×
20.01.2018
218.016.0f9a

Результат интеллектуальной деятельности: ЛИТИЙ-ИОННЫЙ АККУМУЛЯТОР

Вид РИД

Изобретение

Аннотация: Изобретение относится к электротехнической промышленности, в частности к устройствам для непосредственного преобразования химической энергии в электрическую, а конкретно - к литий-ионному аккумулятору. Литий-ионный аккумулятор содержит разделенные пористым сепаратором с электролитом и снабженные активными слоями положительный и отрицательный электроды, причем активный слой отрицательного электрода включает в качестве активного материала сплошную пленку аморфного кремния или кремниевого композита, на которую нанесен слой высокодисперсного нанотитаната лития. Изобретение позволяет повысить удельную емкость отрицательного электрода и аккумулятора в целом при достаточно хорошей циклируемости. 3 з.п. ф-лы, 5 ил.

Изобретение относится к электротехнической промышленности, в частности к устройствам для непосредственного преобразования химической энергии в электрическую, а конкретно - к литий-ионному аккумулятору, основанному на новой электрохимической системе.

Известны и широко распространены литий-ионные аккумуляторы, основанные на традиционной электрохимической системе [см., например, В. Scrosati, J. Garche. Lithium batteries: Status, prospects and future. Journal of Power Sources, 2010, V. 195, P. 2419-2430); Химические источники тока: Справочник / Под редакцией Н.В. Коровина и A.M. Скундина. - М: Издательство МЭИ, 2003, с. 740, Vladimir S. Bagotsky, Alexander М. Skundin, Yurij M. Volfkovich. Electrochemical Power Sources: Batteries, Fuel Cells, and Supercapacitors. Wiley. 2015]. В традиционной электрохимической системе отрицательные электроды изготавливают из графита или иного углеродного материала, положительные электроды - из литерованных оксидов кобальта, никеля или марганца, или из литированного фосфата железа.

В последнее время предпринимаются попытки использования кремния в качестве активного вещества отрицательных электродов литий-ионных аккумуляторов. Кремний обладает способностью внедрять гораздо большее количество лития, чем графит (теоретически - в 11 раз), что позволяет повысить удельную энергию всего аккумулятора за счет снижения массы активного вещества на отрицательном электроде. Однако при внедрении лития в кремний происходит значительное, более чем трехкратное, увеличение объема. Это приводит к тому, что в циклическом процессе заряда/разряда аккумулятора объемные изменения активного материала электрода вызывают его деградацию и потерю контакта с токоотводом. Для преодоления этого недостатка было предложено использовать тонкопленочные, в том числе, многослойные электроды, изготавливаемые, например, методами магнетронного напыления или химического осаждения из газовой фазы (напр., US Pat. 6,685,804, February 3, 2004, Sanyo Electric Co., Ltd.; US Pat. 6,887,511, May 3, 2005, Sanyo Electric Co., Ltd.; US Pat. 7,192,673, March 20, 2007, Sanyo Electric Co., Ltd.; US Pat. 7,410,728, August 12, 2008, Sanyo Electric Co., Ltd.). Тонкопленочные электроды на основе кремния обладают удельной емкостью (в расчете на единицу массы активного слоя), не сильно отличающейся от теоретических значений, и хорошей циклируемостью, если толщина пленки активного материала составляет десятки или сотни нанометров. Поскольку такие активные пленки наносят на металлические подложки толщиной не менее 10 мкм, то удельная емкость в расчете на единицу площади поверхности электрода (или в расчете на объем всего электрода с учетом металлической подложки) оказывается намного меньше, чем у обычных аккумуляторов с порошковым углеродным отрицательным электродом, где толщина активного слоя составляет 40-50 мкм. Увеличение толщины кремния или кремнийсодержащего композита с целью увеличения удельной емкости на единицу площади поверхности приводит к резкому ускорению деградации при циклировании.

