×
20.01.2018
218.016.15cb

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ИНТЕРМЕТАЛЛИДНОГО ОРТОСПЛАВА НА ОСНОВЕ ТИТАНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению интерметаллидного ортосплава на основе титана. Способ включает перемешивание порошков титана и ниобия с обеспечением механического легирования порошка титана порошком ниобия в течение 8-24 ч, затем проводят механическое перемешивание легированного ниобием порошка титана с порошком алюминия. Полученную порошковую смесь компонентов сплава наносят на металлическую платформу слоями толщиной 35-150 мкм с лазерным плавлением слоев постоянным непрерывным лазером мощностью 400-1000 Вт со скоростью сканирования 300-1000 мм/с. Обеспечивается высокая химическая однородность интерметаллидного ортосплава на основе титана. 2 з.п. ф-лы, 3 пр., 1 табл.

Изобретение относится к порошковой металлургии, а именно к получению интерметаллидного ортосплава на основе титана, и может найти применение в авиационной и энергетической промышленности при производстве компонентов газотурбинных двигателей.

Известны три основные группы сплавов на основе алюминидов титана, обладающие различным фазовым составом: α2-сплавы (Ti3Al), γ-сплавы (TiAl) и ортосплавы (Ti2AlNb), которые обладают высокой прочностью, низким удельным весом, жаростойкостью, высоким сопротивлением ползучести. Основным препятствием для массового применения интерметаллидных α2- и γ-сплавов, в отличие от ортосплавов, является их низкая пластичность. В то же время, ортосплавы имеют более высокие характеристики низкотемпературной и высокотемпературной удельной прочности и пластичности, что позволяет рассматривать их как перспективный материал для изготовления компонентов аэрокосмической техники. Алюминий является основным легирующим элементом в титановых сплавах, способствует образованию ортофазы и повышает прочность материала при высоких температурах. Ниобий добавляют для образования ортофазы Ti2AlNb, повышения стабильности сплава при повышенной температуре, а также для повышения пластичности сплава при комнатной температуре путем образования В2-фазы. Мо, Та, Zr, Si добавляют для повышения прочностных характеристик при повышенной температуре и увеличения сопротивления ползучести материала.

Известен способ получения интерметаллидного ортосплава на основе титана, при котором осуществляют переплав исходных компонентов сплава (например, с помощью вакуумно-дуговой плавки), затем материал подвергают пластической деформации в виде ковки или экструзии для получения прутков из ортосплава, после чего прутки из ортосплава подвергают термомеханической обработке [Патент US 6132526, МПК С22С 14/00, опубликован 17.10.2000 г.].

Недостатками известного способа являются неоднородный химический состав получаемого материала, высокая трудоемкость и многостадийность способа и невозможность использования получаемого сплава для изготовления сложнопрофильных изделий методами порошковой металлургии.

Известен способ получения интерметаллидного ортосплава на основе титана, при котором механически смешивают порошки чистых металлов - компонентов сплава, после чего полученную смесь спекают при высокой температуре под давлением [Wang, Guofeng, Jianlei Yang, and Xueyan Jiao. "Microstructure and mechanical properties of Ti-22Al-25Nb alloy fabricated by elemental powder metallurgy." Materials Science and Engineering: A 654 (2016): 69-76].

Недостатками известного способа являются химическая неоднородность получаемого материала, а также ограничения по геометрии изготавливаемых изделий.

Наиболее близким аналогом, взятым за прототип, является способ получения сплава на основе титана [Fischer, М., et al. "In situ elaboration of a binary Ti-26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders." Materials Science and Engineering: С 62 (2016): 852-859], включающий механическое перемешивание порошков титана и ниобия, нанесение на металлическую платформу порошковой смеси титана и ниобия слоями толщиной 30 мкм и плавление слоев порошковой смеси титана и ниобия импульсным лазером с энергией от 39 до 1467 Дж/мм.

Данным способом возможно получение ортосплава, однако получаемый материал будет иметь неоднородность по химическому составу.

