×
20.01.2018
218.016.1359

Результат интеллектуальной деятельности: Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации

Вид РИД

Изобретение

№ охранного документа
0002634479
Дата охранного документа
31.10.2017
Аннотация: Изобретение предназначено для определения модуля скорости баллистического объекта (БО) с использованием выборки произведений дальности на радиальную скорость и относится к радиолокации. Достигаемый технический результат изобретения - повышение точности определения модуля скорости БО в наземных радиолокационных станциях (РЛС) с грубыми измерениями угла места, азимута и дальности и уменьшение объема хранимых предыдущих измерений. Указанный технический результат достигается тем, что через интервалы времени, равные периоду обзора Т, в РЛС измеряют дальность, угол места, радиальную скорость и формируют выборку значений высоты БО и произведений дальности на радиальную скорость. Определяют оценку высоты БО в середине интервала наблюдения и оценку первого приращения произведения дальности на радиальную скорость в конце интервала наблюдения с помощью α, β фильтров. Вычисляют геоцентрический угол между РЛС и БО в середине интервала наблюдения по формуле , где r - дальность до БО в середине интервала наблюдения, R - радиус Земли, и ускорение силы тяжести в середине интервала наблюдения по формуле , где - ускорение силы тяжести на поверхности Земли. Далее вычисляют сглаженное значение модуля скорости БЦ в середине интервала наблюдения на невозмущенном пассивном участке траектории по формуле , где N - число измерений на интервале наблюдения. Устройство для реализации способа состоит из двух α, β фильтров и вычислителей геоцентрического угла, ускорения силы тяжести и модуля скорости. 2 н.п. ф-лы, 3 ил., 4 табл.

Изобретение относится к радиолокации и может быть использовано преимущественно в наземных радиолокационных станциях (РЛС) кругового и секторного обзора, размеры антенн которых соизмеримы с длиной волны, то есть в РЛС с грубыми измерениями угла места и азимута баллистического объекта (БО). Знание модуля скорости необходимо для расчета баллистической траектории, прогноза точки падения, селекции баллистических ракет от самолетов и решения других задач.

Известны способы, в которых определяют скорости изменения декартовых координат, а модуль скорости вычисляют по формуле:

где ,, - скорости изменения декартовых координат x, y, z.

Известны устройства определения скорости изменения декартовых координат с помощью цифрового нерекурсивного фильтра (ЦНРФ) путем оптимального взвешенного суммирования фиксированной выборки из N измеренных значений декартовых координат [1, рис. 4.7, С. 303] и с помощью α, β фильтра [1, рис. 4.11, С. 322] или α, β, γ фильтра [2, рис. 9.14, С. 392) путем последовательного оптимального сглаживания выборки измеренных значений декартовых координат нарастающего объема.

Основным недостатком известных устройств является низкая точность определения модуля скорости БО в РЛС с грубыми измерениями угла места и азимута, в частности в РЛС метрового диапазона волн (РЛС МДВ).

Наиболее близким аналогом (прототипом) заявленному изобретению, является способ и устройство его реализации, описанные в патенте №2540323 [4].

В этом способе существенно снижено влияние ошибок измерения угла места и устранено влияние ошибок измерения азимута за счет использования фиксированной выборки квадратов дальности.

Сущность способа-прототипа заключается в следующем. В РЛС через интервалы времени, равные периоду обзора T0, измеряют дальность и угол места БО. По результатам этих измерений определяют высоту БО. С помощью ЦНРФ формируют фиксированную выборку из N значений высоты и определяют сглаженное значение высоты БО в середине интервала наблюдения, то есть ее оценку . Далее вычисляют геоцентрический угол между РЛС и БО (смотри фиг. 1) в середине интервала наблюдения по формуле , где rcp - дальность до БО в середине интервала наблюдения, RЗ - радиус Земли, и ускорение силы тяжести в середине интервала наблюдения по формуле , где - ускорение силы тяжести на поверхности Земли. В каждом обзоре перемножают оцифрованные сигналы дальности, то есть определяют квадраты дальности. С помощью ЦНРФ формируют фиксированную выборку из N квадратов дальности и определяют оценку второго приращения квадрата дальности за обзор. В итоге вычисляют значение модуля скорости БО в середине интервала наблюдения на невозмущенном пассивном участке 'траектории по формуле

