×
26.08.2017
217.015.e4c0

Блочный нанопористый углеродный материал для аккумулирования природного газа, метана и способ его получения

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к активированному углеродному материалу для хранения, распределения и транспортировки природного газа или метана. Нанопористый материал получают из дробленого карбонизованного и активированного природного сырья органического происхождения путем его смешения с полимерным связующим и водой с последующим формованием в блоки. Технический результат заключается в увеличении количества аккумулированного материалом природного газа, повышении насыпной плотности материала, а также в возможности повышения плотности упаковки полученного материала в специализированных разборных адсорберах, что позволяет заполнить систему хранения на 95% и более от ее объема при сохранении диффузионных характеристик. 2 н. и 3 з.п. ф-лы, 3 пр.
Реферат Свернуть Развернуть

Группа изобретений относится к активированному углеродному материалу, обладающему развитой системой нанопор и, при необходимости, специальной формой блоков с целью максимально плотной упаковки материала в специализированных разъемных адсорберах для хранения, распределения и транспортировки природного газа или метана, а также способу его получения.

В настоящее время среди нетрадиционных способов хранения природного газа, метана наиболее перспективным является адсорбционный способ, так как он не требует создания специальных климатических условий в системах хранения. Кроме того, разработка подходов к синтезу нанопористых материалов позволила получить адсорбенты способные создать конкуренцию по объему выдаваемого природного газа потребителю существующим системам хранения природного газа под давлением (в компримированном виде).

Среди существующих адсорбентов наиболее перспективными для аккумулирования природного газа, метана являются нанопористые углеродные адсорбенты. Это определяется их адсорбционными свойствами: обладают развитой пористостью и относительно большими объемами нанопор 0.5…1.0 см3/г - наиболее сорбционно активными порами при аккумулировании газов. Средние эффективные размеры нанопор у подавляющего большинства углеродных адсорбентов составляют 1-2 нм и более, что позволяет обеспечить хорошие диффузионные свойства углеродных материалов для адсорбции природного газа, метана при комнатной температуре. Процессы адсорбции - десорбции обратимы. Высокая насыпная плотность углеродных адсорбентов позволяет снизить объем газовой фазы в системе хранения и, как следствие, повысить объемную плотность аккумулированного газа.

Углеродные адсорбенты в большинстве своем обладают относительно невысокой теплотой адсорбции газов при высокой теплоемкости самого материала, что обеспечивает снижение тепловых колебаний системы хранения при изменении температуры окружающей среды. Углеродные адсорбенты обладают свойством гидрофобности, что позволяет понизить требования к влажности природного газа.

Углеродные адсорбенты обладают достаточной жесткостью и стабильностью пористой структуры, устойчивы к циклическим нагрузкам.

В перспективе добиться широкого внедрения адсорбционных газовых терминалов на основе углеродных материалов возможно при использовании специальных адсорберов, объем которых полностью заполнен специальными блоками адсорбционного материала. Такой подход позволит повысить эффективность адсорбционных терминалов за счет исключения паразитного объема газовой фазы и применения высокоемких углеродных материалов.

В целом углеродные пористые материалы получают путем пиролиза (карбонизации) твердых органических материалов, в том числе различных типов углей, торфа, нефтяных остатков, скорлупы различных орехов, древесные отходы, отходов биомассы, с последующей физической активацией их водяным паром, и/или углекислым газом, и/или кислородом воздуха, либо химической активацией органическими кислотами (В.Б. Фенелонов. Пористый углерод. - Новосибирск, 1995, 513 с.).