Технической проблемой изобретения является разработка способа получения интерметаллидного ортосплава на основе титана, обеспечивающего однородный химический состав материала.

Для достижения технического результата аналогично прототипу способ получения интерметаллидного ортосплава на основе титана включает перемешивание порошков титана и ниобия, нанесение на металлическую платформу порошковой смеси компонентов сплава слоями и послойное лазерное плавление порошковой смеси.

В отличие от прототипа, при перемешивании осуществляют механическое легирование порошка титана порошком ниобия при содержании Nb от 18 до 28% (ат.) в планетарной мельнице с использованием металлических шаров в качестве мелющих тел в течение 8-24 ч.

Затем осуществляют механическое перемешивание порошка твердого раствора легирующих компонентов в титане с порошком алюминия при содержании Al от 16 до 26% (ат.). Полученную смесь наносят на металлическую платформу слоем толщиной 35-150 мкм и плавят при помощи непрерывного лазера мощностью 400-1000 Вт со скоростью сканирования 300-1000 мм/с.

При механическом легировании порошка титана порошком ниобия дополнительно могут вводить порошок по крайней мере одного элемента из группы, включающей молибден, цирконий, тантал и кремний, в суммарном количестве 0,4-5%.

После охлаждения интерметаллидного ортосплава на основе титана может быть проведена термическая обработка путем отжига при температуре 900-1200°С в течение 12-36 ч.

Технический результат - высокая химическая однородность интерметаллидного ортосплава на основе титана.

При механическом легировании в планетарной мельнице с использованием металлических шаров в качестве мелющих тел сначала происходит перемешивание порошков титана, ниобия и смеси порошков Мо+Zr+Та+Si. Затем частицы порошков сплющиваются и свариваются между собой за счет интенсивной пластической деформации металлическими шарами. Формируется порошок со слоистой структурой, состоящей из различных комбинаций исходных компонентов. Далее с увеличением времени механического легирования за счет диффузии исходных компонентов образуется порошок, состоящий из твердого раствора легирующих компонентов в титане с высокой химической однородностью.

Механическое перемешивание порошков необходимо для получения однородной порошковой смеси алюминия и порошка твердого раствора на основе титана.

В результате воздействия энергии лазерного луча на слой порошковой смеси алюминия и твердого раствора легирующих компонентов в титане происходит расплавление порошковой смеси с образованием жидкой фазы и ее последующее охлаждение. При охлаждении жидкой фазы под действием капиллярных сил происходит перемещение расплавленных компонентов и их перемешивание с одновременной кристаллизацией жидкой фазы, что приводит к образованию интерметаллидного ортосплава на основе титана, состоящего из титана, ниобия, алюминия, и по крайней мере одного элемента из группы, включающей молибден, цирконий, тантал и кремний с высокой химической однородностью. Высокая химическая однородность интерметаллидного ортосплава на основе титана определяется тем, что механическое легирование происходит в твердофазном состоянии, при котором не происходит дендритная ликвация и осуществляется однородное перемешивание исходных компонентов.

Использование непрерывного лазера обусловлено большей стабильностью расплавленной области. При мощности лазера более 1000 Вт и/или скорости сканирования лазера менее 300 мм/с происходит перегрев порошковой смеси, что приводит к частичному испарению материала, ликвации компонентов из-за больших размеров расплавленной области и образованию газовых пор. При мощности лазера менее 400 Вт, и/или скорости сканирования более 1000 мм/с, и/или толщине слоя порошковой смеси более 150 мкм энергии лазерного излучения недостаточно для полного расплавления материала, что приводит к получению отдельных частиц порошков алюминия и твердого раствора легирующих компонентов в титане, и не позволяет получить интерметаллидный ортосплав на основе титана. При толщине слоя порошковой смеси менее 35 мкм, сопоставимой с размерами частиц порошка, при плавлении лазером не обеспечивается перемещение и перемешивание расплавленных компонентов и, соответственно, однородность химического состава.