Схема устройства для реализации способа-прототипа приведена в фиг. 2. Устройство содержит блок 1 преобразования входных сигналов, первый выход которого соединен с входом ЦНРФ оценивания второго приращения квадрата дальности (блок 2), выход которого соединен с первым входом вычислителя модуля скорости БО (блок 3). Второй выход блока 1 соединен с входом ЦНРФ оценивания высоты БО в середине интервала наблюдения (блок 4), выход которого соединен с 4-м входом вычислителя модуля скорости БО (блок 3), с входом вычислителя 5 геоцентрического угла, а также с первым входом вычислителя 6 ускорения силы тяжести. Выходы вычислителя 5 геоцентрического угла и вычислителя 6 ускорения силы тяжести соединены с 3-м и 2-м входами вычислителя модуля скорости БО, выход которого является выходом заявленного устройства.

ЦНРФ оценивания второго приращения квадрата дальности (блок 2) работает следующим образом. Текущее значение квадрата дальности умножают на весовой коэффициент в блоке 2.2 и подают на вход сумматора 2.4. Значения квадратов дальности, полученные в предыдущих обзорах , после задержки на соответствующее число периодов обзора в запоминающем устройстве 2.1 умножают в блоке 2.2 на весовые коэффициенты оценки второго приращения, поступающие с блока 2.3 весовых коэффициентов, и подают на вход сумматора 2.4. Весовые коэффициенты оценки второго приращения входного сигнала за период обзора, вычисляют заранее по формуле: [3, формула (4.37), С. 155]. В итоге на входе сумматора 2.4 формируется фиксированная выборка из N взвешенных квадратов дальности, а на его выходе получают оценку второго приращения квадрата дальности за обзор .Эту оценку подают на 1-й вход вычислителя 3 модуля скорости.

Таким же образом, во втором ЦНРФ (блок 4) определяют сглаженное значение высоты БЦ, то есть оценку высоты , в середине интервала наблюдения. В Отличие от блока 3, используют весовые коэффициенты оценки высоты в середине интервала наблюдения, вычисленные по формуле . Эту оценку подают на 4-й вход вычислителя 3 модуля скорости.

При высокоточных измерениях дальности ошибки определения модуля скорости БО в РЛС с грубыми измерениями угла места и азимута уменьшаются в несколько раз по сравнению со способом оценивания по выборкам декартовых координат. Однако при грубых измерениях дальности преимущество способа-прототипа утрачивается. Кроме того, в процессе оценивания параметров необходимо хранить большое число предыдущих измерений дальности и высоты (угла места), что при одновременном обслуживании большого числа целей и больших интервалах наблюдения приводит к существенному увеличению емкости запоминающих устройств.

Техническим результатом заявленного изобретения является повышение точности определения модуля скорости БО при грубых измерениях дальности, угла места и азимута и уменьшение объема хранимых предыдущих измерений.

