×
20.01.2018
218.016.0f7a

Результат интеллектуальной деятельности: ИЗМЕРЕНИЕ ТЕМПЕРАТУРЫ НА ПОТЕНЦИАЛЕ ВЫСОКОГО НАПРЯЖЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002633292
Дата охранного документа
11.10.2017
Аннотация: Изобретение относится к области термометрии и может быть использовано для измерения температуры оптического преобразователя тока. Предлагается система для измерения температуры на потенциале высокого напряжения. Энергия для измерения температуры оптического преобразователя тока предоставляется в распоряжение ровно одним фотодиодом. Фотодиод питается светом от источника света, причем свет источника света направляется к фотодиоду через световод. Технический результат - повышение надежности работы устройства, а также снижение потребления энергии при работе устройства. 6 з.п. ф-лы, 1 ил.

Изобретение относится к системе для измерения температуры на потенциале высокого напряжения, включающей в себя электронный датчик температуры, который измеряет температуру оптического преобразователя тока, и который снабжается электрической энергией от источника света.

Оптические преобразователи тока известны в течение длительного времени. Как правило, под преобразователем тока понимается измерительный преобразователь, который имеет сенсорную головку для беспотенциального измерения переменных токов. Оптические преобразователи тока используются для измерения эффекта Фарадея. Эффект Фарадея описывает вращение плоскости поляризации линейно поляризованной электромагнитной волны при прохождении через прозрачную среду, к которой временно постоянное магнитное поле приложено параллельно к направлению распространения волны.

В возрастающей степени оптические преобразователи тока также используются на потенциале высокого напряжения. Такой оптический преобразователь тока известен, например, из DE 198 02 191 B4.

Как правило, эффект Фарадея зависит от температуры, так как вращение поляризованной волны зависит от свойств материала прозрачной среды, и эти свойства изменяются с изменением температуры. Если при оценке измерения не учитывается температурная зависимость, то это может приводить к ошибкам измерения при установленных измеряемых значениях для переменного тока. Для того чтобы компенсировать такие ошибки измерения, согласно уровню техники проводится дополнительное измерение температуры на потенциале высокого напряжения. При этом измерение температуры может осуществляться как при помощи электроники, так и при помощи оптики.

Оптическими датчиками температуры являются, например, датчики на основе волоконных решеток Брэгга. Также известны датчики с полупроводниковыми элементами, которые действуют в качестве зависимых от температуры оптических фильтров границы энергетической зоны, или датчики, которые используют зависящее от температуры время затухания флуоресценции кристаллов. Недостаток оптических датчиков температуры заключается в их более высокой по сравнению с электронными датчиками сложности.

Электронными датчиками температуры являются согласно уровню техники цифровые датчики, которые выполнены на основе микропроцессоров. Такие основывающиеся на цифровой обработке сигнала датчики температуры нуждаются в высоком рабочем напряжении, которое находится в диапазоне нескольких вольт. Кроме того, они должны постоянно снабжаться достаточным количеством электрической энергии.

Для того чтобы покрывать потребность в электрической энергии, известны для цифрового измерения температуры на потенциале высокого напряжения датчики, которые для выполнения задачи по измерению снабжаются энергией при помощи световода. При этом свет высокопроизводительного лазера направляется из наземной станции при помощи световода к оптическому преобразователю тока. Обычно используются высокопроизводительные лазеры с мощностью в диапазоне от 100 мВт до 500 мВт, для того чтобы предоставлять достаточное количество энергии для цифрового измерения температуры. Внутри преобразователя тока или датчика температуры находится блок, состоящий из множества фотоприемников, которые преобразовывают свет лазера в электрическую энергию для работы цифрового датчика температуры. После выполнения задачи по измерению сигнал измерения направляется при помощи дальнейшего световода обратно к наземной станции. Ввиду большой оптической мощности используемых лазеров должна постоянно обеспечиваться достаточная эксплуатационная надежность.

В основе данного изобретения лежит задача по созданию системы для оптического преобразователя тока на потенциале высокого напряжения с электронным измерением температуры, у которой датчик температуры имеет простую конструкцию и надежно работает и у которой электронное измерение температуры обладает низким потреблением энергии.