После охлаждения интерметаллидный ортосплав на основе титана может быть термически обработан путем отжига при температуре 900-1200°С в течение 12-36 ч. В результате отжига происходит выделение дополнительных вторичных фаз O-Ti2AlNb и α2-Ti3Al, что приводит к повышению прочности сплава, а также повышается химическая однородность материала. При температуре отжига менее 900°С и/или времени отжига менее 12 ч не происходит выделения вторичных фаз. При температуре отжига более 1200°С и/или времени отжига более 36 ч происходит чрезмерный рост зерен материала, что приводит к снижению его прочности.

Предлагаемый способ получения интерметаллидного ортосплава на основе титана осуществляют в следующей последовательности:

Проводят механическое легирование порошка титана ниобием при содержании ниобия от 18 до 28% (ат.) и по крайней мере одним порошком из группы, включающей молибден, цирконий, тантал и кремний в суммарном количестве 0,4-5%, в планетарной мельнице с использованием металлических шаров в качестве мелющих тел при соотношении массы шаров к массе порошка 10-20 к 1 в течение 8-24 ч. Производят механическое перемешивание полученного порошка твердого раствора легирующих компонентов в титане с порошком алюминия при содержании Al от 16 до 26% (ат.) в смесителе типа "пьяная бочка" в течение 6-24 ч за счет многократного пересыпания порошков в объеме цилиндрической емкости, закрепленной под некоторым углом.

Наносят смесь порошка алюминия и порошка твердого раствора легирующих компонентов в титане на металлическую платформу слоем толщиной 35-150 мкм. С помощью непрерывного лазера плавят слой порошковой смеси алюминия и порошка твердого раствора легирующих компонентов в титане при мощности лазера 400-1000 Вт, скорости сканирования 300-1000 мм/с. После охлаждения расплава интерметаллидного ортосплава на основе титана проводят отжиг при температуре 900-1200°С в течение 12-36 ч.

Пример 1

Были взяты порошок титана с размером частиц d50=37 мкм в количестве 74,5% (ат.), порошок ниобия с размером частиц d50=43 мкм в количестве 25,5% (ат.). Было проведено механическое легирование взятых порошков в планетарной мельнице с использованием металлических шаров в качестве мелющих тел при соотношении массы шаров к массе порошка 10:1 в течение 10 ч. Был получен порошок твердого раствора легирующих компонентов в титане с высокой химической однородностью и размером частиц d50=41 мкм.

К порошку твердого раствора легирующих компонентов в титане был добавлен порошок алюминия с размером частиц d50=27 мкм в количестве 21% (ат.) от полученной смеси, полученная смесь была механически перемешана в «пьяной бочке» в течение 12 ч. В результате была получена однородная порошковая смесь алюминия и твердого раствора легирующих компонентов в титане.

На металлическую платформу был нанесен слой порошковой смеси алюминия и твердого раствора легирующих компонентов в титане толщиной 100 мкм. С помощью непрерывного лазера при мощности 1000 Вт и скорости сканирования лазера 700 мм/с расплавили слой порошковой смеси. Затем металлическая платформа была опущена на 100 мкм, нанесен новый слой порошковой смеси и расплавлен с помощью лазера. Процесс был повторен для 200 слоев. Однородность химического состава была определена путем построения химических карт с помощью энергодисперсионной рентгеновской спектроскопии, фазовый состав был определен с помощью рентгенофазового анализа. В результате был получен однородный интерметаллидный ортосплав на основе титана с высокой химической однородностью и имеющий следующий фазовый состав: Ti2AlNb+В2.

