×
20.01.2018
218.016.0f9a

Результат интеллектуальной деятельности: ЛИТИЙ-ИОННЫЙ АККУМУЛЯТОР

Вид РИД

Изобретение

Аннотация: Изобретение относится к электротехнической промышленности, в частности к устройствам для непосредственного преобразования химической энергии в электрическую, а конкретно - к литий-ионному аккумулятору. Литий-ионный аккумулятор содержит разделенные пористым сепаратором с электролитом и снабженные активными слоями положительный и отрицательный электроды, причем активный слой отрицательного электрода включает в качестве активного материала сплошную пленку аморфного кремния или кремниевого композита, на которую нанесен слой высокодисперсного нанотитаната лития. Изобретение позволяет повысить удельную емкость отрицательного электрода и аккумулятора в целом при достаточно хорошей циклируемости. 3 з.п. ф-лы, 5 ил.

Изобретение относится к электротехнической промышленности, в частности к устройствам для непосредственного преобразования химической энергии в электрическую, а конкретно - к литий-ионному аккумулятору, основанному на новой электрохимической системе.

Известны и широко распространены литий-ионные аккумуляторы, основанные на традиционной электрохимической системе [см., например, В. Scrosati, J. Garche. Lithium batteries: Status, prospects and future. Journal of Power Sources, 2010, V. 195, P. 2419-2430); Химические источники тока: Справочник / Под редакцией Н.В. Коровина и A.M. Скундина. - М: Издательство МЭИ, 2003, с. 740, Vladimir S. Bagotsky, Alexander М. Skundin, Yurij M. Volfkovich. Electrochemical Power Sources: Batteries, Fuel Cells, and Supercapacitors. Wiley. 2015]. В традиционной электрохимической системе отрицательные электроды изготавливают из графита или иного углеродного материала, положительные электроды - из литерованных оксидов кобальта, никеля или марганца, или из литированного фосфата железа.

В последнее время предпринимаются попытки использования кремния в качестве активного вещества отрицательных электродов литий-ионных аккумуляторов. Кремний обладает способностью внедрять гораздо большее количество лития, чем графит (теоретически - в 11 раз), что позволяет повысить удельную энергию всего аккумулятора за счет снижения массы активного вещества на отрицательном электроде. Однако при внедрении лития в кремний происходит значительное, более чем трехкратное, увеличение объема. Это приводит к тому, что в циклическом процессе заряда/разряда аккумулятора объемные изменения активного материала электрода вызывают его деградацию и потерю контакта с токоотводом. Для преодоления этого недостатка было предложено использовать тонкопленочные, в том числе, многослойные электроды, изготавливаемые, например, методами магнетронного напыления или химического осаждения из газовой фазы (напр., US Pat. 6,685,804, February 3, 2004, Sanyo Electric Co., Ltd.; US Pat. 6,887,511, May 3, 2005, Sanyo Electric Co., Ltd.; US Pat. 7,192,673, March 20, 2007, Sanyo Electric Co., Ltd.; US Pat. 7,410,728, August 12, 2008, Sanyo Electric Co., Ltd.). Тонкопленочные электроды на основе кремния обладают удельной емкостью (в расчете на единицу массы активного слоя), не сильно отличающейся от теоретических значений, и хорошей циклируемостью, если толщина пленки активного материала составляет десятки или сотни нанометров. Поскольку такие активные пленки наносят на металлические подложки толщиной не менее 10 мкм, то удельная емкость в расчете на единицу площади поверхности электрода (или в расчете на объем всего электрода с учетом металлической подложки) оказывается намного меньше, чем у обычных аккумуляторов с порошковым углеродным отрицательным электродом, где толщина активного слоя составляет 40-50 мкм. Увеличение толщины кремния или кремнийсодержащего композита с целью увеличения удельной емкости на единицу площади поверхности приводит к резкому ускорению деградации при циклировании.

Известно применение титаната лития в качестве активного вещества отрицательных электродов литий-ионных аккумуляторов (см., например, US Pat. 9,287,562, March 15, 2016, Panasonic Corp.; US Pat. 9,214,669, December 15, 2015, Kabushiki Kaisha Toshiba; US Pat. 9,209,451, December 8, 2015, Kyocera Corp.). Титанат лития не обладает высокой удельной емкостью (теоретическая удельная емкость титаната лития примерно вдвое уступает теоретической удельной емкости графита) и обычно работает при потенциале примерно на один вольт более положительном, чем кремний, поэтому сам по себе он не может обеспечить высоких значений удельной энергии аккумулятора, но электроды с таким материалом способны выдерживать несколько тысяч зарядно-разрядных циклов.