Также известен наноструктурированный микропористый углеродный материал (патент RU 2307704, опуб. 10.10.2007), представляющий собой наноструктурированную клеткоподобную систему, состоящую из ячеек из 1-2 графитоподобных монослойных частиц размером 1-2 нм, с удельной поверхностью SБЭТ = 3170-3450 м2/г, суммарным объемом пор Vпop = 1,77-2,97 см3/г, объемом микропор W0 = 1,48-1,87 см3/г и характерным распределением суммарного объема пор по размерам. Для приготовления материала карбонизируют рисовую шелуху в кипящем слое катализатора состава CuO+MgO+Ск2О3 (10…15% вес.), нанесенного на γ-Al2O3 при температуре 550°С. Карбонизат смешивают с раствором КОН и после упаривания воды помещают в реактор для активации при 700°С. По утверждению заявителя материал обладает высокими значениями адсорбционной емкости по метану и водороду, что определяется большим объемом пор и высокой удельной поверхностью. Однако в области давлений до 7 МПа, для которой характерно наиболее эффективное аккумулирование газов, большой объем пор не всегда является показателем величины запасенного газа, а определяющим является соотношение энергии адсорбции аккумулируемого газа и объема пор. В первом приближении, в качестве критерия оценки влияния данного соотношения на способность материала аккумулировать природный газ, метан можно использовать зависимость удельного объема аккумулированного газа от удельной поверхности по БЭТ SБЭТ. Эффективность адсорбционного аккумулирования с увеличением удельной поверхности SБЭТ на углеродных адсорбентах падает, после прохождения максимума при SБЭТ ≈ 1500 м2/г, и, следовательно, данные материалы не могут запасать большое количество природного газа, метана. Также недостатком данного материала является широкое распределение пор по размерам, при котором на долю наиболее сорбционно активных по метану пор (d = 0.5…1.5 нм) приходится не более 23.7% от общего объема. Помимо этого, материал имеет порошкообразную форму, что определяет малый насыпной вес материала и высокое пылеобразование, резко повышающее пожароопасность систем аккумулирования, использующих этот материал.

Известны высокоэффективные адсорбенты на основе активированного угля с высокой микропористостью (патент RU 2378046, опуб. 10.01.2010), представляющие собой углеродные материалы в виде его дискретных зерен, предпочтительно сферической формы, обладающие высокой микропористостью и характеризующиеся тем, что они имеют следующие параметры: общий объем пор, определяемый по методу Гурвича, по меньшей мере 0,7 см3/г, при этом на долю микропор диаметром не более 20 в этом общем объеме пор приходится по меньшей мере 70%, средний диаметр пор максимум 30 и удельная поверхность SБЭТ по меньшей мере 1500 м2/г. Также известны высокоэффективные адсорбенты на основе активированного угля с высокой пористостью, представленной мезо- и макропорами RU 2426591, имеющие форму отдельных зерен активированного угля, где по меньшей мере 55% общего объема пор высокоэффективных адсорбентов составляют поры (то есть мезо- и макропоры) диаметром более 20 , при этом адсорбенты характеризуются мерой центра распределения диаметра пор более 25 , обладают удельной поверхностью, измеренной методом БЭТ, по меньшей мере, 1250 м2/г. Способ получения данных материалов заключается в карбонизации и последующей активации гелеобразных сульфированных сополимеров стирола и дивинилбензола (от 2 до 10 мас. %,), прежде всего сульфированных, сшитых дивинилбензолом полистиролов, в форме шаровидных зерен. Особенностью данных материалов - полимерных углеродных адсорбентов, является структура поверхности, у которой удельная насыщенность атомами углерода, создающими основное адсорбционное поле при взаимодействии с молекулами адсорбированного вещества, значительно ниже, чем у любого углеродного адсорбента (активированного угля), по причине наличия в их структуре химически связанных атомов водорода Н и серы S. Это приводит к снижению адсорбционной способности, в том числе и по метану. Кроме того, данные материалы обладают слишком большой шириной пор для аккумулирования природного газа, метана, не менее 18.57 , что определяет низкую энергию адсорбции метана и, соответственно, малый удельный объем запасаемого природного газа, метана. Значения насыпной плотности, указанные заявителем в изобретениях, находятся в интервале от 250 до 750 кг/м3, и, учитывая, что заявляемые материалы имеют сферическую форму гранул, при узком распределении гранул по размерам насыпной вес не может превышать ≈ 400 кг/м3, а повышение насыпного веса материала возможно лишь с увеличением распределения гранул по размерам и увеличением доли гранул с размерами до 200 мкм, что фактически представляет собой угольную пыль. Таким образом, данные материалы имеют низкую насыпную плотность, а ее увеличение наносит ущерб безопасности эксплуатации адсорбционной системы.

