×
20.01.2018
218.016.118a

Результат интеллектуальной деятельности: Способ получения магнитоактивного соединения

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано при создании магнитоактивных катализаторов. Способ получения раствора магнитоактивного соединения включает конденсацию из раствора сульфата железа (II), содержащего лигносульфонаты, и раствора окислителя при их смешении. В качестве окислителя используют водно-аммиачный раствор нитрата серебра с добавкой тетраэтиламмоний гидроксида. Изобретение позволяет упростить синтез магнитоактивного соединения и получать его в виде устойчивого водного раствора. 3 з.п. ф-лы, 1 табл., 21 пр.

Изобретение касается способов синтеза магнитоактивных соединений. Наноразмерные благородные металлы - серебро, золото, палладий - обладают уникальными свойствами и возможностями использования в катализе, микроэлектронике, хранении данных, доставке лекарственных средств, при создании биодатчиков. Наиболее популярным способом получения металлических наночастиц является восстановление металлов из соответствующих солей в водных растворах или растворах органических растворителей в присутствии блокирующих агрегирование стабилизаторов. В качестве восстановителей обычно используют водород, литийалюминийгидриды и боргидриды металлов, спирты и амины. Наноразмерные катализаторы трудно отделить от реакционной среды, так как фильтрование и центрифугирование не подходят для этих целей. Решение этой проблемы заключается в использовании магнитоактивных катализаторов, которые могут быть легко извлечены из реакционной среды с помощью магнитного поля. Синтез материалов состава Ag-Fe3O4 обычно многостадиен и продолжителен во времени.

Известен способ получения наночастиц магнитоактивного соединения состава Ag/Fe3O4 путем смешения олеиновой кислоты, олеиламина в 1,2-гексадекандиоле, нагревания раствора до 120°С в атмосфере азота. При перемешивании добавляют раствор пентакарбонила железа Fe(CO)5. Через 5 мин добавляют деаэрированный раствор нитрата серебра и олеиламина в толуоле. Раствор нагревают до 205°С до кипения за 90 мин. Реакционную смесь охлаждают до комнатной температуры. После добавления изопропилового спирта осадок центрифугируют [Нао D., Cheng-Min S., Chao Н., Zhi-Chuan X., Chen L., Yuan Т., Xue-Zhao S., Hong-Jun G. Synthesis and properties of Au-Fe3O4 and Ag-Fe3O4 heterodimeric nanoparticles // Chin. Phys. B. - 2010. - Vol. 19, N 6. - P. 066102]. Недостатком этого способа является многостадийность.

Известен способ получения Fe3O4/Ag композита путем добавления к раствору сульфата железа(II) FeSO4 при перемешивании раствора аммиака, последующего нагревания до 70-80°С за 6 мин с помощью микроволнового излучения. После охлаждения с помощью магнитного поля отделяют частицы магнетита. Продукт затем трижды промывают водой и сушат в вакууме. Затем магнетит добавляют к раствору нитрата серебра, полученную смесь нагревают до кипения, добавляют раствор винной кислоты и кипятят 5 мин. Затем наночастицы отделяют с помощью внешнего магнитного поля [Liu С.Н., Zhou Z.D., Yu X., Lv B.Q., Mao J.F., Xiao D. Preparation and characterization of Fe3O4/Ag composite magnetic nanoparticles // Inorganic Materials. - 2008. - Vol .44, N 3. - P. 291-295]. Недостатком является многостадийность способа.

Известен способ получения магнитного нанокомпозита, согласно которому к 1 л раствора 0,05 моль сульфата железа(II) FeSO4 и 0,1 моль гексагидрата хлорида железа(III) FeCl3⋅6H2O при интенсивном перемешивании добавляют 25% водный раствор аммиака до рН 10-12. Для нанесения серебряного покрытия через 10-15 мин реакционную смесь нагревают до 40°С, последовательно добавляют 0,1% раствор нитрата серебра AgNO3 и 10% раствор глюкозы и постепенно повышают температуру до 60-70°С, при которой смесь выдерживают 40 мин. Раствор выдерживают в постоянном магнитном поле 24 ч. Осадок промывают водой до рН 9-10, фильтруют и высушивают при комнатной температуре. [Пат. 95222 . МПК (2014.01) C01G 5/00, C01G 49/00. Cпociб одержання магнiтного нанокомпозиту Ag@Fe3O4 з острiвковим покриттям / Чан Т.М., Левiтiн ., Криськiв О.С. // Бюл. - 2014. - №23. - 5 с]. Недостатками являются многостадийность и большая продолжительность способа.