Известно применение титаната лития в качестве активного вещества отрицательных электродов литий-ионных аккумуляторов (см., например, US Pat. 9,287,562, March 15, 2016, Panasonic Corp.; US Pat. 9,214,669, December 15, 2015, Kabushiki Kaisha Toshiba; US Pat. 9,209,451, December 8, 2015, Kyocera Corp.). Титанат лития не обладает высокой удельной емкостью (теоретическая удельная емкость титаната лития примерно вдвое уступает теоретической удельной емкости графита) и обычно работает при потенциале примерно на один вольт более положительном, чем кремний, поэтому сам по себе он не может обеспечить высоких значений удельной энергии аккумулятора, но электроды с таким материалом способны выдерживать несколько тысяч зарядно-разрядных циклов.

Наиболее близким к заявляемому является литий-ионный аккумулятор, отрицательный электрод в котором состоит из медной подложки, на которую нанесен слой кремния или кремниевого сплава толщиной не более 1 мкм (US Pat. 7,160,646, January 9, 2007, Sanyo Electric Co., Ltd.). Удельная емкость такого электрода составляет от 0,4 до 0,7 мАч/см2 и принципиально ограничена сверху. Поскольку, как следует из приведенного выше описания, удельная емкость электродов в расчете на единицу площади поверхности является ключевым показателем аккумулятора, желательно ее всемерное увеличение.

Задачей настоящего изобретения является создание литий-ионного аккумулятора с отрицательным электродом на основе кремния с существенным повышением удельной емкости электрода в расчете на единицу площади при сохранении достаточно хорошей циклируемости.

Технический результат, достигаемый настоящим изобретением, заключается в повышении удельной емкости отрицательного электрода и аккумулятора в целом при достаточно хорошей циклируемости.

Указанный технический результат достигается тем, что литий-ионный аккумулятор содержит разделенные пористым сепаратором с электролитом и снабженные активными слоями положительный и отрицательный электроды, причем активный слой отрицательного электрода включает в качестве активного материала сплошную пленку аморфного кремния или кремниевого композита, на которую нанесен слой высокодисперсного нанотитаната лития. Кремниевый композит имеет многослойную структуру и содержит слои окисленного кремния и сплава кремния с алюминием. Толщина пленки кремния или композита составляет от 0,1 до 5 мкм. Количество высокодисперсного нанотитаната лития составляет от 1 до 100 мг/см2.

Для лучшего понимания сущности предлагаемого изобретения приводятся чертежи и примеры изготовления отрицательных электродов и литий-ионных аккумуляторов с такими электродами, а также определения характеристик электродов и макетов аккумуляторов. Приведенные примеры не ограничивают заявленных характеристик, а служат только для иллюстрации идеи изобретения.

На чертежах показано следующее:

фиг. 1 - схематическое изображение поперечного разреза отрицательного электрода, где:

1 - подложка-токоотвод (фольга из никеля, титана или меди);

2 - пленка аморфного кремния или кремниевого композита;

3 - поверхностный слой высокодисперсного нанотитаната лития;

фиг. 2 - зарядная и разрядная кривые электрода по примеру 1 для первого цикла;

фиг. 3 - изменение удельной емкости по мере циклирования током в режиме С/2 для электрода по примеру 1 (1) и для сравнительного электрода без титанатного слоя (2);

фиг. 4 - зарядная и разрядная кривые макета аккумулятора по пример 2;

фиг. 5 - изменение разрядной емкости макета литий-ионного аккумулятора по примеру 2 при циклировании током 0,32 мА.

