×
19.01.2018
218.016.0e53

Результат интеллектуальной деятельности: Вентильный ветрогенератор постоянного тока

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электротехники, в частности к электромеханическим преобразователям энергии, и может быть использовано, например, в качестве преобразователя механической энергии воздушного потока (например, энергии набегающего воздушного потока при использовании на подвижных локальных объектах, энергии ветра при использовании на неподвижных локальных объектах), в электрическую энергию постоянного тока. Техническим результатом является уменьшение осевых и диаметральных размеров ветрогенератора, снижение потерь энергии при преобразовании механической энергии (например, энергии набегающего воздушного потока или ветра) в электрическую энергию постоянного тока, повышение чувствительности ветрогенератора к скорости набегающего воздушного потока (уменьшение минимально необходимой для генерирования напряжения скорости набегающего воздушного потока), повышение жесткости конструкции. Вентильный ветрогенератор постоянного тока содержит: статор с магнитопроводом якоря, в пазы которого уложена трехфазная обмотка якоря, подключенная к трехфазному двухполупериодному выпрямителю, и ротор с постоянными магнитами индуктора, при этом статор, магнитопровод якоря и ротор выполнены в форме усеченного конуса, при этом основание статора выполнено в форме неподвижной платформы, жестко закрепленной на штанге-держателе, а боковая поверхность статора образована наружной стороной магнитопровода якоря с пазами, в которые уложена трехфазная обмотка якоря, при этом магнитопровод якоря одной торцевой стороной жестко закреплен на неподвижной платформе, а на противоположной торцевой стороне магнитопровода якоря установлен передний подшипниковый узел, при этом боковая поверхность ротора выполнена с лопатками изогнутой формы, передняя часть ротора выполнена с обтекателем и вентиляционными отверстиями, расположенными вокруг обтекателя по окружности с центром на оси симметрии ротора, а постоянные магниты индуктора жестко закреплены на внутренней поверхности ротора, при этом ротор жестко закреплен на вращающейся оси, установленной в переднем и заднем подшипниковых узлах, задний подшипниковый узел установлен в неподвижной платформе и закреплен от перемещения в осевом направлении упорной шайбой, а трехфазный двухполупериодный выпрямитель жестко закреплен на неподвижной платформе. 2 ил.

Изобретение относится к электротехнике, в частности к электромеханическим преобразователям энергии, и может быть использовано, например, в качестве преобразователя механической энергии воздушного потока (например, энергии набегающего воздушного потока при использовании на подвижных локальных объектах, энергии ветра при использовании на неподвижных локальных объектах), в электрическую энергию постоянного тока.

Известен генератор постоянного тока радиальной конструкции (Авиационное оборудование самолетов. Часть 1: учебное пособие для курсантов, обучающихся по специальности «Эксплуатация воздушных судов и организация воздушного движения» / Я.М. Кашин, Г.А. Кириллов, А.В. Ракло; КВВАУЛ им. А.К. Серова. Под общей редакцией Я.М. Кашина. - Краснодар: изд-во КВВАУЛ, 2006 г. - с. 31-37), содержащий корпус, в котором установлены неподвижный статор и вращающийся ротор, закрепленный на валу, установленном в подшипниковых узлах. На статоре размещены постоянные магниты индуктора, создающие магнитное поле. На роторе размещен магнитопровод якоря, в пазы которого уложена обмотка якоря. Индуктируемая в обмотке якоря электродвижущая сила (ЭДС) подается в сеть через щеточно-коллекторный узел. Постоянные магниты индуктора и магнитопровод якоря выполнены радиальными.

Однако технология изготовления такого генератора сложна из-за необходимости штамповки листов магнитопроводов ротора, а стоимость такого генератора велика из-за большого расхода электротехнической стали, связанного с высоким процентом ее отходов при штамповке.

Кроме того, в связи с наличием в такой машине щеточно-коллекторного узла она обладает рядом недостатков, свойственных контактным электрическим машинам: искрение щеток, переходящее в круговой огонь из-за неравномерного их износа, вибрация щеток, их заклинивание и др. Более 40% отказов вращающихся контактных машин приходится на щеточно-коллекторный узел.