Известен способ получения композита, состоящего из магнетита и серебра, согласно которому 1,6 г гексагидрата хлорида железа(III) FeCl3⋅6H2O и 0,34 г нитрата серебра AgNO3 добавляют к 60 мл этиленгликоля при комнатной температуре, затем при энергичном перемешивании добавляют 3,2 г ацетата натрия и 14 мл этилендиамина для получения прозрачного раствора. После перемешивания в течение приблизительно 30 мин, раствор переносят в автоклав и выдерживают при 200°С в течение 6 ч с последующим охлаждением до температуры окружающей среды естественным образом. Черный осадок центрифугируют, промывают этанолом несколько раз и сушат при 60°С в вакууме [Ai L., Zeng С, Wang Q. One-step solvothermal synthesis of Ag-Fe3O4 composite as a magnetically recyclable catalyst for reduction of Rhodamine В // Catalysis Communications. - 2011. - Vol. 14, N 1. - P. 68-73]. Недостатками являются необходимость проведения реакции при повышенных температурах в автоклаве, большая продолжительность и многостадийность.

Наиболее близким является способ получения магнитоактивного соединения, в соответствии с которым магнитоактивное соединение получают путем окисления соли железа(II) раствором нитрата серебра в водно-аммиачном растворе. При смешении растворов сразу же выделяется черный осадок магнитоактивного соединения (прототип). [Патент 2572418 РФ. МПК C01G 49/08 (2006.01), H01F 1/00 (2006.01). Опубл. 10.01.2016. Бюл. №1]. Недостатком данного способа является невозможность получать магнитоактивное соединение в виде раствора.

Задачей изобретения является синтез раствора магнитоактивного соединения.

Это достигается путем проведения конденсации из растворов сульфата железа(II) и окислителя при их смешении, причем в качестве окислителя использован водно-аммиачный раствор нитрата серебра с добавкой тетраэтиламмоний гидроксида (ТЭАГ), а раствор сульфата железа(II) содержит лигносульфонаты (ЛСТ).

Предлагаемый способ осуществляется следующим образом. К раствору сульфата железа(II) и лигносульфонатов добавляют расчетный объем аммиачного раствора нитрата серебра с добавкой тетраэтиламмоний гидроксида. Сразу же образуется продукт, обладающий магнитной активностью.

Пример 1. Раствор сульфата железа(II) готовят следующим образом. К 10 мл раствора лигносульфонатов концентрацией 740 мг/л добавляют 2 мл раствора сульфата железа(II) (концентрацией 0,1 М). Соотношение лигносульфонатов и железа составляет 0,7 г ЛСТ/г Fe. Раствор окислителя готовят, смешивая 0,3 мл 0,2 М раствора нитрата серебра AgNO3, 1 мл концентрированного раствора аммиака NH4OH и 1 мл раствора тетраэтиламмоний гидроксида, концентрацией 35%. Соотношение окислителя и тетраэтиламмоний гидроксида к железу составляет 0,58 и 31,5 г/г Fe соответственно.

К раствору сульфата железа(II) при перемешивании добавляют раствор окислителя. При смешении образуется окрашенный в черный цвет раствор, обладающий магнитной активностью. Относительная магнитная восприимчивость (ОМВ), измеренная с помощью весов Гуи, через 6 мин после смешения составила 7,2 г/г Fe.

Пример 2. Способ получения магнитоактивного соединения по примеру 1, отличающийся тем, что измерение относительной магнитной восприимчивости проводили через 30 мин после смешения. Величина относительной магнитной восприимчивости составила 12,0 г/г Fe.

Пример 3. Способ получения магнитоактивного соединения по примеру 1, отличающийся тем, что измерение относительной магнитной восприимчивости проводили через 55 мин после смешения. Величина относительной магнитной восприимчивости составила 15,5 г/г Fe.

Пример 4. Способ получения магнитоактивного соединения по примеру 1, отличающийся тем, что измерение относительной магнитной восприимчивости проводили через 180 мин после смешения. Величина относительной магнитной восприимчивости составила 20,1 г/г Fe.

Пример 5. Способ получения магнитоактивного соединения по примеру 1, отличающийся тем, что объем раствора лигносульфонатов составил 2,5 мл, а концентрация 2980 мг/л. Измерение относительной магнитной восприимчивости проводили через 9 мин после смешения. Величина относительной магнитной восприимчивости составила 8,9 г/г Fe.

Пример 6. Способ получения магнитоактивного соединения по примеру 5, отличающийся тем, что измерение относительной магнитной восприимчивости проводили через 60 мин после смешения. Величина относительной магнитной восприимчивости составила 13,0 г/г Fe.

