют из направленного потока на подложку, покрытую пористым углеродным материалом толщиной 0,1-2 мм, насыпной плотностью 0,04-0,06 г/см и установленную на водоохлаждаемом медном экране.
СПОСОБ СИНТЕЗА НАНОЧАСТИЦ МЕТАЛЛОВ ОСАЖДЕНИЕМ НА ПОРИСТЫЙ УГЛЕРОДНЫЙ МАТЕРИАЛ
СПОСОБ СИНТЕЗА НАНОЧАСТИЦ МЕТАЛЛОВ ОСАЖДЕНИЕМ НА ПОРИСТЫЙ УГЛЕРОДНЫЙ МАТЕРИАЛ
Источник поступления информации: Роспатент

Показаны записи 1-6 из 6.
10.10.2014
№216.012.fae0

Способ синтеза полых наночастиц γ-alo

Изобретение относится к плазменно-дуговой технологии синтеза наноструктурированных композиционных материалов, в частности полых наночастиц γ-AlO. Способ синтеза полых наночастиц γ-AlO реализуют в две стадии, причем на первой проводят плазменно-дуговой синтез алюминий-углеродного материала,...
Тип: Изобретение
Номер охранного документа: 0002530070
Дата охранного документа: 10.10.2014
10.11.2014
№216.013.054e

Способ синтеза наноструктурного композиционного сео-pdo материала

Изобретение относится к области нанотехнологий, а именно к пламенно-дуговой технологии синтеза наноструктурированных композиционных материалов. Предложенный способ синтеза наноструктурного композиционного CeO-PdO материала в плазме электрического разряда включает откачивание вакуумной камеры,...
Тип: Изобретение
Номер охранного документа: 0002532756
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.0720

Способ изготовления наноструктурированного сплава на основе модифицированного карбида вольфрама

Изобретение относится к порошковой металлургии и предназначено для получения изделий из сверхтвердых материалов на основе карбида вольфрама. Может использоваться в машиностроении и металлообрабатывающей промышленности. В шихте в качестве матрицы используются гранулы сплава ВК8 размером 1-5 мкм,...
Тип: Изобретение
Номер охранного документа: 0002533225
Дата охранного документа: 20.11.2014
12.01.2017
№217.015.57bd

Способ синтеза наночастиц диоксида титана

Изобретение может быть использовано в химической промышленности. Для получения наночастиц диоксида титана проводят откачивание вакуумной камеры, наполнение ее инертным газом, зажигание электрической дуги постоянного тока между графитовым электродом и металл-углеродным композитным электродом....
Тип: Изобретение
Номер охранного документа: 0002588536
Дата охранного документа: 27.06.2016
13.01.2017
№217.015.6ca0

Способ синтеза порошка суперпарамагнитных наночастиц feo

Изобретение может быть использовано при получении контрастирующих веществ в магниторезонансной диагностике, суспензий для магнитной сепарации белков и фрагментов молекул ДНК и РНК, для адресной доставки лекарственных средств. Синтез порошка суперпарамагнитных наночастиц FeOпроводят в два этапа....
Тип: Изобретение
Номер охранного документа: 0002597093
Дата охранного документа: 10.09.2016
20.01.2018
№218.016.176c

Способ синтеза магнитной жидкости на основе воды и магнитных наночастиц на углеродной матрице

Изобретение относится к области нанотехнологий и может быть использовано в обогащении полезных ископаемых для извлечения ценных минералов, а также их очистки от магнитных примесей, регенерации магнитных суспензий при гравитационном обогащении. Способ синтеза магнитной жидкости на основе воды и...
Тип: Изобретение
Номер охранного документа: 0002635621
Дата охранного документа: 14.11.2017
Показаны записи 1-10 из 13.
10.10.2014
№216.012.fae0

Способ синтеза полых наночастиц γ-alo

Изобретение относится к плазменно-дуговой технологии синтеза наноструктурированных композиционных материалов, в частности полых наночастиц γ-AlO. Способ синтеза полых наночастиц γ-AlO реализуют в две стадии, причем на первой проводят плазменно-дуговой синтез алюминий-углеродного материала,...
Тип: Изобретение
Номер охранного документа: 0002530070
Дата охранного документа: 10.10.2014
10.11.2014
№216.013.054e