Пример 1. Заготовка электрода была изготовлена методом магнетронного напыления на установке «Оратория 22». Подложкой служила титановая фольга толщиной 15 мкм. Перед процессом напыления фольга обрабатывалась в течение 30 с при комнатной температуре в смеси H2SO4:HF:H2O в соотношении 1:1:20 и промывалась в деионизованной воде. Композитная пленка Si-O-Al наносилась с использованием одновременно двух мишеней - кремниевой и алюминиевой. Перед процессом нанесения пленки подложка прогревалась до температуры 140°С, а температура начала напыления составляла 70°С, далее принудительный нагрев подложки не производился. Давление остаточных газов составляло 2.5 10-5 Торр. Рабочими газами являлись аргон и кислород. Во время напыления расход кислорода составлял 8 см3/мин при давлении 4.8⋅10-5 Торр. Общее давление кислорода и аргона составляло 2⋅10-3 Торр. Мощности магнетронного разряда поддерживались на уровне 420-480 Вт для кремниевой мишени и 200-210 Вт для алюминиевой мишени. Электрод имел четырехслойную структуру, в которой первый и третий слои, считая от подложки, были обогащены алюминием, а второй и четвертый слои имели меньшее содержание алюминия. Обогащение пленки алюминием достигалось совместным нанесением с двух мишеней: кремниевой и алюминиевой, для обеднения пленки алюминием алюминиевая мишень отключалась. Общая толщина пленки кремниевого композита составляла 1,8 мкм.

На изготовленную таким образом заготовку наносили пасту, содержащую 80% высокодисперсного нанотитаната лития, 10% связующего (поливинилиденфторид) и 10% сажи Timcal в качестве добавки, повышающей электронную проводимость активного слоя. При изготовлении пасты смесь нанотитаната лития и сажи вводили в раствор поливинилиденфторида в N-метилпирролидоне и полученную суспензию гомогенизировали на ультразвуковой установке УЗДН-4. Количество нанотитаната лития составило 50 мг/см2. Заготовку электрода с нанесенным на нее слоем нанотитаната лития прессовали усилием 1 т/см2 и затем сушили в вакууме при температуре 80°С.

Для характеризации отрицательных электродов по настоящму изобретению проводили эксперименты с трехэлектродными лабораторными ячейками, представляющими собой макеты литий-ионного аккумулятора и содержащие рабочий отрицательный электрод, выполненный, как описано выше, вспомогательный электрод из литиевой фольги и такой же литиевый электрод сравнения. Все электроды были разделены сепаратором из нетканого полипропилена (НИИ «Уфим», Москва). В качестве электролитов использовали 1 М LiPF6 в смеси этиленкарбонат-диэтилкарбонат-диметилкарбонат (ЭК-ДЭК-ДМК) (1:1:1) или 1 М LiClO4 в смеси пропиленкарбонат-диметоксиэтан (ПК-ДМЭ) (7:3). Известно, что электроды литий-ионного аккумулятора очень чувствительны к следам влаги в неводных электролитах. Содержание воды в электролите не превышало 20 ppm. Гальваностатическое циклирование электродов проводили с помощью компьютеризированного зарядно-разрядного стенда (ООО «Бустер», Санкт-Петербург). Пределы циклирования составляли от 0.01 до 2.5 В. Токи циклирования составляли от 20 до 4000 мА/г кремния.

После сборки электрохимической ячейки и заливки ее электролитом потенциал рабочего электрода составлял около 3 В, что соответствует бестоковому потенциалу нанотитаната лития относительно металлического лития. При катодной поляризации происходило внедрение лития вначале в нанотитанат лития, а затем в кремний; при анодной поляризации происходила экстракция лития в обратном порядке. Фиг. 2 показывает типичные зарядные и разрядные кривые, т.е. зависимости потенциала электрода от количества пропущенного электричества на первом цикле. На зарядной кривой можно выделить небольшое «плечо» при потенциалах около 1,5 В, соответствующее внедрению лития в нанотитанат лития, дальнейший ход зарядной кривой типичен для электродов из кремниевых композитов. На разрядной кривой процессы экстракции лития из кремния и титаната лития не разделяются, т.к. протекают в одном и том же интервале потенциалов.

Как видно из фиг. 2, удельная разрядная емкость электрода по настоящему изобретению составляет около 2 мАч/см2, что примерно втрое превышает типичные значения для электродов на основе кремниевых композитов без верхнего титанатного слоя.