Пример 7. Способ получения магнитоактивного соединения по примеру 5, отличающийся тем, что измерение относительной магнитной восприимчивости проводили через 180 мин после смешения. Величина относительной магнитной восприимчивости составила 16,2 г/г Fe.

Пример 8. Способ получения магнитоактивного соединения по примеру 5, отличающийся тем, что объем раствора лигносульфонатов составил 1,25 мл, а концентрация 5950 мг/л. Измерение относительной магнитной восприимчивости проводили через 120 мин после смешения. Величина относительной магнитной восприимчивости составила 12,3 г/г Fe.

Пример 9. Способ получения магнитоактивного соединения по примеру 1, отличающийся тем, что синтез проведен без использования тетраэтиламмоний гидроксида. Продукт реакции представляет собой компактный осадок магнитоактивного соединения. Измерение относительной магнитной восприимчивости проводили через 45 мин после смешения. Величина относительной магнитной восприимчивости составила 23,3 г/г Fe.

Пример 10. Способ получения магнитоактивного соединения по примеру 1, отличающийся тем, что расход тетраэтиламмоний гидроксида составил 0,1 мл. Соотношение тетраэтиламмоний гидроксида к железу составляет 3,15 г/г железа. Продукт реакции представляет собой компактный осадок магнитоактивного соединения. Измерение относительной магнитной восприимчивости проводили через 10 мин после смешения. Величина относительной магнитной восприимчивости составила 7,3 г/г Fe.

Пример 11. Способ получения магнитоактивного соединения в условиях примера 10, отличающийся тем, что измерение относительной магнитной восприимчивости проводили через 30 мин после смешения. Величина относительной магнитной восприимчивости составила 17,4 г/г Fe. Продукт реакции представляет собой компактный осадок магнитоактивного соединения.

Пример 12. Способ получения магнитоактивного соединения по примеру 1, отличающийся тем, что расход тетраэтиламмоний гидроксида составил 0,2 мл. Соотношение тетраэтиламмоний гидроксида к железу составляет 6,3 г/г железа. Продукт реакции представляет собой компактный осадок магнитоактивного соединения. Измерение относительной магнитной восприимчивости проводили через 2 мин после смешения. Величина относительной магнитной восприимчивости составила 1,0 г/г Fe.

Пример 13. Способ получения магнитоактивного соединения по примеру 1, отличающийся тем, что расход тетраэтиламмоний гидроксида составил 0,4 мл. Соотношение тетраэтиламмоний гидроксида к железу составляет 12,6 г/г железа. Продукт реакции представляет собой раствор магнитоактивного соединения. Измерение относительной магнитной восприимчивости проводили через 2 мин после смешения. Величина относительной магнитной восприимчивости составила 2,3 г/г Fe.

Пример 14. Способ получения магнитоактивного соединения в условиях примера 13, отличающийся тем, что измерение относительной магнитной восприимчивости проводили через 30 мин после смешения. Продукт реакции представляет собой раствор магнитоактивного соединения. Величина относительной магнитной восприимчивости составила 7,6 г/г Fe.

Пример 15. Способ получения магнитоактивного соединения в условиях примера 13, отличающийся тем, что измерение относительной магнитной восприимчивости проводили через 65 мин после смешения. Продукт реакции представляет собой раствор магнитоактивного соединения. Величина относительной магнитной восприимчивости составила 8,3 г/г Fe.

Пример 16. Способ получения магнитоактивного соединения в условиях примера 15, отличающийся тем, что измерение относительной магнитной восприимчивости проводили через 200 мин после смешения. Продукт реакции представляет собой раствор магнитоактивного соединения. Величина относительной магнитной восприимчивости составила 9,4 г/г Fe.

Пример 17. Способ получения магнитоактивного соединения по примеру 1, отличающийся тем, что конденсация проведена без использования нитрата серебра. Продукт реакции представляет собой компактный осадок. Измерение относительной магнитной восприимчивости проводили через 72 мин после смешения. Величина относительной магнитной восприимчивости составила 0,2 г/г Fe.

Пример 18. Способ получения магнитоактивного соединения по примеру 1, отличающийся тем, что раствор окислителя готовят, смешивая 0,2 мл 0,2 М раствора нитрата серебра AgNO3, 1 мл концентрированного раствора аммиака NH4OH и 0,4 мл раствора тетраэтиламмоний гидроксида, концентрацией 35%. Соотношение окислителя и тетраэтиламмоний гидроксида к железу составляет 0,39 и 12,6 г/г железа соответственно. Продукт реакции представляет собой раствор магнитоактивного соединения. Измерение относительной магнитной восприимчивости проводили через 20 мин после смешения. Величина относительной магнитной восприимчивости составила 6,1 г/г Fe.