Указанный технический результат достигается тем, что в способе определения модуля скорости баллистического объекта (БО) с использованием выборки произведений дальности на радиальную скорость, заключающемся в том, что через интервалы времени, равные периоду обзора Т0, в РЛС измеряют дальность и угол места БО, по данным измерений дальности и угла места определяют высоту БО, определяют сглаженное значение высоты БО, то есть оценку высоты БО в середине интервала наблюдения, вычисляют геоцентрический угол между РЛС и БО в середине интервала наблюдения по формуле , где rcp - дальность до БО в середине интервала наблюдения, RЗ - радиус Земли, и ускорение силы тяжести в середине интервала наблюдения по формуле , где - ускорение силы тяжести на поверхности Земли, согласно изобретению оценку высоты в середине интервала наблюдения определяют с помощью α, β фильтра, при этом определение текущих оценок высоты в n-ом обзоре производят сначала в прямом по времени направлении, а затем в обратном направлении, для этого по первым двум значениям высоты, полученным в первых двух обзорах (z1 и z2), определяют начальное значение высоты и начальное значение первого приращения высоты , задают начальные значения коэффициентов сглаживания (α0=1, β0=1), далее во всех последующих обзорах значения коэффициентов сглаживания определяют по формулам и , на интервале наблюдения от третьего обзора (n=3) до последнего обзора (n=N) экстраполированное значение высоты для n-го обзора определяют путем суммирования предыдущей (n-1)-ой оценки высоты и (n-1)-ой оценки первого приращения высоты, сигнал ошибки определяют как разность между текущим значением высоты и его экстраполированным значением, а от N-го обзора до обзора, произведенного в середине интервала наблюдения, экстраполированное значение высоты для n-го обзора определяют путем суммирования предыдущей (n-1)-ой оценки высоты и инвертированного значения (n-1)-ой оценки первого приращения высоты, сигнал ошибки определяют как разность между текущей оценкой высоты и ее экстраполированным значением, текущую оценку высоты определяют путем суммирования экстраполированного значения высоты и взвешенного коэффициентом сглаживания α сигнала ошибки, а текущую оценку первого приращения высоты определяют путем суммирования (n-1)-ой оценки первого приращения высоты и взвешенного коэффициентом сглаживания β сигнала ошибки, измеряют радиальную скорость БО, перемножают измеренные значения дальности и радиальной скорости и получают выборку произведений дальности на радиальную скорость, определяют оценку первого приращения произведения дальности на радиальную скорость в конце интервала наблюдения, то есть в последнем N-ом обзоре РЛС, с помощью α, β фильтра, для этого по первым двум значениям произведения дальности на радиальную скорость определяют начальное значение произведения дальности на радиальную скорость и начальное значение первого приращения произведения дальности па радиальную скорость , задают начальные значения коэффициентов сглаживания (α0=1, β0=1), далее во всех последующих обзорах (n=3,4,…,N) значения коэффициентов сглаживания определяют по формулам и , определяют экстраполированное значение произведения дальности на радиальную скорость для n-го обзора путем суммирования предыдущей (n-1)-ой оценки произведения дальности на радиальную скорость и (n-1)-ой оценки первого приращения произведения дальности на радиальную скорость, определяют сигнал ошибки между текущим значением произведения дальности на радиальную скорость и его экстраполированным значением, определяют текущую оценку произведения дальности на радиальную скорость путем суммирования экстраполированного значения произведения дальности на радиальную скорость и взвешенного коэффициентом сглаживания α сигнала ошибки, определяют текущую оценку первого приращения произведения дальности на радиальную скорость путем суммирования (n-1)-ой оценки первого приращения произведения дальности на радиальную скорость и взвешенного коэффициентом сглаживания β сигнала ошибки, в итоге вычисляют сглаженное значение модуля скорости баллистического объекта в середине интервала наблюдения на невозмущенном пассивном участке траектории по формуле

Указанный технический результат достигается также тем, что в устройстве определения модуля скорости БО с использованием выборки произведений дальности на радиальную скорость (смотри фиг. 3), содержащем блок 1 преобразования входных сигналов, первый выход которого соединен с входом блока 2 оценивания преобразованной координаты дальности, выход которого соединен с входом вычислителя 3 модуля скорости БО в середине интервала наблюдения, блок 4 оценивания высоты БО в середине интервала наблюдения, вход которого соединен с вторым выходом блока 1 преобразования входных сигналов, а выход соединен с четвертым входом вычислителя 3 модуля скорости БО в середине интервала наблюдения, а также с входом вычислителя 5 геоцентрического угла и с первым входом вычислителя 6 ускорения силы тяжести, второй вход которого соединен с вторым выходом вычислителя 5 геоцентрического угла, выходы вычислителя 6 ускорения силы тяжести и вычислителя 5 геоцентрического угла соединены с вторым и третьим входами вычислителя 3 модуля скорости БО в середине интервала наблюдения, выход которого является выходом заявленного устройства, согласно изобретению на первый вход блока 1 преобразования входных сигналов подают данные измерений радиальной скорости, в умножителе 1.1 блока 1 перемножают измерения дальности и радиальной скорости, блок 2 оценивания преобразованной координаты дальности и блок 4 оценивания высоты БО в середине интервала наблюдения является α, β фильтрами.