Способ синтеза наноструктурного композиционного сео-pdo материала

Изобретение относится к области нанотехнологий, а именно к пламенно-дуговой технологии синтеза наноструктурированных композиционных материалов. Предложенный способ синтеза наноструктурного композиционного CeO-PdO материала в плазме электрического разряда включает откачивание вакуумной камеры,...
Тип: Изобретение
Номер охранного документа: 0002532756
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.0720

Способ изготовления наноструктурированного сплава на основе модифицированного карбида вольфрама

Изобретение относится к порошковой металлургии и предназначено для получения изделий из сверхтвердых материалов на основе карбида вольфрама. Может использоваться в машиностроении и металлообрабатывающей промышленности. В шихте в качестве матрицы используются гранулы сплава ВК8 размером 1-5 мкм,...
Тип: Изобретение
Номер охранного документа: 0002533225
Дата охранного документа: 20.11.2014
12.01.2017
№217.015.57bd

Способ синтеза наночастиц диоксида титана

Изобретение может быть использовано в химической промышленности. Для получения наночастиц диоксида титана проводят откачивание вакуумной камеры, наполнение ее инертным газом, зажигание электрической дуги постоянного тока между графитовым электродом и металл-углеродным композитным электродом....
Тип: Изобретение
Номер охранного документа: 0002588536
Дата охранного документа: 27.06.2016
13.01.2017
№217.015.6ca0

Способ синтеза порошка суперпарамагнитных наночастиц feo

Изобретение может быть использовано при получении контрастирующих веществ в магниторезонансной диагностике, суспензий для магнитной сепарации белков и фрагментов молекул ДНК и РНК, для адресной доставки лекарственных средств. Синтез порошка суперпарамагнитных наночастиц FeOпроводят в два этапа....
Тип: Изобретение
Номер охранного документа: 0002597093
Дата охранного документа: 10.09.2016
20.01.2018
№218.016.176c

Способ синтеза магнитной жидкости на основе воды и магнитных наночастиц на углеродной матрице

Изобретение относится к области нанотехнологий и может быть использовано в обогащении полезных ископаемых для извлечения ценных минералов, а также их очистки от магнитных примесей, регенерации магнитных суспензий при гравитационном обогащении. Способ синтеза магнитной жидкости на основе воды и...
Тип: Изобретение
Номер охранного документа: 0002635621
Дата охранного документа: 14.11.2017
14.03.2019
№219.016.df6d

Дуговой способ получения графена

Изобретение относится к области нанотехнологий и может быть использовано для получения композиционных материалов с высокой электро- и теплопроводностью. Графитовый стержень заполняют графитовым порошком с добавкой порошка кремния в концентрации 16,5-28 мас. % или карбида кремния в...
Тип: Изобретение
Номер охранного документа: 0002681630
Дата охранного документа: 11.03.2019
19.04.2019
№219.017.32eb

Способ синтеза наночастиц карбида вольфрама

Изобретение относится к способу синтеза наночастиц карбида вольфрама. Способ включает синтез кислородсодержащих соединений вольфрама углеводородами с использованием плазмы электрического разряда. При этом управление морфологией синтезируемых наночастиц осуществляют путем откачивания вакуумной...
Тип: Изобретение
Номер охранного документа: 0002433888
Дата охранного документа: 20.11.2011
09.05.2019
№219.017.49b9

Устройство для вакуумной дезинтеграции золотоносных глинистых пород

Изобретение относится к обогащению полезных ископаемых, в частности к аппаратам для извлечения тонкого золота из глинистых золотосодержащих пород. Устройство для вакуумной дезинтеграции золотоносных глинистых пород содержит ресивер, вакуумный насос, подключенный к ресиверу, рабочую камеру,...
Тип: Изобретение
Номер охранного документа: 0002686976
Дата охранного документа: 06.05.2019
24.05.2019
№219.017.5d9f

Установка рулонного типа для синтеза графена

Изобретение относится к области нанотехнологий. Установка рулонного типа для синтеза графена включает блок подготовки газовой смеси 5, блок откачки 6, вакуумную рабочую камеру 1 с подогреваемым щелевым соплом 2, на выходе из которого реализуется ламинарное течение, перфорированную по краям...
Тип: Изобретение
Номер охранного документа: 0002688839
Дата охранного документа: 22.05.2019
+ добавить свой РИД