Задача решается с помощью системы с признаками независимого пункта формулы изобретения. В зависимых от него пунктах формулы изобретения указаны предпочтительные варианты осуществления и усовершенствования изобретения.

Соответствующая изобретению система для измерения температуры на потенциале высокого напряжения включает в себя оптический преобразователь тока на потенциале высокого напряжения, электронный датчик температуры для измерения температуры преобразователя тока, ровно один фотодиод, первый световод для направления света от первого источника света к фотодиоду и второй световод для передачи сигнала измерения на наземную станцию.

Согласно изобретению энергия, которая необходима для работы электронного датчика температуры, предоставляется в распоряжение одним фотодиодом. Для энергоснабжения предпочтительно используется свет, который через первый световод направляется от первого источника света к фотодиоду. Благодаря использованию ровно одного фотодиода может создаваться простая конструкция, так как уменьшается количество конструктивных элементов.

В предпочтительном варианте осуществления электронный датчик температуры является резонансным контуром с термочувствительным резистором. Собственная/резонансная частота резонансного контура зависит от его затухания, над которым преобладает термочувствительное сопротивление. Как правило, собственная частота резонансного контура уменьшается с увеличивающимся затуханием. Если величина термочувствительного сопротивления изменяется посредством температуры преобразователя тока, то собственная частота сдвигается. Таким образом, собственная частота является критерием для температуры.

Наиболее предпочтительным в указанном аналоговом варианте осуществления является то, что в данном случае необходима незначительная по сравнению с цифровыми измерениями потребность в энергии. Таким образом, потребность в электрической энергии может покрываться одним фотодиодом.

В наиболее предпочтительном варианте осуществления внутри электрической цепи резонансного контура установлен второй источник света, в частности светодиод. Вследствие этого второй источник света периодически светится с частотой, которая соответствует собственной частоте резонансного контура. Собственная частота резонансного контура зависит от температуры, так что частота второго источника света представляет собой аналоговый критерий для измеренной температуры. В этом случае аналоговый оптический сигнал второго источника света может передаваться через второй световод на наземную станцию.

Предпочтительно электронный датчик температуры имеет накопитель энергии для накопления электрической энергии. Свет первого источника света направляется от источника света к фотодиоду, который использует этот свет, для того чтобы производить электрическую энергию. Произведенная фотодиодом электрическая энергия предпочтительно накапливается в накопителе энергии. Вследствие этого первый источник света может быть выполнен в виде источника света незначительной мощности. В предпочтительном варианте осуществления накопитель энергии является конденсатором или аккумулятором, причем наиболее предпочтительно конденсатором. Наибольшим преимуществом является то, что конденсатор делает возможным измерение температуры на временных интервалах. Вследствие этого сокращается потребление электрической энергии, так как для измерения температуры является достаточным, например, одно измерение в минуту.

В предпочтительном усовершенствовании световая мощность первого источника света менее или равна 5 мВт. Наиболее предпочтительно мощность менее или равна 1 мВт. Вследствие этого датчик температуры может снабжаться низким уровнем мощности. Если незначительной мощности не достаточно для выполнения задачи по измерению, то может предпочтительно осуществляться накопление в накопителе энергии, пока достаточное количество энергии не будет находиться в распоряжении. Является целесообразным использовать лазер в видимой области спектра от 400 нм до 700 нм в качестве первого источника света. Если мощность используемого лазера находится ниже 1 мВт, то этому соответствует лазер второго класса защиты лазера. Следовательно, особые меры предосторожности не должны предприниматься. Вследствие этого может существенно упрощаться как конструкция, так и эксплуатация.

В предпочтительном варианте осуществления первый источник света выполнен в виде светодиода. Наиболее предпочтительным является то, что светодиоды требуют меньших затрат и тем не менее предоставляют в распоряжение достаточное количество энергии для снабжения датчика температуры или для зарядки накопителя энергии.

Датчик температуры может быть встроен внутри оптического преобразователя тока. Предпочтительно в непосредственной близости от сенсорной головки преобразователя тока. Вследствие этого температурная зависимость эффекта Фарадея может компенсироваться значительно лучше.