На фиг. 3 приведено сравнение способности к циклированию электрода по примеру 1 и такого же электрода без верхнего титанатного слоя.

Пример 2. С использованием электрода по примеру 1 был изготовлен макет литий-ионного аккумулятора. Положительный электрод в этом макете был изготовлен с феррофосфатом лития в качестве активного вещества. Количество ферофосфата лития в положительном электроде на 50% превышало стехиометрическое количество активного вещества в отрицательном электроде (суммарно нанотитаната лития и кремния), так что емкость макета в целом определялась емкостью отрицательного электрода. Макет испытывался при плотностях тока от 0,1 до 2 мА/см2. Циклические испытания проводились в диапазоне напряжений макета от 2 до 3,5 В. Типичные зарядная и разрядная кривые макета при плотности тока 0,5 мА/см2 приведена на фиг. 4, а на фиг. 5 показано изменение емкости макета при его циклировании.


ЛИТИЙ-ИОННЫЙ АККУМУЛЯТОР
ЛИТИЙ-ИОННЫЙ АККУМУЛЯТОР
ЛИТИЙ-ИОННЫЙ АККУМУЛЯТОР
ЛИТИЙ-ИОННЫЙ АККУМУЛЯТОР
Источник поступления информации: Роспатент

Показаны записи 51-60 из 67.
10.04.2019
№219.017.0766

Летучий ингибитор атмосферной коррозии

Изобретение относится к технике защиты металлов от атмосферной коррозии с помощью летучих ингибиторов. Ингибитор содержит, мас.%: гетероциклическое азотсодержащее соединение 5-20, продукт конденсации альдегида с первичным амином 20-50, бензойная или замещенная бензойная кислота 5-20,...
Тип: Изобретение
Номер охранного документа: 0002457283
Дата охранного документа: 27.07.2012
10.04.2019
№219.017.0a05

Пассивация поверхности металлов для защиты от атмосферной коррозии

Изобретение относится к технике защиты металлов от атмосферной коррозии с помощью контактных ингибиторов, в частности к получению из водных растворов устойчивых пассивирующих слоев на поверхности металлов, и может быть использовано для защиты прецизионных металлических изделий. Пассивирующий...
Тип: Изобретение
Номер охранного документа: 0002468125
Дата охранного документа: 27.11.2012
12.04.2023
№223.018.451b

Литий-кислородный аккумулятор с твердым полимерным электролитом

Изобретение относится к электротехнической промышленности, в частности к устройствам для непосредственного преобразования химической энергии в электрическую, конкретно – к литий кислородному аккумулятору. Литий-кислородный аккумулятор с твердым полимерным электролитом содержит положительный...
Тип: Изобретение
Номер охранного документа: 0002763037
Дата охранного документа: 27.12.2021
20.04.2023
№223.018.4ad5

Центробежное устройство для измерения сдвиговой прочности адгезии льда к твердым поверхностям

Изобретение относится к области исследования материалов. Центробежное устройство для измерения сдвиговой прочности адгезии льда к твердым поверхностям содержит серводвигатель, защитный кожух, диск для размещения тестируемых образцов, регистратор температуры, стробоскопический осветитель, две...
Тип: Изобретение
Номер охранного документа: 0002777678
Дата охранного документа: 08.08.2022
20.04.2023
№223.018.4b57

Способы и стенд для измерения деформации гранул нанопористых материалов, стимулированной адсорбцией или температурой дилатометрическим методом

Заявленная группа изобретений относится к области измерительной техники и экспериментального изучения физико-химических свойств пористых материалов, а именно к технике и технологи измерения деформации пористых материалов, стимулированной адсорбцией или температурой, и может быть использована...
Тип: Изобретение
Номер охранного документа: 0002766188
Дата охранного документа: 09.02.2022
15.05.2023
№223.018.57f9