Наиболее близким по сущности и достигаемому результату к заявленному изобретению является углеродный материал (патент RU 2446098, опуб. 27.03.2012), представляющий собой, формованный наноструктурированный микропористый углеродный адсорбент, получаемый последующим выполнением стадий карбонизации лигноцеллюлозного материала с зольностью 8-20 вес. %, последующую щелочную активацию в присутствии карбонатов и/или гидроксидов натрия или калия, отмывку, смешивание со связующим и формование (экструзию). Карбонизацию осуществляют при 400-800°С при мольном отношении кислорода воздуха к углероду лигноцеллюлозного материала, равном 0,8-3,0, в течение 1-60 сек в кипящем слое катализатора или инертного носителя. Щелочную активацию осуществляют при 600-1000°С в инертной или восстановительной атмосфере, отмывку продукта после активации проводят раствором кислоты и дистиллированной водой, формование проводят с применением модифицированного крахмала, каолина, либо полиуретанового клея, сушку при 50-200°С в течение 1-48 ч, при необходимости - прокалку при 600-1000°С в течение 0,5-5 ч. Формование осуществляют вручную либо с применением экструдера с фильерами размером 3-10 мм. Соотношение связующего к углеродному материалу составляет 0,5-50:1 по массе, растворитель берется в количестве, необходимом для получения оптимально формуемой консистенции. После формования сушку осуществляют при 50-200°С в течение 3-48 ч. Полученный материал имеет удельную поверхность 1560-2550 м2/г, суммарный объем пор 1,0-1,5 см3/г, объем микропор 0,6-1,3 см3/г. Материал обладает большой удельной поверхностью, высокими значениями сорбционной емкости по отношению к различным адсорбатам.

Недостатком данного изобретения является низкая энергия адсорбции природного газа, метана, которая определяется широкими нанопорами адсорбента до 20 , при требуемых ≈ 10 [К.М. Анучин, А.А. Фомкин, А.П. Коротыч, A.M. Толмачев. Адсорбционное концентрирование метана. Зависимость плотности адсорбата от ширины щелевидных микропор активированных углей // Физикохимия поверхности и защита материалов. 2014. Т. 50. №2. С. 156-160.] (наиболее сорбционно активные поры по метану). Несмотря на то что авторами не приводятся данные о распределении микропор по размерам, об относительно большой ширине пор косвенно свидетельствует тот факт, что при формовании материала большая доля пор забивается связующим: до стадии формования VΣ= 2,2 см3/г, VМИ = 1,9 см3/г, после стадии формования VΣ = 1,0…1,5 см3/г, VМИ= 0,6…1,3 см3/г. Также авторами не приводятся данные о насыпном весе формованного углеродного материала, его твердости, что не дает возможности оценить его эксплуатационные характеристики.

Задача заявляемой группы изобретений - разработать блочный нанопористый углеродный материал с высокой насыпной плотностью, более 600 м3/кг, обладающий оптимальной для аккумулирования природного газа или метана средней эффективной шириной (диаметром) нанопор от 8 до 14 , объемом нанопор более VМИ = 0,5 см3/г.

Технический результат заявляемой группы изобретений заключается в увеличении количества аккумулированного материалом природного газа, метана в единице объема системы хранения, повышении насыпной плотности адсорбционного материала до 600 кг/м3 и более, а также повышении плотности упаковки адсорбционного материала в специализированных разборных адсорберах до заполнения системы хранения на 95% и более, при сохранении диффузионных характеристик.

Технический результат заявленного изобретения достигается тем, что блочный нанопористый углеродный материал для аккумулирования природного газа, метана имеет объем нанопор не менее 0,5 см3/г, среднюю эффективную ширину нанопор от 8 до 14 и кажущуюся насыпную плотность не менее 600 кг/м3.

Блочный нанопористый углеродный материал для аккумулирования природного газа, метана, в частности, представляет собой формованные блоки в виде куба или параллелепипеда, или цилиндра, или объемного сектора, или тетраэдера.