Наиболее близким к заявляемому является литий-ионный аккумулятор, отрицательный электрод в котором состоит из медной подложки, на которую нанесен слой кремния или кремниевого сплава толщиной не более 1 мкм (US Pat. 7,160,646, January 9, 2007, Sanyo Electric Co., Ltd.). Удельная емкость такого электрода составляет от 0,4 до 0,7 мАч/см2 и принципиально ограничена сверху. Поскольку, как следует из приведенного выше описания, удельная емкость электродов в расчете на единицу площади поверхности является ключевым показателем аккумулятора, желательно ее всемерное увеличение.

Задачей настоящего изобретения является создание литий-ионного аккумулятора с отрицательным электродом на основе кремния с существенным повышением удельной емкости электрода в расчете на единицу площади при сохранении достаточно хорошей циклируемости.

Технический результат, достигаемый настоящим изобретением, заключается в повышении удельной емкости отрицательного электрода и аккумулятора в целом при достаточно хорошей циклируемости.

Указанный технический результат достигается тем, что литий-ионный аккумулятор содержит разделенные пористым сепаратором с электролитом и снабженные активными слоями положительный и отрицательный электроды, причем активный слой отрицательного электрода включает в качестве активного материала сплошную пленку аморфного кремния или кремниевого композита, на которую нанесен слой высокодисперсного нанотитаната лития. Кремниевый композит имеет многослойную структуру и содержит слои окисленного кремния и сплава кремния с алюминием. Толщина пленки кремния или композита составляет от 0,1 до 5 мкм. Количество высокодисперсного нанотитаната лития составляет от 1 до 100 мг/см2.

Для лучшего понимания сущности предлагаемого изобретения приводятся чертежи и примеры изготовления отрицательных электродов и литий-ионных аккумуляторов с такими электродами, а также определения характеристик электродов и макетов аккумуляторов. Приведенные примеры не ограничивают заявленных характеристик, а служат только для иллюстрации идеи изобретения.

На чертежах показано следующее:

фиг. 1 - схематическое изображение поперечного разреза отрицательного электрода, где:

1 - подложка-токоотвод (фольга из никеля, титана или меди);

2 - пленка аморфного кремния или кремниевого композита;

3 - поверхностный слой высокодисперсного нанотитаната лития;

фиг. 2 - зарядная и разрядная кривые электрода по примеру 1 для первого цикла;

фиг. 3 - изменение удельной емкости по мере циклирования током в режиме С/2 для электрода по примеру 1 (1) и для сравнительного электрода без титанатного слоя (2);

фиг. 4 - зарядная и разрядная кривые макета аккумулятора по пример 2;

фиг. 5 - изменение разрядной емкости макета литий-ионного аккумулятора по примеру 2 при циклировании током 0,32 мА.

Пример 1. Заготовка электрода была изготовлена методом магнетронного напыления на установке «Оратория 22». Подложкой служила титановая фольга толщиной 15 мкм. Перед процессом напыления фольга обрабатывалась в течение 30 с при комнатной температуре в смеси H2SO4:HF:H2O в соотношении 1:1:20 и промывалась в деионизованной воде. Композитная пленка Si-O-Al наносилась с использованием одновременно двух мишеней - кремниевой и алюминиевой. Перед процессом нанесения пленки подложка прогревалась до температуры 140°С, а температура начала напыления составляла 70°С, далее принудительный нагрев подложки не производился. Давление остаточных газов составляло 2.5 10-5 Торр. Рабочими газами являлись аргон и кислород. Во время напыления расход кислорода составлял 8 см3/мин при давлении 4.8⋅10-5 Торр. Общее давление кислорода и аргона составляло 2⋅10-3 Торр. Мощности магнетронного разряда поддерживались на уровне 420-480 Вт для кремниевой мишени и 200-210 Вт для алюминиевой мишени. Электрод имел четырехслойную структуру, в которой первый и третий слои, считая от подложки, были обогащены алюминием, а второй и четвертый слои имели меньшее содержание алюминия. Обогащение пленки алюминием достигалось совместным нанесением с двух мишеней: кремниевой и алюминиевой, для обеднения пленки алюминием алюминиевая мишень отключалась. Общая толщина пленки кремниевого композита составляла 1,8 мкм.

На изготовленную таким образом заготовку наносили пасту, содержащую 80% высокодисперсного нанотитаната лития, 10% связующего (поливинилиденфторид) и 10% сажи Timcal в качестве добавки, повышающей электронную проводимость активного слоя. При изготовлении пасты смесь нанотитаната лития и сажи вводили в раствор поливинилиденфторида в N-метилпирролидоне и полученную суспензию гомогенизировали на ультразвуковой установке УЗДН-4. Количество нанотитаната лития составило 50 мг/см2. Заготовку электрода с нанесенным на нее слоем нанотитаната лития прессовали усилием 1 т/см2 и затем сушили в вакууме при температуре 80°С.