Известен также запасной генератор ЛУН-2117.02 типа ГСР-3000 (Самолет Л-39. Часть 2. Авиационное и радиоэлектронное оборудование самолета. М.: «Военное издательство», 1990. - С.6-7), представляющий собой ветрогенератор традиционной (радиальной) конструкции, содержащий электрогенератор постоянного тока и напорную (воздушную) турбину В-910, закрепленную на его валу. Вращение якоря генератора осуществляется напорной турбиной В-910. При отказе основного генератора автоматически открывается люк, напорная турбина с генератором выдвигаются во встречный поток воздуха и генератор вступает в работу. Напорная турбина содержит ступицу, к которой крепятся лопасти.

Недостатком такого генератора являются низкие массогабаритные показатели, а именно: большой осевой размер, который складывается из осевого размера генератора и осевого размера напорной турбины. Кроме того, лопасти напорной турбины при этом должны иметь размах, больший, чем диаметр электрогенератора, иначе воздушный поток, упираясь в торцевую поверхность цилиндрического корпуса генератора, не будет вращать турбину с максимальной скоростью. Следовательно, диаметр ветрогенератора в целом будет равен размаху лопастей, что также ухудшает массогабаритные показатели ветрогенератора в целом.

Из известных технических решений наиболее близким к заявляемому изобретению по технической сущности и принятым авторами за прототип является ветрогенератор (патент РФ №2168062, опубл. 27.05.2001 г.), содержащий ветроколесо и магнитоэлектрический генератор, ротор которого имеет постоянные магниты индуктора и связан с ветроколесом, а статор выполнен из шихтованного магнитопровода с обмотками якоря, при этом генератор имеет два идентичных статора, магнитопроводы которых выполнены в виде плоских колец с установленными на их торцевой части и обращенными друг к другу плоскими обмотками, а ротор выполнен в виде немагнитного диска с вмонтированными в него постоянными магнитами, при этом диск ротора расположен между обмотками якоря, подключенными к трехфазным двухполупериодным выпрямителям. Известный ветрогенератор содержит коммутирующее устройство с возможностью переключения обмоток статоров последовательно или параллельно в зависимости от скорости ветра.

Недостатком такого ветрогенератора также являются низкие массогабаритные показатели, а именно: большой осевой размер, который складывается из осевого размера магнитоэлектрического генератора и осевого размера ветроколеса. Кроме того, размах лопастей ветроколеса известного ветрогенератора существенно превышает диаметр магнитоэлектрического генератора, так как иначе воздушный поток, упираясь в торцевую поверхность корпуса магнитоэлектрического генератора, не будет вращать его ротор с максимальной скоростью. Таким образом, диаметр ветрогенератора в целом равен размаху лопастей, что также ухудшает массогабаритные показатели ветрогенератора в целом.

Кроме того, конструкция ротора известного ветрогенератора вследствие сравнительно большого диаметра лопастей не обеспечивает минимального лобового сопротивления воздушному потоку, а следовательно, потери механической энергии при преобразовании ее в электрическую велики. Вследствие этого чувствительность ветрогенератора к скорости набегающего воздушного потока низка, то есть минимальная скорость набегающего воздушного потока, необходимая для преобразования энергии ветра в механическую энергию вращения ротора, должна быть большой. При низкой скорости набегающего воздушного потока КПД такого ветрогенератора будет низок. В целях устранения этого недостатка в известном ветрогенераторе используется два статора и установлено коммутирующее устройство с возможностью переключения обмоток статора (якоря) последовательно или параллельно в зависимости от скорости ветра. Использование двух статоров и коммутирующего устройства ухудшает массогабаритные показатели и усложняет конструкцию ветрогенератора.

Задачей предлагаемого изобретения является улучшение массогабаритных показателей при одновременном повышении КПД и упрощении конструкции ветрогенератора.

Техническим результатом заявленного изобретения является уменьшение осевых и диаметральных размеров ветрогенератора, снижение потерь энергии при преобразовании механической энергии (например, энергии набегающего воздушного потока или ветра) в электрическую энергию постоянного тока, повышение чувствительности ветрогенератора к скорости набегающего воздушного потока (уменьшение минимально необходимой для генерирования напряжения скорости набегающего воздушного потока), повышение жесткости конструкции.