Технический результат заявленного изобретения достигается тем, что в способе получения блочного нанопористого углеродного материала для аккумулирования природного газа, метана углеродный нанопористый материал, полученный из карбонизированного и активированного твердого сырья органического происхождения, дробят до средней фракции гранул от 700 до 1000 мкм, к дробленому материалу добавляют полимерное связующее в количестве от 3 до 12% масс. и дистиллированную воду в количестве от 5 до 80% масс., перемешивают, производят формование при давлении от 150 кгс/см2 до 3000 кгс/см2, после чего формованные блоки сушат при температуре от 110 до 150°С в течение 3÷48 часов.

В качестве полимерного связующего может быть использован латекс или поливинилацетат. Формование производят с помощью пресса или экструдера.

Полученный блочный нанопористый углеродный материал имеет форму блоков куба, параллелепипеда, цилиндра, объемного сектора или тетраэдера, насыпную (кажущуюся) плотность более 600 м3/кг, обладает средней эффективной шириной (диаметр) нанопор Х0 = 8÷14 , объемом нанопор более VМИ = 0,5 см3/г. Измерения объема нанопор и средней эффективной ширины нанопор проводили по изотерме стандартного пара азота при 77 К, измеренной после предварительной регенерации материала при 200°С до давления 0,1 Па. Определение параметров пористой структуры проводилось по стандартным методикам БЭТ [Брунауэр С. Адсорбция газов и паров. М.: Изд-во иностр. лит-ры, 1948. Т. 1. 781 с.], и Теории объемного заполнения микропор [Дубинин М.М. Адсорбция и пористость - М.: ВАХЗ. 1976]. Определение насыпной (кажущейся) плотности материала проводили согласно методике, предложенной в ГОСТ Р 55959 «Уголь активированный». Стандартный метод определения насыпной плотности, за исключением метода отбора проб заданного объема. Отбор проб осуществлялся случайным выбором блока материала. Определение объема материала проводилось путем измерения параметров материала при помощи штангенциркуля ГОСТ 166 и/или линейки измерительной ГОСТ 427 и пересчета объема по соответствующим формулам.

Сущность группы изобретений иллюстрируется следующими примерами.

Пример 1

Гранулированный нанопористый углеродный материал AS-1, полученный из карбонизированной и активированной скорлупы кокосового ореха, дробили до фракции 800÷1000 мкм, отбирали пробу общей массой ≈ 230 г, к которой добавляли 12% масс. латекса и 60% масс. дистиллированной воды, смесь перемешивали, помещали в пресс и выдерживали в течение 10 мин при давлении 300 кгс/см2, извлекали и помещали в сушильную камеру при температуре 130°С на 12 часов. Полученный материал обладает объемом нанопор 0.61 см3/г, средней эффективной шириной пор 12.2 , насыпной (кажущейся) плотностью 638 кг/м3. Объем природного газа, аккумулированного при давлении 7 МПа и температуре 20°С на масштабированном образце, составил 164,5 л (CH4)/л (адсорбционного материала). Такой объем аккумулирования метана соответствует перспективным лабораторным углеродным адсорбентам, получаемым в граммовых количествах. Время «полуотработки» или половина от времени, за которое адсорбируется заданный объем природного газа, для блоков адсорбционного материала составило 0,35 с (при 0,33 в калибровочном опыте), что свидетельствует об отсутствии заметного влияния пористой структуры адсорбционного материала на газодинамические (диффузионные) характеристики системы хранения.

Пример 2

Отличается от Примера 1 тем, что к дробленому нанопористому материалу добавляли 6% масс. латекса и 25% масс. дистиллированной воды. Полученный материал обладает объемом нанопор 0,60 см3/г, средней эффективной шириной пор 12,4 , насыпной (кажущейся) плотностью 623 кг/м3. Объем природного газа, аккумулированного при давлении 7 МПа и температуре 20°С на масштабированном образце, составил 161,3 л (СН4)/л (адсорбционного материала). Время «полуотработки» для блоков адсорбционного материала составило 0,34 с.