Способ селективного извлечения скандия из редкоземельных концентратов

Изобретение относится к области металлургии редких металлов и может быть использовано в технологии селективного извлечения скандия из концентратов редкоземельных элементов (РЗЭ). Для выделения скандия из водного раствора, содержащего нитрат скандия, нитрат иттрия, нитраты редкоземельных...
Тип: Изобретение
Номер охранного документа: 0002767924
Дата охранного документа: 22.03.2022
16.05.2023
№223.018.5f76

Водная суспензия, содержащая органосилан, ингибитор коррозии и промотор поликонденсации, и способ получения защитных пленок на поверхности вольфрама и покрытий на его основе из водной суспензии, содержащей органосилан, ингибитор коррозии и промотор поликонденсации

Группа изобретений относится к области поверхностных пленок для временной консервации поверхности вольфрама и покрытий на его основе в коррозионно-агрессивных атмосферах. Для получения защитной пленки на поверхности вольфрама или на поверхности покрытий на основе вольфрама используют водную...
Тип: Изобретение
Номер охранного документа: 0002744336
Дата охранного документа: 05.03.2021
16.05.2023
№223.018.5f78

Водная суспензия, содержащая органосилан, ингибитор коррозии и промотор поликонденсации, и способ получения защитных пленок на поверхности вольфрама и покрытий на его основе из водной суспензии, содержащей органосилан, ингибитор коррозии и промотор поликонденсации

Группа изобретений относится к области поверхностных пленок для временной консервации поверхности вольфрама и покрытий на его основе в коррозионно-агрессивных атмосферах. Для получения защитной пленки на поверхности вольфрама или на поверхности покрытий на основе вольфрама используют водную...
Тип: Изобретение
Номер охранного документа: 0002744336
Дата охранного документа: 05.03.2021
16.05.2023
№223.018.610a

Анод литий-ионного аккумулятора для работы при пониженных температурах и способ его изготовления

Изобретение относится к электротехнической промышленности, в частности, к устройствам для непосредственного преобразования химической энергии в электрическую, а конкретно - к литий-ионному аккумулятору. Способ изготовления анода литий-ионного аккумулятора включает нанесение массивов наночастиц...
Тип: Изобретение
Номер охранного документа: 0002743576
Дата охранного документа: 20.02.2021
16.05.2023
№223.018.614d

Способ обработки поверхностей металлов с многомодальной шероховатостью для придания им супергидрофобности и антикоррозионных свойств

Изобретение относится к области защиты металлов от коррозии. Способ включает обработку поверхностей металлов с многомодальной шероховатостью в парах гидрофобизатора при повышенной температуре от 60 до 150 °С, при этом в качестве гидрофобизатора используют стеариновую, лауриловую кислоты, их...
Тип: Изобретение
Номер охранного документа: 0002741028
Дата охранного документа: 22.01.2021
Показаны записи 51-60 из 67.
02.03.2019
№219.016.d206

Мембрана ионоселективного электрода для определения ионов кальция

Изобретение относится к области ионометрии, а именно к разрабоке ионоселективных электродов с мембранами на основе полимерных супрамолекулярных систем, и может быть использовано для прямого потенциометрического определения активности ионов кальция в водных растворах: природных, сточных вод, а...
Тип: Изобретение
Номер охранного документа: 0002680865
Дата охранного документа: 28.02.2019
10.04.2019
№219.017.08ac

Способ переработки газообразных алканов

Изобретение относится к способу переработки газообразных алканов путем воздействия ионизирующим излучением на содержащую их сырьевую смесь с получением продуктов радиолиза, в процессе которого из продуктов радиолиза постоянно удаляют водород и конденсируемую фракцию, являющуюся целевым...
Тип: Изобретение
Номер охранного документа: 0002437919
Дата охранного документа: 27.12.2011
19.04.2019
№219.017.32ac