Пример 19. Способ получения магнитоактивного соединения по примеру 18, отличающийся тем, что измерение относительной магнитной восприимчивости проводили через 72 мин после смешения. Величина относительной магнитной восприимчивости составила 9,2 г/г Fe.

Пример 20. Способ получения магнитоактивного соединения по примеру 1, отличающийся тем, что к 8 мл раствора лигносульфонатов концентрацией 740 мг/л добавляют 2 мл раствора сульфата железа(II) (концентрацией 0,1 М). Соотношение лигносульфонатов и железа составляет 0,6 г ЛСТ/г Fe. Продукт реакции представляет собой раствор магнитоактивного соединения. Величина относительной магнитной восприимчивости, измеренная через 30 мин после смешения, составила 8,3 г/г Fe.

Пример 21. Способ получения магнитоактивного соединения по примеру 1, отличающийся тем, что к 10 мл раствора лигносульфонатов концентрацией 740 мг/л добавляют 1,6 мл раствора сульфата железа(II) (концентрацией 0,1 М). Соотношение лигносульфонатов и железа составляет 0,75 г ЛСТ/г Fe. Продукт реакции представляет собой раствор магнитоактивного соединения. Величина относительной магнитной восприимчивости, измеренная через 45 мин после смешения, составила 6,3 г/г Fe.

Таким образом, для получения устойчивого раствора магнитоактивного соединения, раствор железа(II) должен содержать лигносульфонаты в количестве 0,56-0,7 г/г Fe, расход нитрата серебра должен быть в интервале 0,12-0,58 г Ag/г Fe, а добавка тетраэтиламмоний гидроксида должна быть не менее 12,6 г/г Fe.

Полученные результаты, сведенные в таблице, свидетельствуют о том, что использование тетраэтиламмоний гидроксида позволяет упростить синтез магнитоактивного соединения и получать его в виде раствора. Кроме того, отмечено, что раствор магнитоактивного соединения устойчив в течение длительного времени.


Способ получения магнитоактивного соединения
Источник поступления информации: Роспатент

Показаны записи 31-40 из 42.
13.02.2018
№218.016.2471

Способ усиления фундамента

Изобретение относится к строительству и, в частности, к инъекционному закреплению бутовой кладки фундамента при реконструкции зданий и сооружений. Способ усиления фундамента включает проходку в нем скважины, установку трубы-инъктора и нагнетание закрепляющего состава. После установки...
Тип: Изобретение
Номер охранного документа: 0002642762
Дата охранного документа: 25.01.2018
13.02.2018
№218.016.24b6

Способ выявления и устранения дефектов изготовляемой в грунте сваи

Изобретение относится к строительству, а именно к технологии изготовления буровых и набивных свай. Способ выявления и устранения дефектов изготавливаемой в грунте сваи включает формирование скважины, установку в нее арматурного каркаса, прокладку линий связи, подачу в скважину отверждаемого...
Тип: Изобретение
Номер охранного документа: 0002642760
Дата охранного документа: 25.01.2018
17.02.2018
№218.016.2a13

Устройство для тепловой правки круглых пил

Изобретение относится к устройствам для тепловой правки круглой пилы. Устройство содержит встроенный в нерабочую зону узла резания круглой пилы нагревательный элемент, соединенный с источником питания, датчик температуры пильного диска для измерения температуры в зоне, прилегающей к зубчатой...
Тип: Изобретение
Номер охранного документа: 0002643024
Дата охранного документа: 29.01.2018
17.02.2018
№218.016.2b34

Датчик для измерения нормальных напряжений в грунтах

Датчик включает в себя корпус из тонкого эластичного материала, во внутренней полости которого размещаются электроды и искусственный грунт, приготовленный из природного грунта путем замещения одной из фракции твердых частиц порошком электропроводного вещества тех же размеров. Искусственный...
Тип: Изобретение
Номер охранного документа: 0002642977
Дата охранного документа: 29.01.2018
17.02.2018
№218.016.2c14

Способ циркуляции воздуха при подаче его под давлением на фрикционные поверхности тормозного механизма в процессе торможения и устройство для его осуществления

Группа изобретений относится к области транспортного машиностроения. Устройство для осуществления способа циркуляции воздуха при его подаче в сжатом состоянии на фрикционные поверхности тормозного механизма включает наличие на внешних относительно исходного и текущего зазоров торцевых...
Тип: Изобретение
Номер охранного документа: 0002643311
Дата охранного документа: 31.01.2018
04.04.2018
№218.016.312f