Для характеризации отрицательных электродов по настоящму изобретению проводили эксперименты с трехэлектродными лабораторными ячейками, представляющими собой макеты литий-ионного аккумулятора и содержащие рабочий отрицательный электрод, выполненный, как описано выше, вспомогательный электрод из литиевой фольги и такой же литиевый электрод сравнения. Все электроды были разделены сепаратором из нетканого полипропилена (НИИ «Уфим», Москва). В качестве электролитов использовали 1 М LiPF6 в смеси этиленкарбонат-диэтилкарбонат-диметилкарбонат (ЭК-ДЭК-ДМК) (1:1:1) или 1 М LiClO4 в смеси пропиленкарбонат-диметоксиэтан (ПК-ДМЭ) (7:3). Известно, что электроды литий-ионного аккумулятора очень чувствительны к следам влаги в неводных электролитах. Содержание воды в электролите не превышало 20 ppm. Гальваностатическое циклирование электродов проводили с помощью компьютеризированного зарядно-разрядного стенда (ООО «Бустер», Санкт-Петербург). Пределы циклирования составляли от 0.01 до 2.5 В. Токи циклирования составляли от 20 до 4000 мА/г кремния.

После сборки электрохимической ячейки и заливки ее электролитом потенциал рабочего электрода составлял около 3 В, что соответствует бестоковому потенциалу нанотитаната лития относительно металлического лития. При катодной поляризации происходило внедрение лития вначале в нанотитанат лития, а затем в кремний; при анодной поляризации происходила экстракция лития в обратном порядке. Фиг. 2 показывает типичные зарядные и разрядные кривые, т.е. зависимости потенциала электрода от количества пропущенного электричества на первом цикле. На зарядной кривой можно выделить небольшое «плечо» при потенциалах около 1,5 В, соответствующее внедрению лития в нанотитанат лития, дальнейший ход зарядной кривой типичен для электродов из кремниевых композитов. На разрядной кривой процессы экстракции лития из кремния и титаната лития не разделяются, т.к. протекают в одном и том же интервале потенциалов.

Как видно из фиг. 2, удельная разрядная емкость электрода по настоящему изобретению составляет около 2 мАч/см2, что примерно втрое превышает типичные значения для электродов на основе кремниевых композитов без верхнего титанатного слоя.

На фиг. 3 приведено сравнение способности к циклированию электрода по примеру 1 и такого же электрода без верхнего титанатного слоя.

Пример 2. С использованием электрода по примеру 1 был изготовлен макет литий-ионного аккумулятора. Положительный электрод в этом макете был изготовлен с феррофосфатом лития в качестве активного вещества. Количество ферофосфата лития в положительном электроде на 50% превышало стехиометрическое количество активного вещества в отрицательном электроде (суммарно нанотитаната лития и кремния), так что емкость макета в целом определялась емкостью отрицательного электрода. Макет испытывался при плотностях тока от 0,1 до 2 мА/см2. Циклические испытания проводились в диапазоне напряжений макета от 2 до 3,5 В. Типичные зарядная и разрядная кривые макета при плотности тока 0,5 мА/см2 приведена на фиг. 4, а на фиг. 5 показано изменение емкости макета при его циклировании.


ЛИТИЙ-ИОННЫЙ АККУМУЛЯТОР
ЛИТИЙ-ИОННЫЙ АККУМУЛЯТОР
ЛИТИЙ-ИОННЫЙ АККУМУЛЯТОР
ЛИТИЙ-ИОННЫЙ АККУМУЛЯТОР
Источник поступления информации: Роспатент

Показаны записи 41-50 из 67.
25.08.2017
№217.015.cbbc

Прибор для определения параметров газовыделения

Изобретение относится к области измерительной техники, а именно к способам определения термической стабильности жидких однофазных и двухфазных, а также гетерогенных систем. Изобретение предназначено для определения максимальной скорости газовыделения (Wmax), температуры начала экзотермических...
Тип: Изобретение
Номер охранного документа: 0002620328
Дата охранного документа: 24.05.2017
25.08.2017
№217.015.d112

Способ регулирования удельной емкости отрицательного электрода литий-ионного аккумулятора