Для доказательства практического отсутствия систематических (методических) ошибок оценивания модуля скорости заявленным способом и способом-прототипом вычислим значение модуля скорости китайской баллистической ракеты средней дальности (БРСД) «Дунфэн-21» на 280-й секунде полета, траекторные параметры которой приведены в таблице 1.

В способе-прототипе:

В заявленном способе

Если не учитывать поправку на сферичность Земли (RЗsin2ϕcp=249,77 км), то модуль скорости будет определяться с большим отрицательным смещением (-415 м/с). Поэтому смещение оценки до 10 м/с можно считать пренебрежимо малым смещенем.

Результаты вычислений оценок первого приращения произведения дальности на радиальную скорость и высоты в середине интервала наблюдения приведены в таблицах 2 и 3.

Как видно из таблицы, оценки в текущем обзоре, то есть в конце интервала наблюдения, используются для определения модуля скорости в середине интервала наблюдения. Например, , вычисленная на 360-ой секунде, используются для определения модуля скорости в середине интервала наблюдения, то есть на 280-ой секунде.

В отличие от прототипа, для определения модуля скорости используются только последнее текущее значение произведения дальности на радиальную скорость и его экстраполированное значение , а не вся фиксированная выборка из N произведений дальности на радиальную скорость.

Как видно из таблицы 3, при оценивании высоты в прямом (от 220-ой до 360-ой с) и в обратном (от 360-ой до 280-ой с) направлении практически устраняется смещение оценки высоты. Кроме того, по сравнению с прототипом, в два раза уменьшается объем хранимых значений высоты.

Результаты сравнения точности, то есть среднеквадратических ошибок (СКО) определения в РЛС МДВ «Резонанс-НЭ» (, σr=300 м, σε=1,5°, T0=5 с) [5, С. 356-361] модуля скорости оперативно-тактической ракеты (ОТБР) «Атакмс» на 75-й секунде полета (rcp=205 км, εср=15,3°, ∂ср=9,65 м/с2, Vcp=1120 м/с) в заявленном изобретении (3), в прототипе (2) и в аналоге (1) приведены в таблице 4.

СКО оценивания модуля скорости БО вычислялись по следующим формулам:

а) для изобретения:

где и σr - СКО измерения радиальной скорости и дальности;

σε - СКО измерения угла места;

- относительная СКО оценивания координаты в ос, /? фильтре [6, таблица 7.3, С.362];

- относительная СКО оценивания первого приращения в α, β фильтре [там же].

б) для прототипа:

где - относительная СКО оценивания высоты БО в середине интервала наблюдения в ЦНРФ;

- относительная СКО оценивания второго приращения в ЦНРФ [3, формула 4.39, С. 156].

в) для аналога:

где θср - угол наклона вектора скорости БО к местному горизонту.

Как видно из таблицы 4, в заявленном способе и устройстве обеспечивается повышение от 6-ти до 19-ти раз точности определения модуля скорости БО по сравнению с прототипом и аналогами при грубых измерениях угла места и дальности. Как видно из формулы (4) увеличение ошибок измерения дальности до 300 м несущественно влияет на точность определения модуля скорости. В прототипе уменьшение ошибок измерения дальности в 12 раз (от 300 м до 25 м) приводит к повышению точности определения модуля скорости от 5-ти до 10-ти раз. В способах-аналогах оценивания по выборкам декартовых координат доминирующее влияние на точность определения модуля скорости оказывают ошибки измерения угла места.