Пример 3

Отличается от Примера 1 тем, что в качестве сырья использовали нанопористый материал АР-2, полученный из карбонизированного и активированного каменного угля, массой пробы 325 г, к которой добавляли 6% масс. латекса и 25% масс. дистиллированной воды. Полученный материал обладает объемом нанопор 0,50 см3/г, средней эффективной шириной пор 14,0 , насыпной (кажущейся) плотностью 703 кг/м3. Объем природного газа, аккумулированного при давлении 7 МПа и температуре 20°С на масштабированном образце, составил 162,1 л (CH4)/л (адсорбционного материала). Время «полуотработки» для блоков адсорбционного материала составило 0.37 с.

Пример 4

Порошкообразный нанопористый углеродный материал АС1К, полученный из карбонизированного и активированного антрацитового угля, дробили до фракции 700÷900 мкм, отбирали пробу общей массой ≈ 14,1 г, к которой добавляли 3% масс. латекса и 5% масс. дистиллированной воды, смесь перемешивали, помещали в пресс и выдерживали в течение 20 мин при давлении 3000 кгс/см2, извлекали и помещали в сушильную камеру при температуре 150°С на 3 часа. Полученный материал обладает объемом нанопор 0,5 см3/г, средней эффективной шириной пор 8,2 , насыпной (кажущейся) плотностью 980 кг/м3. Объем природного газа, аккумулированного при давлении 10 МПа и температуре 20°С на масштабированном образце, составил 218,5 л (СН4)/л (адсорбционного материала). Время «полуотработки» или половина от времени, за которое адсорбируется заданный объем природного газа, для блоков адсорбционного материала составило 0,4 с.

Пример 5

Порошкообразный нанопористый углеродный материал AF-3, полученный из карбонизированного и активированного торфа, дробили до фракции 700÷1000 мкм, отбирали пробу общей массой ≈ 370 г, к которой добавляли 12% масс. латекса и 80% масс. дистиллированной воды, смесь перемешивали, помещали в пресс и выдерживали в течение 30 мин при давлении 150 кгс/см2, извлекали и помещали в сушильную камеру при температуре 110°С на 48 часов. Полученный материал обладает объемом нанопор 0,54 см3/г, средней эффективной шириной пор 13,0 , насыпной (кажущейся) плотностью 600 кг/м3. Объем метана, аккумулированного при давлении 10 МПа и температуре 20°С на масштабированном образце, составил 160,0 л (СН4)/л (адсорбционного материала). Время «полуотработки» или половина от времени, за которое адсорбируется заданный объем метана, для блоков адсорбционного материала составило 0,37 с.

Также могут быть осуществлены многие другие формы выполнения изобретений, не выходящие за пределы заявленной группы изобретений.

Преимущество заявляемой группы изобретений заключается в следующем. Как видно из описания и приведенных примеров, заявляемый материал обладает высокой насыпной плотностью и оптимальной пористой структурой для решения задач аккумулирования природного газа, метана. Полученный материал может найти применение в качестве высокоэффективного аккумулятора природного газа, метана в системах хранения, распределения и транспортировки.


Блочный нанопористый углеродный материал для аккумулирования природного газа, метана и способ его получения
Источник поступления информации: Роспатент

Показаны записи 1-10 из 144.
10.01.2013
№216.012.18fe

Электрокаталитический способ синтеза углеводородов и спиртов на основе растительного сырья

Изобретение относится к электрокаталитическому способу получения углеводородов, в частности диенов, олефинов, алканов и спиртов, путем гальваностатического электролиза смеси 10-ундециленовой и уксусной кислот, которые частично нейтрализованы и находятся в виде соли. Способ осуществляют в...
Тип: Изобретение
Номер охранного документа: 0002471890
Дата охранного документа: 10.01.2013
10.02.2013
№216.012.23de

Система для контроля искривления ствола вертикальной скважины

Изобретение относится к нефтегазодобывающей отрасли и может быть использовано для контроля целостности скважин, в частности осуществления контроля искривления ствола скважины. Система для контроля искривления ствола скважины содержит обратимый акустический преобразователь с равномерной...
Тип: Изобретение
Номер охранного документа: 0002474684
Дата охранного документа: 10.02.2013
27.02.2013
№216.012.2b85

Способ контроля искривления ствола скважины

Изобретение относится к нефтегазодобывающей отрасли и может быть использовано для контроля целостности скважин. Способ контроля искривления ствола скважины заключается в измерении величины прогиба бурильной или насосно-компрессорной трубы скважины с помощью скважинного прибора, спускаемого...
Тип: Изобретение
Номер охранного документа: 0002476668
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2c1f