Технический результат достигается тем, что в вентильном ветрогенераторе постоянного тока, содержащем статор с магнитопроводом якоря, в пазы которого уложена трехфазная обмотка якоря, подключенная к трехфазному двухполупериодному выпрямителю, и ротор с постоянными магнитами индуктора, статор, магнитопровод якоря и ротор выполняются в форме усеченного конуса, при этом основание статора выполняется в форме неподвижной платформы, жестко закрепленной на штанге-держателе, а боковая поверхность статора образуется наружной стороной магнитопровода якоря с пазами, в которые уложена трехфазная обмотка якоря, при этом магнитопровод якоря одной торцевой стороной жестко закрепляется на неподвижной платформе, а на противоположной торцевой стороне магнитопровода якоря устанавливается передний подшипниковый узел, при этом боковая поверхность ротора выполняется с лопатками изогнутой формы, передняя часть ротора выполняется с обтекателем и вентиляционными отверстиями, расположенными вокруг обтекателя по окружности с центром на оси симметрии ротора, а постоянные магниты индуктора жестко закрепляются на внутренней поверхности ротора, при этом ротор жестко закрепляется на вращающейся оси, устанавливаемой в переднем и заднем подшипниковых узлах, задний подшипниковый узел устанавливается в неподвижной платформе и закрепляется от перемещения в осевом направлении упорной шайбой, а трехфазный двухполупериодный выпрямитель жестко закрепляется на неподвижной платформе.

Улучшение массогабаритных показателей достигается путем уменьшения осевых и диаметральных размеров ветрогенератора за счет выполнения статора, магнитопровода якоря и ротора в форме усеченного конуса, выполнением боковой поверхности ротора с лопатками изогнутой формы, жестким закреплением постоянных магнитов индуктора на внутренней поверхности ротора.

Выполнение статора, магнитопровода якоря и ротора в форме усеченного конуса, выполнение боковой поверхности ротора с лопатками изогнутой формы позволяет не устанавливать ветроколесо (или напорную турбину) для приведения ротора во вращение. В связи с этим осевые и диаметральные размеры всего ветрогенератора в целом уменьшаются, что приводит к улучшению массогабаритных показателей, а именно к уменьшению габаритных размеров, а соответственно, уменьшению расхода электротехнических материалов на изготовление ветрогенератора, а соответственно, и массы всего ветрогенератора.

Повышение КПД ветрогенератора достигается путем снижения потерь энергии при преобразовании механической энергии (например, энергии набегающего воздушного потока или энергии ветра) в электрическую энергию постоянного тока за счет выполнения статора, магнитопровода якоря и ротора в форме усеченного конуса, выполнения боковой поверхности ротора с лопатками изогнутой формы, выполнения передней части ротора с обтекателем и вентиляционными отверстиями, расположенными вокруг обтекателя по окружности с центром на оси симметрии ротора. Вследствие выполнения ротора в форме усеченного конуса, а передней части ротора - с обтекателем и вентиляционными отверстиями лобовое сопротивление ротора набегающему воздушному потоку уменьшается. Вентиляционные отверстия препятствуют перегреву ветрогенератора, что также повышает его КПД.

Повышение КПД ветрогенератора достигается также путем повышения чувствительности ветрогенератора к скорости набегающего воздушного потока (уменьшение минимально необходимой для генерирования напряжения скорости набегающего воздушного потока) за счет выполнения ротора и магнитопровода якоря в форме усеченного конуса, выполнения внешней поверхности ротора с лопатками изогнутой формы, а передней части ротора - с обтекателем и вентиляционными отверстиями. Выполнение ротора в форме усеченного конуса с лопатками изогнутой формы на его боковой поверхности при выборе оптимального угла раствора конуса позволяет обеспечить со-направление продольной составляющей отраженного потока с набегающим потоком воздуха, а это в свою очередь позволяет снизить минимально необходимую для производства электроэнергии скорость воздушного потока.