Состав для получения супергидрофобного покрытия

Изобретение относится к составам для получения супергидрофобного покрытия на силоксановом резиновом изоляторе. Предложен состав, включающий (% масс.): гидрофобизующий поверхность компонент - фторуглеводородный силан, содержащий гидролизуемые функциональные группы, общей формулы YCF (CF)...
Тип: Изобретение
Номер охранного документа: 0002400510
Дата охранного документа: 27.09.2010
24.05.2019
№219.017.5d8a

Мембрана ионоселективного электрода для определения ионов кадмия

Изобретение относится к области ионометрии, а именно к разработке ионоселективных электродов с мембранами на основе полимерных супрамолекулярных систем. Предлагаемое изобретение предназначено для прямого потенциометрического определения активности катионов кадмия в водных растворах и может быть...
Тип: Изобретение
Номер охранного документа: 0002688951
Дата охранного документа: 23.05.2019
10.07.2019
№219.017.ad9d

Способ электрохимического мультисенсорного обнаружения и идентификации алкалоидов

Изобретение относится к области химического и биологического анализа, в частности для электрохимического детектирования алкалоидов. Техническим результатом изобретения является повышение достоверности получаемых результатов, упрощение способа и сокращение времени его осуществления. Сущность...
Тип: Изобретение
Номер охранного документа: 0002375705
Дата охранного документа: 10.12.2009
10.07.2019
№219.017.af20

Способ получения электропроводящей бумаги на основе нитевидных кристаллов ванадиевых бронз

Изобретение касается электропроводящей бумаги и способа ее получения (его варианта). Электропроводящая бумага состоит из нитевидных кристаллов состава BaVO длиной 0,5-3 мм и толщиной 0,1-10 мкм, переплетенных между собой в электропроводящую массу. Один из способов получения электропроводящей...
Тип: Изобретение
Номер охранного документа: 0002411319
Дата охранного документа: 10.02.2011
10.08.2019
№219.017.bd9d

1,20-дибром-3,6,9,12,15,18-гексаоксаперфтор-4,7,10,11,14,17-гексаметилэйкозан в качестве исходного соединения для эмульсий медико-биологического назначения и способ его получения

Изобретение относится к области фармацевтической химии и технологии, а именно к синтезу 1,20-дибром-3,6,9,12,15,18-гексаоксаперфтор-4,7,10,11,14,17-гексаметилэйкозана, используемого для получения оксигенирующих прямых эмульсий медицинского и биотехнологического назначения, например для лечения...
Тип: Изобретение
Номер охранного документа: 0002696874
Дата охранного документа: 07.08.2019
06.12.2019
№219.017.ea1a

Двухслойный суперконденсатор

Изобретение относится к области электротехники, а именно к двухслойному электрохимическому суперконденсатору на основе ионных жидкостей. Согласно изобретению в двухслойном суперконденсаторе, содержащем электроды из активированного углерода, электролит выполнен из смеси фреона и ионной жидкости,...
Тип: Изобретение
Номер охранного документа: 0002707962
Дата охранного документа: 03.12.2019
12.04.2023
№223.018.451b

Литий-кислородный аккумулятор с твердым полимерным электролитом

Изобретение относится к электротехнической промышленности, в частности к устройствам для непосредственного преобразования химической энергии в электрическую, конкретно – к литий кислородному аккумулятору. Литий-кислородный аккумулятор с твердым полимерным электролитом содержит положительный...
Тип: Изобретение
Номер охранного документа: 0002763037
Дата охранного документа: 27.12.2021
20.04.2023
№223.018.4bfc

Способ измерения коэффициента диффузии при неравновесной концентрации ионов в электролитах и устройство для его реализации

Изобретение относится к экспериментальной физике и электрохимии, в частности к исследованию явлений переноса массы и заряда в химических источниках тока, в том числе в литий-ионных аккумуляторах с жидким и твердым электролитом. Предложены способ и устройство для измерения коэффициента диффузии...
Тип: Изобретение
Номер охранного документа: 0002761448
Дата охранного документа: 08.12.2021
+ добавить свой РИД