Оптическая система для определения пространственного положения магистрального трубопровода

Изобретение относится к трубопроводному транспорту и может быть использовано для определения пространственного положения магистральных трубопроводов (МТ) в опасных местах их прохождения, например при пересечении дорог и взаимных пересечениях. Заявленная оптическая система содержит n источников...
Тип: Изобретение
Номер охранного документа: 0002476822
Дата охранного документа: 27.02.2013
27.03.2013
№216.012.30fc

Способ получения метановодородной смеси

Изобретение относится к области химии. Способ получения метановодородной смеси осуществляют путем подачи природного газа по трубопроводу 1 в сатуратор 2, заполняемый циркулирующим конденсатом водяного пара 3, для получения смешанного газового потока 4, в который на выходе из сатуратора 2...
Тип: Изобретение
Номер охранного документа: 0002478078
Дата охранного документа: 27.03.2013
10.04.2013
№216.012.3496

Способ и устройство управления физико-химическими процессами в веществе и на границе раздела фаз

Изобретение относится к способам и устройствам управления физико-химическими процессами в веществе и на границе раздела фаз. Техническим результатом является создание такого способа и устройства для управления физико-химическими процессами в веществе и на границе раздела фаз, которые...
Тип: Изобретение
Номер охранного документа: 0002479005
Дата охранного документа: 10.04.2013
27.05.2013
№216.012.44a6

Способ изготовления бумаги для печати

Изобретение относится к технологиям получения печатных видов бумаги и может быть использовано в целлюлозно-бумажной промышленности. Способ включает приготовление суспензий целлюлозного волокна и мела, добавление в них наноцеллюлозы, смешение суспензий и добавление в смесь катионного крахмала и...
Тип: Изобретение
Номер охранного документа: 0002483151
Дата охранного документа: 27.05.2013
20.06.2013
№216.012.4c5c

Жидкостная экстракционная система на основе 1-(диарилфосфорилметокси)-2-(диарилфосфорил)-4-метоксибензола и 1,1,7-тригидрододекафторгептанола для селективного выделения молибдена из азотнокислых растворов

Настоящее изобретение относится к медицине, а именно к области химической технологии производства радиоизотопов медицинского назначения, и описывает жидкостную экстракционную систему на основе 0.05 М раствора 1-(диарилфосфорилметокси)-2-диарилфосфорил-4-метоксибензола общей формулы (I), в...
Тип: Изобретение
Номер охранного документа: 0002485130
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4d5a

Фронтально-козловой трубоукладчик

Изобретение относится к строительству трубопровода в стесненных горных условиях, а именно к средствам для осуществления операций по перемещению и наращиванию трубопровода из стальных гидроизолированных труб с зачищенными концами. Фронтально-козловой трубоукладчик содержит силовую раму с...
Тип: Изобретение
Номер охранного документа: 0002485384
Дата охранного документа: 20.06.2013
10.08.2013
№216.012.5d48

Состав экстракционно-хроматографического материала для селективного извлечения мo-99 из облученного уранового топлива

Настоящее изобретение относится к области химической технологии радиоизотопа Mo-99 медицинского назначения. Сущность: состав включает в качестве комплексообразующего компонента соединения формулы (I), где R представляет собой алкил C-C, в процентном содержании от 1 до 99%, а остальное...
Тип: Изобретение
Номер охранного документа: 0002489501
Дата охранного документа: 10.08.2013
Показаны записи 1-10 из 123.
10.01.2013
№216.012.18fe

Электрокаталитический способ синтеза углеводородов и спиртов на основе растительного сырья

Изобретение относится к электрокаталитическому способу получения углеводородов, в частности диенов, олефинов, алканов и спиртов, путем гальваностатического электролиза смеси 10-ундециленовой и уксусной кислот, которые частично нейтрализованы и находятся в виде соли. Способ осуществляют в...
Тип: Изобретение
Номер охранного документа: 0002471890
Дата охранного документа: 10.01.2013
27.03.2013
№216.012.30fc