Увеличение точности определения модуля скорости заявленным способом, как и способом-прототипом, происходит только при выборе точки оценивания в середине интервала наблюдения, то есть скорость оценивается с запаздыванием по времени на половину длительности интервала наблюдения. При оценивании скорости в реальном режиме времени, то есть в момент получения последнего измерения, преимущества заявленного способа в значительной степени утрачиваются из-за необходимости учета вертикальной скорости баллистического объекта. Кроме того, заявленный способ нельзя использовать на активном участке траектории, то есть при работающем ракетном двигателе, и при совершении БЦ маневра на пассивном участке траектории.

Таким образом, доказана реализуемость технического результата заявляемого изобретения: повышение точности определения модуля скорости БО при грубых измерениях дальности, угла места и азимута и уменьшение объема хранимых предыдущих измерений.

Список использованных источников

1. Кузьмин С.З. Цифровая обработка радиолокационной информации. М.: «Советское радио», 1967, 400 с.

2. Кузьмин С.З. Основы теории цифровой обработки радиолокационной информации. М.: «Советское радио», 1974, 432 с.

3. Кузьмин С.З. Основы проектирования систем цифровой обработки радиолокационной информации. М.: «Советское радио», 1986, 352 с.

4. Патент №2540323. Способ определения модуля скорости баллистической цели в наземной радиолокационной станции.

5. Вооружение ПВО и РЭС России. Альманах. М.: Издательство НО «Лига содействия оборонным предприятиям», 2011, 504 с.)

6. Справочник по радиолокации. / Под ред. М.И. Сколника. Книга 1. М.: «Техносфера», 2015, 672 с.


Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации
Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации
Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации
Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации
Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации
Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации
Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации
Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации
Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации
Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации
Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации
Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации
Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации
Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации
Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации
Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации
Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации
Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации
Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации
Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации
Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации
Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации
Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации
Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации
Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации
Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации
Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации
Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации
Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации
Источник поступления информации: Роспатент

Показаны записи 21-23 из 23.
08.12.2019
№219.017.eb3e

Способ идентификации типа самолета средствами пассивной оптической локации и устройство для его осуществления

Изобретение относится к способам пассивной дистанционной телевизионной идентификации типа самолета средствами пассивной оптической локации и устройствам для его осуществления. Технический результат заключается в повышении достоверности идентификации типа самолета независимо от ракурса его...
Тип: Изобретение
Номер охранного документа: 0002708346
Дата охранного документа: 05.12.2019
23.02.2020
№220.018.04e9

Способ определения курса объекта на линейной траектории с использованием измерений его радиальной скорости

Изобретение относится к области радиолокации и предназначено для определения курса неманеврирующих объектов. Технический результатом изобретения заключается в повышении точности определения курса неманеврирующего объекта. Указанный результат достигается за счет использования выборки...
Тип: Изобретение
Номер охранного документа: 0002714884
Дата охранного документа: 20.02.2020
19.06.2023
№223.018.826f

Способ и устройство определения вертикальной скорости баллистической цели с использованием оценок первого и второго приращений ее радиальной скорости

Изобретение относится к радиолокации. Техническим результатом является повышение точности определения вертикальной скорости баллистической цели (БЦ) за счет устранения неоднозначности измерений ее радиальной скорости В заявленном способе по измерениям дальности r и угла места ε вычисляют...
Тип: Изобретение
Номер охранного документа: 0002797227
Дата охранного документа: 31.05.2023
Показаны записи 21-29 из 29.
22.01.2019
№219.016.b28e

Способ обнаружения и сопровождения воздушных целей радиолокационным комплексом

Изобретение относится к радиолокации и может быть использовано в радиолокационных комплексах (РЛК) для контроля воздушного пространства и управления воздушным движением. Техническим результатом изобретения является повышение защищенности РЛК от пассивных помех. Указанный результат достигается...
Тип: Изобретение
Номер охранного документа: 0002677680
Дата охранного документа: 21.01.2019
21.02.2019
№219.016.c53d