Пример 2

Были взяты порошок титана с размером частиц d50=37 мкм в количестве 72,5% (ат.), порошок ниобия с размером частиц d50=43 мкм в количестве 25,5% (ат.), порошок молибдена с размером частиц d50=45 мкм в количестве 0,7% (ат.), порошок циркония с размером частиц d50=58 мкм в количестве 0,6% (ат.), порошок тантала с размером частиц d50=55 мкм в количестве 0,4% (ат.), порошок кремния с размером частиц d50=62 мкм в количестве 0,3% (ат.). Было проведено механическое легирование взятых порошков в планетарной мельнице с использованием металлических шаров в качестве мелющих тел при соотношении массы шаров к массе порошка 13:1 в течение 17 ч. Был получен порошок твердого раствора легирующих компонентов в титане с высокой химической однородностью и размером частиц d50=38 мкм.

К порошку твердого раствора легирующих компонентов в титане был добавлен порошок алюминия с размером частиц d50=27 мкм в количестве 18% (ат.) от полученной смеси, полученная смесь была механически перемешана в «пьяной бочке» в течение 24 ч. В результате была получена однородная порошковая смесь алюминия и твердого раствора легирующих компонентов в титане. На металлическую платформу был нанесен слой порошковой смеси алюминия и твердого раствора легирующих компонентов в титане толщиной 150 мкм. С помощью лазера при мощности 800 Вт и скорости сканирования лазера 600 мм/с расплавили слой порошковой смеси. Затем металлическая платформа была опущена на 150 мкм, нанесен новый слой порошковой смеси и расплавлен с помощью лазерного луча. Процесс был повторен для 200 слоев. Была проведена термическая обработка полученного ортосплава при температуре 1000°С в течение 22 ч. Однородность химического состава была определена путем построения химических карт с помощью энергодисперсионной рентгеновской спектроскопии, фазовый состав был определен с помощью рентгенофазового анализа. В результате был получен однородный интерметаллидный ортосплав на основе титана, с высокой химической однородностью и имеющий следующий фазовый состав: Ti2AlNb+В2. В отличие от первого примера было получено большее содержание ортофазы Ti2AlNb.

Пример 3

В таблице 1 показаны результаты исследования однородности интерметаллидного ортосплава, полученного по примеру 1 в зависимости от параметров лазерного плавления и толщины слоя порошковой смеси.

Как видно из таблицы 1, при использовании мощности лазерного излучения в диапазоне от 400 до 1000 Ватт, скорости сканирования от 300 до 1000 мм/с и толщины слоя 35-150 мкм образуется однородный ортосплав с фазовым составом Ti2AlNb+В2. При использовании параметров, существенно отличающихся от этих, происходит либо неполное плавление частиц порошка, недостаточное для образования ортосплава, либо происходит перегрев материала, ликвация, рост зерна и выделение нежелательных фаз, снижающих однородность материала.

Источник поступления информации: Роспатент

Показаны записи 41-50 из 135.
17.02.2018
№218.016.2b1e

Способ диагностики онкологических заболеваний

Изобретение относится к области медицины и предназначено для диагностики онкологических заболеваний. При исследовании образца, взятого у пациента, выделяют суммарную РНК, получают кДНК и амплифицируют ее с помощью полимеразной цепной реакции с праймерами, специфическими к нуклеотидной...
Тип: Изобретение
Номер охранного документа: 0002642989
Дата охранного документа: 29.01.2018
17.02.2018
№218.016.2d58

Способ планирования задач предобработки данных интернета вещей для систем анализа

Изобретение относится к способу планирования задач предобработки данных Интернета Вещей для систем анализа. Технический результат заключается в автоматизации планирования задач между узлами кластера. В способе выделяют наборы связанных задач по предварительной обработке данных, представляющих...
Тип: Изобретение
Номер охранного документа: 0002643620
Дата охранного документа: 02.02.2018
04.04.2018
№218.016.3507

Турбовинтовой двигатель

Турбовинтовой двигатель содержит турбовальный газотурбинный двигатель и редуктор воздушных винтов. Выводной вал турбовального газотурбинного двигателя соединен с редуктором воздушных винтов с помощью механической трансмиссии. Редуктор имеет выводные валы для привода соосных воздушных винтов, а...
Тип: Изобретение
Номер охранного документа: 0002645863
Дата охранного документа: 28.02.2018
10.05.2018
№218.016.3a0d