Способ получения метановодородной смеси

Изобретение относится к области химии. Способ получения метановодородной смеси осуществляют путем подачи природного газа по трубопроводу 1 в сатуратор 2, заполняемый циркулирующим конденсатом водяного пара 3, для получения смешанного газового потока 4, в который на выходе из сатуратора 2...
Тип: Изобретение
Номер охранного документа: 0002478078
Дата охранного документа: 27.03.2013
10.04.2013
№216.012.3496

Способ и устройство управления физико-химическими процессами в веществе и на границе раздела фаз

Изобретение относится к способам и устройствам управления физико-химическими процессами в веществе и на границе раздела фаз. Техническим результатом является создание такого способа и устройства для управления физико-химическими процессами в веществе и на границе раздела фаз, которые...
Тип: Изобретение
Номер охранного документа: 0002479005
Дата охранного документа: 10.04.2013
27.05.2013
№216.012.44a6

Способ изготовления бумаги для печати

Изобретение относится к технологиям получения печатных видов бумаги и может быть использовано в целлюлозно-бумажной промышленности. Способ включает приготовление суспензий целлюлозного волокна и мела, добавление в них наноцеллюлозы, смешение суспензий и добавление в смесь катионного крахмала и...
Тип: Изобретение
Номер охранного документа: 0002483151
Дата охранного документа: 27.05.2013
20.06.2013
№216.012.4c5c

Жидкостная экстракционная система на основе 1-(диарилфосфорилметокси)-2-(диарилфосфорил)-4-метоксибензола и 1,1,7-тригидрододекафторгептанола для селективного выделения молибдена из азотнокислых растворов

Настоящее изобретение относится к медицине, а именно к области химической технологии производства радиоизотопов медицинского назначения, и описывает жидкостную экстракционную систему на основе 0.05 М раствора 1-(диарилфосфорилметокси)-2-диарилфосфорил-4-метоксибензола общей формулы (I), в...
Тип: Изобретение
Номер охранного документа: 0002485130
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4d5a

Фронтально-козловой трубоукладчик

Изобретение относится к строительству трубопровода в стесненных горных условиях, а именно к средствам для осуществления операций по перемещению и наращиванию трубопровода из стальных гидроизолированных труб с зачищенными концами. Фронтально-козловой трубоукладчик содержит силовую раму с...
Тип: Изобретение
Номер охранного документа: 0002485384
Дата охранного документа: 20.06.2013
10.08.2013
№216.012.5d48

Состав экстракционно-хроматографического материала для селективного извлечения мo-99 из облученного уранового топлива

Настоящее изобретение относится к области химической технологии радиоизотопа Mo-99 медицинского назначения. Сущность: состав включает в качестве комплексообразующего компонента соединения формулы (I), где R представляет собой алкил C-C, в процентном содержании от 1 до 99%, а остальное...
Тип: Изобретение
Номер охранного документа: 0002489501
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.5fff

Способ получения активированного угля

Изобретение относится к технологическим процессам получения активного угля на основе древесины. Способ получения активированного угля заключается в сушке, карбонизации и активации сырьевого материала в реакторе и в последующей выгрузке полученного продукта. В качестве сырья используют древесную...
Тип: Изобретение
Номер охранного документа: 0002490207
Дата охранного документа: 20.08.2013
20.10.2013
№216.012.762f

Способ переработки липидов

Изобретение относится к способу переработки жиров и жиросодержащей биомассы. Способ может быть использован при производстве топлива и полупродуктов для органического синтеза. Способ осуществляют путем одновременного воздействия ионизирующим излучением и температурой на жировое сырье при...
Тип: Изобретение
Номер охранного документа: 0002495915
Дата охранного документа: 20.10.2013
10.12.2013
№216.012.8983

Аппаратура для исследования скважин

Изобретение относится к области эксплуатации скважин и может быть использовано для проведения геофизических исследований скважин. Техническим результатом является получение однозначных результатов исследований теплопроводности пластов, окружающих скважину переменного сечения. Аппаратура...
Тип: Изобретение
Номер охранного документа: 0002500885
Дата охранного документа: 10.12.2013
+ добавить свой РИД