Изобретение относится к электротехнике. Способ регулирования удельной емкости отрицательного электрода литий-ионного аккумулятора при заданной плотности тока разряда включает получение партии отрицательных электродов методом магнетронного распыления кремниевой и алюминиевой мишеней активного...
Тип: Изобретение
Номер охранного документа: 0002621321
Дата охранного документа: 02.06.2017
26.08.2017
№217.015.d75a

Композиционный катодный материал

Изобретение относится к электротехнической промышленности и может быть использовано для производства улучшенного катодного активного материала литий-ионных аккумуляторных батарей с повышенной удельной емкостью при циклировании токами высокой плотности. Предложен композиционный катодный материал...
Тип: Изобретение
Номер охранного документа: 0002623212
Дата охранного документа: 23.06.2017
26.08.2017
№217.015.e38b

Способ выделения скандия из концентратов редкоземельных элементов

Изобретение относится к области металлургии редких металлов и может быть использовано в технологии селективного извлечения скандия из концентратов редкоземельных элементов (РЗЭ). Способ выделения скандия из концентрата редкоземельных элементов в виде водного раствора включает контактирование...
Тип: Изобретение
Номер охранного документа: 0002626206
Дата охранного документа: 24.07.2017
26.08.2017
№217.015.e4c0

Блочный нанопористый углеродный материал для аккумулирования природного газа, метана и способ его получения

Изобретение относится к активированному углеродному материалу для хранения, распределения и транспортировки природного газа или метана. Нанопористый материал получают из дробленого карбонизованного и активированного природного сырья органического происхождения путем его смешения с полимерным...
Тип: Изобретение
Номер охранного документа: 0002625671
Дата охранного документа: 18.07.2017
29.12.2017
№217.015.f054

Устройство для ультразвуковой обработки жидкостей и/или суспензий

Изобретение относится к пищевой промышленности. Предложено устройство для ультразвуковой обработки жидкости и/или суспензий, содержащее корпус, выполненный в виде конусной воронки с гладкими стенками, в верхней части которого тангенциально по касательной к окружности верхнего сечения встроен...
Тип: Изобретение
Номер охранного документа: 0002629053
Дата охранного документа: 24.08.2017
19.01.2018
№218.016.0528

Электрохимический сенсор для мониторинга воздуха на содержание токсичных веществ

Изобретение относится к электрохимическому сенсору для мониторинга воздуха на содержание летучих органических токсичных веществ, состоящему из планарной электродной группы, фонового электролита, пористой гидрофильной мембраны, полимерной газопроницаемой мембраны, герметичной емкости. При этом...
Тип: Изобретение
Номер охранного документа: 0002630697
Дата охранного документа: 12.09.2017
19.01.2018
№218.016.0556

2,4,6-трис[(2-дифенилфосфорил)-4-этилфенокси]-1,3,5-триазин в качестве электродоактивного селективного ионофора для катиона лития в пластифицированных мембранах ионоселективных электродов

Изобретение относиться к 2,4,6-трис[(2-дифенилфосфорил)-4-этилфенокси]-1,3,5-триазину, который может быть использован в качестве селективного ионофора для катиона лития в пластифицированной полимерной мембране в ионоселективных электродах для определения концентраций иона лития в биологических...
Тип: Изобретение
Номер охранного документа: 0002630695
Дата охранного документа: 12.09.2017
10.05.2018
№218.016.44bc

Способ хранения природного газа в адсорбированном виде при пониженных температурах

Изобретение относится к хранению природного газа, или метана, или смеси метана с углеводородными соединениями С2, С3, С4, С5 или С6+, в том числе всеми насыщенными и ненасыщенными углеводородами под давлением в контейнере в адсорбированном виде, и дальнейшей транспортировке находящегося под...
Тип: Изобретение
Номер охранного документа: 0002650012
Дата охранного документа: 06.04.2018
09.06.2018
№218.016.5b9c

Способ и контроллер управления электрохромными светомодуляторами с тонкопленочными электрохромными и/или заряд-буферными слоями

Изобретение относится к электронным устройствам для управления электрохромными светомодуляторами (ЭХСМ), предназначенными для регулирования потоков световой и лучистой тепловой энергии. Способ управления ЭХСМ заключается в том, что в качестве необходимого и достаточного критерия для выработки...
Тип: Изобретение
Номер охранного документа: 0002655657
Дата охранного документа: 29.05.2018
Показаны записи 41-50 из 67.
26.08.2017
№217.015.e38b

Способ выделения скандия из концентратов редкоземельных элементов

Изобретение относится к области металлургии редких металлов и может быть использовано в технологии селективного извлечения скандия из концентратов редкоземельных элементов (РЗЭ). Способ выделения скандия из концентрата редкоземельных элементов в виде водного раствора включает контактирование...
Тип: Изобретение
Номер охранного документа: 0002626206
Дата охранного документа: 24.07.2017
26.08.2017
№217.015.e4c0