Композиционное полимерное раневое покрытие на основе нановолокон

Изобретение относится к химии высокомолекулярных соединений, а именно к композиционным полимерным раневым покрытиям на основе нановолокон. Изобретение предназначено для использования в медицине, ветеринарии и фармакологии в качестве раневых покрытий, в тканевой инженерии - в качестве матриц для...
Тип: Изобретение
Номер охранного документа: 0002647609
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.3a62

Способ изготовления меза-структуры полоскового лазера

Использование: микроэлектроника, технология полупроводниковых излучающих приборов, для изготовления меза-структуры полосковых лазеров. Сущность изобретения: способ включает формирование омического контакта к приконтактному слою p-типа проводимости лазерной гетероструктуры методом взрывной...
Тип: Изобретение
Номер охранного документа: 0002647565
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.3ae4

Способ экспериментальной оценки терапевтического воздействия фокусированного ультразвука на сосуды животных

Изобретение относится к экспериментальной медицине, в частности к изучению терапевтического воздействия фокусированного ультразвука на сосуды. Способ экспериментальной оценки эффективности воздействия ультразвука включает использование каудальной вены кролика. Для этого, при выполнении...
Тип: Изобретение
Номер охранного документа: 0002647481
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.3e26

Способ получения магнитотвердого материала

Изобретение относится к порошковой металлургии и может быть использовано при получении магнитов с полимерной связкой и спеченных магнитов. Для получения магнитотвердого материала на основе нитридов интерметаллических соединений самария с железом и переходными металлами, выбранными из группы Ti,...
Тип: Изобретение
Номер охранного документа: 0002648335
Дата охранного документа: 23.03.2018
29.05.2018
№218.016.54d2

Способ обнаружения скрытых взаимосвязей в интернете вещей

Изобретение относится к области компьютерных систем, а именно к Интернету Вещей. Техническим результатом является обнаружение скрытых взаимосвязей в Интернете Вещей. Раскрыт способ обнаружения скрытых взаимосвязей в Интернете Вещей, включающий сбор данных с устройств, подключенных к сети...
Тип: Изобретение
Номер охранного документа: 0002654167
Дата охранного документа: 16.05.2018
29.05.2018
№218.016.573b

Цифровой способ измерения фазы гармонического сигнала

Цифровой способ измерения фазы гармонического сигнала позволяет упростить реализацию определения фазы гармонического сигнала и повысить точность определения фазы при зашумленности исходного сигнала. Способ основан на приеме первичного сигнала x(t) с последующим аналого-цифровым преобразованием...
Тип: Изобретение
Номер охранного документа: 0002654945
Дата охранного документа: 23.05.2018
09.06.2018
№218.016.5e37

Магнетронная распылительная головка

Изобретение относится к магнетронной распылительной головке. Охлаждаемая магнитная система магнетронной распылительной головки состоит из магнитов и магнитопровода и оснащена каналами охлаждения. Магнитная система зафиксирована в корпусе криволинейной формы. Верхняя часть магнитопровода...
Тип: Изобретение
Номер охранного документа: 0002656318
Дата охранного документа: 04.06.2018
Показаны записи 41-50 из 64.
17.02.2018
№218.016.2b1e

Способ диагностики онкологических заболеваний

Изобретение относится к области медицины и предназначено для диагностики онкологических заболеваний. При исследовании образца, взятого у пациента, выделяют суммарную РНК, получают кДНК и амплифицируют ее с помощью полимеразной цепной реакции с праймерами, специфическими к нуклеотидной...
Тип: Изобретение
Номер охранного документа: 0002642989
Дата охранного документа: 29.01.2018
17.02.2018
№218.016.2d58

Способ планирования задач предобработки данных интернета вещей для систем анализа

Изобретение относится к способу планирования задач предобработки данных Интернета Вещей для систем анализа. Технический результат заключается в автоматизации планирования задач между узлами кластера. В способе выделяют наборы связанных задач по предварительной обработке данных, представляющих...
Тип: Изобретение
Номер охранного документа: 0002643620
Дата охранного документа: 02.02.2018
04.04.2018
№218.016.3507