Составная деревянная балка на металлических зубчатых пластинах

Изобретение относится к области строительства, в частности к области изготовления и усиления деревянных конструкций, и может быть использовано для деревянных несущих конструкций зданий и сооружений. Балка состоит из двух и более брусьев древесины, объединенных по высоте металлическими зубчатыми...
Тип: Изобретение
Номер охранного документа: 0002645026
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.32a2

Устройство для получения горячего и холодного воздуха в лесосушильной камере

Изобретение относится к деревообрабатывающей промышленности. Установка для получения горячего и холодного воздуха в лесосушильной камере содержит осевой вентилятор с обечайкой и приводом от электродвигателя, рабочее колесо с лопастями и ступицей, систему вихревых трубок, размещенных на наружной...
Тип: Изобретение
Номер охранного документа: 0002645385
Дата охранного документа: 21.02.2018
10.05.2018
№218.016.4b0e

Теплоизоляционное изделие на минеральном связующем

Изобретение относится к области производства строительных материалов и может быть использовано при производстве термостойкой конструкционной теплоизоляции на основе минеральных волокон. Теплоизоляционное изделие на минеральном связующем, полученное из смеси, содержащей в качестве связующего...
Тип: Изобретение
Номер охранного документа: 0002651718
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4dc9

Способ управления обработкой стволов артиллерийских установок

Изобретение относится к области обработки полых длинномерных тел вращения, а именно к способам управления обработкой стволов артиллерийских установок. Способ управления обработкой стволов артиллерийских установок включает в себя сверление отверстия заготовки ствола и наружное точение. При...
Тип: Изобретение
Номер охранного документа: 0002652295
Дата охранного документа: 25.04.2018
01.07.2018
№218.016.6938

Способ получения магнитовосприимчивого адсорбента

Изобретение относится к области получения магнитовосприимчивых сорбентов, применяемых при очистке жидких и газовых сред. Предложен способ получения адсорбента, который включает смешение углеродсодержащего компонента, выбранного из гидролизного лигнина или опилок, с железосодержащим компонентом...
Тип: Изобретение
Номер охранного документа: 0002659281
Дата охранного документа: 29.06.2018
Показаны записи 31-35 из 35.
12.07.2018
№218.016.6ff4

Органический компонент питательной смеси для растений

Изобретение относится к сельскому хозяйству. Применение лигносульфонатов, модифицированных нитрованием, с помощью концентрированной азотной кислоты, или нитрозированием, с помощью нитрита натрия и раствора уксусной кислоты, в качестве органического компонента питательной смеси для растений....
Тип: Изобретение
Номер охранного документа: 0002660929
Дата охранного документа: 11.07.2018
29.08.2018
№218.016.8085

Способ определения хрома (iii) и железа (iii)

Изобретение относится к аналитической химии и касается способов определения ионов хрома (III) и железа (III) в растворе при совместном присутствии. Способ определения концентрации ионов хрома (III) и железа (III) при совместном присутствии в растворе включает добавление к анализируемому...
Тип: Изобретение
Номер охранного документа: 0002665160
Дата охранного документа: 28.08.2018
17.10.2018
№218.016.92fb

Способ получения 1-нитронафталина

Изобретение относится к органическому синтезу и касается способов получения 1-нитронафталина. Задачей изобретения является проведение нитрования в гомогенных условиях. 1-Нитронафталин образуется в результате взаимодействия нафталина, растворенного в диоксане, с нитрующей смесью, состоящей из...
Тип: Изобретение
Номер охранного документа: 0002669774
Дата охранного документа: 16.10.2018
20.05.2023
№223.018.67ef

Стабилизатор коллоидного раствора серебра

Изобретение относится к коллоидной химии и химии лигнина и касается применения нитрованного сульфатного лигнина следующего элементного состава, %: N - 2,4; С - 51,9; H - 4,3; S - 2,8; О - 38,5 в качестве стабилизатора коллоидного раствора серебра. Технический результат: повышение стабильности...
Тип: Изобретение
Номер охранного документа: 0002794897
Дата охранного документа: 25.04.2023
21.05.2023
№223.018.699f

Способ получения 5-нитрованилина

Изобретение относится к органической химии, конкретно к способу получения 5-нитрованилина. Способ заключается во взаимодействии ванилина с ацетилнитратом и характеризуется тем, что его осуществляют без использования хлорсодержащих растворителей. Ванилин растворяют в органическом растворителе -...
Тип: Изобретение
Номер охранного документа: 0002794896
Дата охранного документа: 25.04.2023
+ добавить свой РИД