Способ определения дальности до движущегося воздушного объекта методом пассивной локации

Изобретение относится к области измерения расстояний. Способ определения дальности до движущегося воздушного объекта методом пассивной локации включает получение оптического изображения движущегося воздушного объекта; преобразование полученного изображение в цифровое; распознавание изображения...
Тип: Изобретение
Номер охранного документа: 0002680265
Дата охранного документа: 19.02.2019
02.10.2019
№219.017.cba8

Оптико-электронный комплекс для оптического обнаружения, сопровождения и распознавания наземных и воздушных объектов

Изобретение относится к области пассивной локации. Оптико-электронный комплекс (ОЭК) включает обзорный тепловизор (ОТ) 1 для пассивного обнаружения наземных и воздушных объектов (НВОБ) и телевизионно-оптическую систему (ТОС) 2 для автозахвата на сопровождение и идентификации типа НВОБ. ОТ 1...
Тип: Изобретение
Номер охранного документа: 0002701177
Дата охранного документа: 25.09.2019
08.12.2019
№219.017.eb3e

Способ идентификации типа самолета средствами пассивной оптической локации и устройство для его осуществления

Изобретение относится к способам пассивной дистанционной телевизионной идентификации типа самолета средствами пассивной оптической локации и устройствам для его осуществления. Технический результат заключается в повышении достоверности идентификации типа самолета независимо от ракурса его...
Тип: Изобретение
Номер охранного документа: 0002708346
Дата охранного документа: 05.12.2019
23.02.2020
№220.018.04e9

Способ определения курса объекта на линейной траектории с использованием измерений его радиальной скорости

Изобретение относится к области радиолокации и предназначено для определения курса неманеврирующих объектов. Технический результатом изобретения заключается в повышении точности определения курса неманеврирующего объекта. Указанный результат достигается за счет использования выборки...
Тип: Изобретение
Номер охранного документа: 0002714884
Дата охранного документа: 20.02.2020
07.07.2020
№220.018.3082

Устройство гашения механических колебаний элементов антенных систем, выполненных в форме консольной балки

Группа изобретений относится к области машиностроения. Устройство гашения включает участок консольного элемента в виде полой металлической трубы, первый и второй элементы упругости, груз осесимметричной формы, первый и второй крепежные кронштейны. Груз расположен между двумя элементами...
Тип: Изобретение
Номер охранного документа: 0002725826
Дата охранного документа: 06.07.2020
12.04.2023
№223.018.4925

Способ распознавания баллистической цели с использованием оценок первого и второго приращений радиальной скорости

Изобретение относится к области радиолокации. Техническим результатом является повышение вероятности распознавания баллистической цели (БЦ) в плотных слоях атмосферы и определение типа участка траектории, на котором находится БЦ. В заявленном способе осуществляют определение вертикальной...
Тип: Изобретение
Номер охранного документа: 0002793774
Дата охранного документа: 06.04.2023
16.05.2023
№223.018.61b1

Цифровое устройство определения пространственной ориентации воздушного объекта относительно пассивного оптико-электронного комплекса

Изобретение относится к устройствам для определения пространственной ориентации воздушного объекта. Технический результат заключается в повышении точности определения пространственной ориентации воздушного объекта относительно пассивного оптико-электронного комплекса. Устройство содержит...
Тип: Изобретение
Номер охранного документа: 0002746088
Дата охранного документа: 06.04.2021
19.06.2023
№223.018.826f

Способ и устройство определения вертикальной скорости баллистической цели с использованием оценок первого и второго приращений ее радиальной скорости

Изобретение относится к радиолокации. Техническим результатом является повышение точности определения вертикальной скорости баллистической цели (БЦ) за счет устранения неоднозначности измерений ее радиальной скорости В заявленном способе по измерениям дальности r и угла места ε вычисляют...
Тип: Изобретение
Номер охранного документа: 0002797227
Дата охранного документа: 31.05.2023
+ добавить свой РИД