Турбовинтовой двигатель

Турбовинтовой двигатель содержит турбовальный газотурбинный двигатель и редуктор воздушных винтов. Выводной вал турбовального газотурбинного двигателя соединен с редуктором воздушных винтов с помощью механической трансмиссии. Редуктор имеет выводные валы для привода соосных воздушных винтов, а...
Тип: Изобретение
Номер охранного документа: 0002645863
Дата охранного документа: 28.02.2018
10.05.2018
№218.016.3e26

Способ получения магнитотвердого материала

Изобретение относится к порошковой металлургии и может быть использовано при получении магнитов с полимерной связкой и спеченных магнитов. Для получения магнитотвердого материала на основе нитридов интерметаллических соединений самария с железом и переходными металлами, выбранными из группы Ti,...
Тип: Изобретение
Номер охранного документа: 0002648335
Дата охранного документа: 23.03.2018
11.06.2018
№218.016.6099

Газотурбинный двигатель

Газотурбинный двигатель содержит хотя бы один ротор турбокомпрессора, центробежный компрессор которого содержит хотя бы одно рабочее колесо и хотя бы одну электрическую машину, содержащую систему постоянных магнитов. Ротор электрической машины выполнен за единое целое с рабочим колесом...
Тип: Изобретение
Номер охранного документа: 0002657051
Дата охранного документа: 09.06.2018
20.06.2018
№218.016.64cc

Огнетушащий порошок многоцелевого назначения

Изобретение относится к области противопожарной техники, а именно к огнетушащим порошковым составам (ОПС) многоцелевого назначения, которые могут быть использованы для тушения пожаров класса А, В, а также могут локализовать горящие розливы углеводородов за счет их адсорбции активным...
Тип: Изобретение
Номер охранного документа: 0002658055
Дата охранного документа: 19.06.2018
24.07.2018
№218.016.749b

Устройство для определения огнегасящей концентрации при подаче мелкодисперсных составов в восходящую струю

Изобретение относится к лабораторному оборудованию, в частности приборам, используемым для определения физико-химических свойств мелкодисперсных огнегасящих составов. В устройстве для определения огнегасящей концентрации при подаче мелкодисперсных составов в восходящую струю, состоящем из...
Тип: Изобретение
Номер охранного документа: 0002662012
Дата охранного документа: 23.07.2018
17.03.2019
№219.016.e271

Панорамный прибор наблюдения командира

Панорамный прибор наблюдения командира (далее - ППНК) относится к области вооружения и военной техники и предназначен для панорамного обзора местности, обнаружения, распознавания целей и обеспечения целеуказания от командира наводчику в дневных и ночных условиях с места и сходу. Изделие...
Тип: Изобретение
Номер охранного документа: 0002682141
Дата охранного документа: 14.03.2019
10.04.2019
№219.017.0820

Камера сгорания с оптимальным режимом работы

Камера сгорания содержит корпус, жаровую трубу с отверстиями для подвода воздуха в зоны горения и смешения и фронтовое устройство с завихрителями воздуха и форсунками подачи топлива. Жаровая труба камеры сгорания выполнена с геометрическими и газодинамическими критериями, обеспечивающими...
Тип: Изобретение
Номер охранного документа: 0002400673
Дата охранного документа: 27.09.2010
12.04.2019
№219.017.0b7a

Способ оперативного лечения перелома хирургической шейки плечевой кости

Изобретение относится к медицине, а именно к травматологии и ортопедии, и может быть использовано для лечения перелома хирургической шейки плечевой кости. Производят трансдельтовидный доступ, продольным разрезом длиной 2-3 см от края большого бугорка плечевой кости к центру головки плечевой...
Тип: Изобретение
Номер охранного документа: 0002684471
Дата охранного документа: 09.04.2019
+ добавить свой РИД