В наиболее предпочтительном усовершенствовании датчик температуры использует уже имеющийся световод оптического преобразователя тока.

Первый и второй световоды датчика температуры могут быть стандартными многомодовыми световодами. В частности, могут использоваться световоды, чей диаметр сердечника находится в диапазоне от 50 мкм до 62 мкм. Даже при таких незначительных диаметрах сердечника может предоставляться все еще достаточное количество энергии для работы соответствующего изобретению датчика температуры.

Далее изобретение описывается при помощи предпочтительного примера осуществления, ссылаясь на приложенный чертеж. На чертеже показано:

фиг. 1 - система для аналогового измерения температуры оптического преобразователя тока на потенциале высокого напряжения.

Фиг. 1 показывает систему 1 для измерения температуры на потенциале высокого напряжения, которая включает в себя оптический преобразователь 2 тока, электронный датчик 4 температуры, первый и второй световоды 6, 8 и первый светодиод 10, который находится внутри наземной станции 24. Далее датчик 4 температуры включает в себя ровно один фотодиод 12, конденсатор 14, блок 16 управления и резонансный контур 18. Кроме того, внутри электрической цепи резонансного контура 18 находятся второй светодиод 20 и термочувствительный резистор 22. При этом резистор 22 может быть, например, термистором, элементом PT100, термочувствительным элементом или же полупроводниковым датчиком.

Свет первого светодиода 10 направляется через первый световод 6 к фотодиоду 12 внутри электронного датчика 4 температуры. Световоды 6, 8 предпочтительно могут быть стандартными многомодовыми световодами или световодами 200/220 мкм с твердым защитным покрытием. Наиболее предпочтительны стандартные многомодовые световоды с диаметром сердечника от 50 мкм до 62 мкм. Первый светодиод 10 обладает незначительной мощностью, меньшей или равной 5 мВт. Наиболее предпочтительна мощность, меньшая или равная 1 мВт. Этой незначительной мощности обычно не достаточно для измерения температуры оптического преобразователя 2 тока, так что произведенная фотодиодом 12 электрическая энергия накапливается в конденсаторе 14 для заданного блоком 16 управления промежутка времени. Во время зарядки конденсатора 14 первый светодиод 10 постоянно эксплуатируется. Блок 16 управления устанавливает, когда накопленной электрической энергии достаточно для выполнения задачи по измерению и в этом случае предоставляет резонансному контуру 18 накопленную в конденсаторе 14 электрическую энергию для измерения температуры. Например, разрядка конденсатора 14 один раз в минуту является достаточной.

Наиболее предпочтительно аналоговое и таким образом экономящее энергию использование измерения температуры при помощи резонансного контура 18. Собственная частота резонансного контура 18 зависит от термочувствительного резистора 22. Второй светодиод 20 приводится в действие напряжением резонансного контура 18. Вследствие этого он периодически светится с зависящей от температуры собственной частотой резонансного контура 18. Следовательно, частота второго светодиода 20 является критерием для температуры преобразователя 2 тока. Затем периодический свет второго светодиода 20 передается при помощи второго световода 8 на наземную станцию 24.

Если измерение температуры реализуется цифровыми средствами посредством использования микропроцессоров, то напряжения фотодиода 12 обычно не хватает для выполнения задачи по измерению. Поэтому является целесообразным использовать повышающий преобразователь для повышения напряжения.

В принципе сигнал измерения температуры может направляться при помощи второго световода 8 на наземную станцию 24 также в виде оптического сигнала широтно-импульсной модуляции.


ИЗМЕРЕНИЕ ТЕМПЕРАТУРЫ НА ПОТЕНЦИАЛЕ ВЫСОКОГО НАПРЯЖЕНИЯ
ИЗМЕРЕНИЕ ТЕМПЕРАТУРЫ НА ПОТЕНЦИАЛЕ ВЫСОКОГО НАПРЯЖЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 371-380 из 1 428.
10.05.2015
№216.013.4a31

Система и способ для заблаговременного распознавания повреждения в подшипнике

Изобретение относится к области электротехники и может быть использовано в электрических машинах. Технический результат - повышение точности оценки токов подшипников в отношении потенциального повреждения соответствующего подшипника. В системе и способе заблаговременного распознавания...
Тип: Изобретение
Номер охранного документа: 0002550500
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4a34