Блочный нанопористый углеродный материал для аккумулирования природного газа, метана и способ его получения

Изобретение относится к активированному углеродному материалу для хранения, распределения и транспортировки природного газа или метана. Нанопористый материал получают из дробленого карбонизованного и активированного природного сырья органического происхождения путем его смешения с полимерным...
Тип: Изобретение
Номер охранного документа: 0002625671
Дата охранного документа: 18.07.2017
29.12.2017
№217.015.f054

Устройство для ультразвуковой обработки жидкостей и/или суспензий

Изобретение относится к пищевой промышленности. Предложено устройство для ультразвуковой обработки жидкости и/или суспензий, содержащее корпус, выполненный в виде конусной воронки с гладкими стенками, в верхней части которого тангенциально по касательной к окружности верхнего сечения встроен...
Тип: Изобретение
Номер охранного документа: 0002629053
Дата охранного документа: 24.08.2017
19.01.2018
№218.016.0528

Электрохимический сенсор для мониторинга воздуха на содержание токсичных веществ

Изобретение относится к электрохимическому сенсору для мониторинга воздуха на содержание летучих органических токсичных веществ, состоящему из планарной электродной группы, фонового электролита, пористой гидрофильной мембраны, полимерной газопроницаемой мембраны, герметичной емкости. При этом...
Тип: Изобретение
Номер охранного документа: 0002630697
Дата охранного документа: 12.09.2017
19.01.2018
№218.016.0556

2,4,6-трис[(2-дифенилфосфорил)-4-этилфенокси]-1,3,5-триазин в качестве электродоактивного селективного ионофора для катиона лития в пластифицированных мембранах ионоселективных электродов

Изобретение относиться к 2,4,6-трис[(2-дифенилфосфорил)-4-этилфенокси]-1,3,5-триазину, который может быть использован в качестве селективного ионофора для катиона лития в пластифицированной полимерной мембране в ионоселективных электродах для определения концентраций иона лития в биологических...
Тип: Изобретение
Номер охранного документа: 0002630695
Дата охранного документа: 12.09.2017
10.05.2018
№218.016.3e7c

Адсорбционный газовый терминал

Изобретение относится к конструкции системы хранения и транспортировки природного газа в адсорбированном виде. Адсорбционный газовый терминал состоит из корпуса, выполненного в форме параллелепипеда, и расположенной внутри него конструкции из чередующихся ячеек, способных нести нагрузку,...
Тип: Изобретение
Номер охранного документа: 0002648387
Дата охранного документа: 26.03.2018
10.05.2018
№218.016.44bc

Способ хранения природного газа в адсорбированном виде при пониженных температурах

Изобретение относится к хранению природного газа, или метана, или смеси метана с углеводородными соединениями С2, С3, С4, С5 или С6+, в том числе всеми насыщенными и ненасыщенными углеводородами под давлением в контейнере в адсорбированном виде, и дальнейшей транспортировке находящегося под...
Тип: Изобретение
Номер охранного документа: 0002650012
Дата охранного документа: 06.04.2018
10.05.2018
№218.016.4586

Устройство для обработки пищевых жидких сред

Изобретение относится к устройствам, интенсифицирующим физико-химические процессы, протекающие в жидкой среде. Устройство для обработки пищевых жидких сред содержит корпус с патрубком подачи пищевой жидкой среды и патрубком отвода пищевой жидкой среды, внутри которого расположена реакционная...
Тип: Изобретение
Номер охранного документа: 0002650269
Дата охранного документа: 11.04.2018
10.05.2018
№218.016.4c19

Пневмотампон

Изобретение относится к медицинской технике и может быть использовано для остановки кровотечения. Пневмотампон содержит пневматическую эластичную камеру, зафиксированную на ложе корпуса за счет жесткой плоской окантовки, пневматическую грушу, клапан сброса давления и средство для фиксации....
Тип: Изобретение
Номер охранного документа: 0002652079
Дата охранного документа: 24.04.2018
29.05.2018
№218.016.55a1

Многоступенчатая газовая силовая турбина с консольным расположением

Изобретение относится двухвальным газотурбинным силовым установкам наземного применения, у которых в качестве двигателя используется турбокомпрессор от ДВС с внешней камерой сгорания. Многоступенчатая газовая силовая турбина с консольным расположением, содержащая на роторе диск с рабочими...
Тип: Изобретение
Номер охранного документа: 0002654304
Дата охранного документа: 17.05.2018
+ добавить свой РИД