Способ и система для быстрого переключения резервного источника питания в множественном источнике питания

Изобретение раскрывает способ и систему для быстрого переключения между множеством резервных источников питания. Способ содержит формирование, на основе изменяющихся характеристик разности амплитуд и разности углов фаз напряжения шины, модели ускорения для их скорости изменения; выбор...
Тип: Изобретение
Номер охранного документа: 0002550503
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4b1c

Способ подсоединения по меньшей мере двух электрических кабелей, а также соединительное устройство, конструктивный узел, электрическая машина и соответствующее транспортное средство

Изобретение относится к соединительному устройству (1) для подсоединения по меньшей мере двух электрических кабелей (5а, 5b, 5с) к электрической машине (2) транспортного средства, содержащему корпус (3) и по меньшей мере два контактных элемента (4а, 4b, 4с), причем в стенке (6а) корпуса по...
Тип: Изобретение
Номер охранного документа: 0002550735
Дата охранного документа: 10.05.2015
20.05.2015
№216.013.4b69

Ускоритель и способ управления ускорителем

Изобретение относится к ускорителю для ускорения заряженных частиц. Заявленный ускоритель содержит, по меньшей мере, два последовательно установленных по ходу луча высокочастотных резонатора, с помощью которых ускоряется импульсная последовательность, содержащая несколько пучков частиц. Также...
Тип: Изобретение
Номер охранного документа: 0002550819
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d8a

Высоковольтный источник постоянного напряжения и ускоритель частиц

Изобретение относится к высоковольтному источнику (81) постоянного напряжения, содержащему набор конденсаторов с первым электродом (37), к которому приложен первый потенциал, с вторым электродом (39), который расположен концентрично к первому электроду и к которому приложен второй...
Тип: Изобретение
Номер охранного документа: 0002551364
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4db4

Рельсовое транспортное средство, снабженное кожухом фронтального сцепного устройства

Изобретение относится к железнодорожному транспорту. Рельсовое транспортное средство снабжено кожухом для фронтального сцепного устройства. Кожух образован по меньшей мере одной подвижной передней крышкой (1), которая с помощью привода может перемещаться между открытым и закрытым конечным...
Тип: Изобретение
Номер охранного документа: 0002551406
Дата охранного документа: 20.05.2015
27.05.2015
№216.013.4dce

Камера сгорания в сборе

Камера сгорания в сборе содержит основной корпус, формируемый подающим коллектором с системой подачи топлива и топливными форсунками, продолжающимися от подающего коллектора и снабжаемыми топливом посредством системы подачи топлива подающего коллектора. Подающий коллектор имеет...
Тип: Изобретение
Номер охранного документа: 0002551436
Дата охранного документа: 27.05.2015
27.05.2015
№216.013.4de8

Горелка предварительного смешения

Изобретение относится к области энергетики. Горелка предварительного смешения (1) с каналом подвода воздуха (21) по меньшей мере одним каналом подачи пилотного газа (23), который содержит по меньшей мере одну направленную к каналу подвода воздуха (21) стенку канала (39) и один входящий в канал...
Тип: Изобретение
Номер охранного документа: 0002551462
Дата охранного документа: 27.05.2015
27.05.2015
№216.013.4e18

Способ удаления вредных веществ из диоксида углерода и устройство для его осуществления

Группа изобретений относится к способу отделения вредных веществ из газового потока и касается способа удаления вредных веществ из диоксида углерода и устройства для его осуществления. Способ отделения вредного вещества из газовой смеси, которая, в основном, содержит диоксид углерода СО, а...
Тип: Изобретение
Номер охранного документа: 0002551510
Дата охранного документа: 27.05.2015
27.05.2015
№216.013.4f43

Способы и устройства для обработки расширенного элемента прокси информации

Изобретение относится к способам и устройствам для обработки расширенного элемента прокси информации. Технический результат заключается в повышении скорости передачи данных в сети. Способ содержит: обнаружение изменения в соединении внешней станции (E1) с прокси сетевым шлюзом (G1);...
Тип: Изобретение
Номер охранного документа: 0002551809
Дата охранного документа: 27.05.2015
Показаны записи 371-380 из 945.
10.04.2015
№216.013.3d85

Способ функционирования процессора в среде реального времени

Изобретение относится к способу функционирования процессора в среде реального времени. Техническим результатом является понижение потребления энергии. В способе процессор после обработки события реального времени переключается из рабочего состояния в состояние покоя. При предстоящем наступлении...
Тип: Изобретение
Номер охранного документа: 0002547237
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3dfa

Охлаждение конструктивного элемента газовой турбины, выполненного в виде диска ротора или лопатки турбины

Изобретение касается конструктивного элемента газовой турбины, например лопатки турбины или диска ротора. Конструктивный элемент газовой турбины снабжен по меньшей мере одним оканчивающимся на неструктурированной поверхности каналом для направления охлаждающего средства. В поверхности рядом с...
Тип: Изобретение
Номер охранного документа: 0002547354
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3e3e

Резервуар с силовым замыканием

Изобретение относится к области устройств для отведения воды. Устройство содержит резервуар с силовым замыканием с цилиндром для самотека воды, имеющим впускное отверстие и выпускное отверстие. Впускное отверстие образует водосливной порог. Внутри цилиндра установлен соединенный с поплавком...
Тип: Изобретение
Номер охранного документа: 0002547422
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3fca

Система передачи энергии

Использование: в области электроэнергетики. Технический результат - уменьшение перегрузки локальных сетей. Система (10) передачи энергии имеет по меньшей мере одно устройство (60) управления нагрузкой, которое опосредованно или непосредственно соединено с по меньшей мере, соответственно, одним...
Тип: Изобретение
Номер охранного документа: 0002547818
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.4042

Электроприводное устройство летательного аппарата (варианты)

Изобретение относится к области авиации, в частности к электроприводам винтов летательных аппаратов. Электропривод (1) летательного аппарата, в частности вертолета (20), по меньшей мере с одним несущим винтом (23), приводимым во вращение посредством динамоэлектрической машины (2), выполнен...
Тип: Изобретение
Номер охранного документа: 0002547938
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.4099

Контроль электрической сети энергоснабжения

Использование: в области электроэнергетики. Технический результат - упрощение и повышение надежности способа при большом числе мест измерений сети энергоснабжения. Согласно способу каждое значение, измеренное с помощью векторного измерительного прибора, привязывается к опорному значению с...
Тип: Изобретение
Номер охранного документа: 0002548025
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.40a3

Искровой промежуток

Изобретение касается искрового промежутка (1) для защиты от перенапряжения. Разрядник содержит обращенные друг к другу электроды (3,4,20), имеющие по меньшей мере частично ограничивающие путь прохождения тока средства (7,16,17) для принудительного обеспечения желаемого пути прохождения тока в...
Тип: Изобретение
Номер охранного документа: 0002548035
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.411e

Способ и устройство для получения тc (резоскана, золедроновой кислоты)

Изобретение относится к способу получения Tc. Заявленный способ включает следующие стадии: получение раствора, содержащего Mo-молибдат-ионы; создание протонного луча с энергией, достаточной для того, чтобы при облучении Mo-молибдат-ионов индуцировать ядерную реакцию Mo(p,2n)Tc; облучение...
Тип: Изобретение
Номер охранного документа: 0002548168
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4122

Ротор для электрической машины

Изобретение касается ротора для электрической машины, возбуждаемой постоянными магнитами, в частности для электрической машины большой мощности. Технический результат заключается в повышении надёжности крепления магнитов на корпусе ротора без применения винтовых соединений. Ротор имеет...
Тип: Изобретение
Номер охранного документа: 0002548172
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.415f

Способ диагностирования склонности камеры сгорания к гудению и способ управления газовой турбиной

Способ диагностирования склонности камеры сгорания к гудению в рабочем состоянии, включающий следующие этапы: эксплуатацию камеры сгорания в рабочем состоянии; регистрацию термоакустической величины газового объема камеры сгорания и/или величины колебаний конструкции камеры сгорания в рабочем...
Тип: Изобретение
Номер охранного документа: 0002548233
Дата охранного документа: 20.04.2015
+ добавить свой РИД