Упрощение конструкции ветрогенератора достигается за счет выполнения основания статора в форме неподвижной платформы, жестко закрепленной на штанге-держателе, жестким закреплением на неподвижной платформе трехфазного двухполупериодного выпрямителя и магнитопровода якоря, в пазы которого уложена трехфазная обмотка якоря, закреплением магнитопровода якоря одной торцевой стороной на неподвижной платформе, выполнением ротора в форме усеченного конуса, выполнением боковой поверхности ротора с лопатками изогнутой формы. Выполнение боковой поверхности ротора с лопатками изогнутой формы позволяет избежать дополнительного изготовления ветроколеса или напорной турбины. Описанная конструкция обеспечивает возможность жесткого закрепления всех элементов ротора на оси вне корпуса (статора). Собранный таким образом вне корпуса (статора) ротор целиком устанавливается в корпус (статор) и закрепляется в нем, при этом исключается необходимость сборки ротора (закрепления на нем постоянных магнитов индуктора) внутри корпуса (статора), что существенно упрощает процесс сборки ветрогенератора, упрощая технологию его изготовления.

Повышение надежности конструкции достигается за счет повышения ее жесткости путем выполнения ротора, ступицы и лопаток напорной турбины единым агрегатом: выполнением боковой поверхности ротора с лопатками изогнутой формы, а передней части ротора - с обтекателем, жестким закреплением ротора на вращающейся оси, устанавливаемой в переднем и заднем подшипниковых узлах. Кроме того, повышение жесткости конструкции достигается за счет выполнения механического соединения всех элементов ротора (постоянных магнитов индуктора, корпуса ротора с лопатками и обтекателем) между собой.

Повышение надежности достигается также закреплением заднего подшипникового узла, установленного в платформе, от перемещения в осевом направлении упорной шайбой.

На фиг. 1 представлен общий вид предлагаемого вентильного ветрогенератора постоянного тока в разрезе; на фиг. 2 - электрическая схема предлагаемого вентильного ветрогенератора постоянного тока.

Вентильный ветрогенератор постоянного тока содержит статор с магнитопроводом 4 якоря, в пазы которого уложена трехфазная обмотка 5 якоря, подключенная к трехфазному двухполупериодному выпрямителю 14, и ротор 1 с постоянными магнитами 2 индуктора. Статор, магнитопровод 4 якоря и ротор 1 выполнены в форме усеченного конуса, при этом основание статора выполнено в форме неподвижной платформы 12, жестко закреплено на штанге-держателе 13, а боковая поверхность статора образована наружной стороной магнитопровода 4 якоря с пазами, в которые уложена трехфазная обмотка 5 якоря, при этом магнитопровод 4 якоря одной торцевой стороной жестко закреплен на неподвижной платформе 12, а на противоположной торцевой стороне магнитопровода 4 якоря установлен передний подшипниковый узел 9, при этом боковая поверхность ротора 1 выполнена с лопатками 3 изогнутой формы, передняя часть ротора 1 выполнена с обтекателем 6 и вентиляционными отверстиями 7, расположенными вокруг обтекателя 6 по окружности с центром на оси симметрии ротора 1, а постоянные магниты 2 индуктора жестко закреплены на внутренней поверхности ротора 1, при этом ротор 1 жестко закреплен на вращающейся оси 8, установленной в переднем 9 и заднем 10 подшипниковых узлах, задний подшипниковый узел 10 установлен в неподвижной платформе 12 и закреплен от перемещения в осевом направлении упорной шайбой 11, а трехфазный двухполупериодный выпрямитель 14 жестко закреплен на неподвижной платформе 12.

Ротор 1, боковая поверхность которого выполнена с лопатками 3 изогнутой формы, образует воздушную турбину. Жестко закрепленный на вращающейся оси 8, установленной в переднем 9 и заднем 10 подшипниковых узлах, ротор 1 может свободно вращаться.

Обтекатель 6 ротора 1 служит для направления набегающего воздушного потока через вентиляционные отверстия 7 во внутреннюю полость ветрогенератора для его охлаждения. Штанга-держатель 13 предназначена для закрепления ветрогенератора, например, на подвижном локальном объекте.

Вентильный ветрогенератор постоянного тока (ВВГПТ) работает следующим образом. Механическая энергия вращения поступает в ВВГПТ от набегающего воздушного потока. При движении подвижного локального объекта набегающий воздушный поток разделяется на два контура. Воздушный поток первого воздушного контура, который обтекает внешнюю поверхность ротора 1, жестко закрепленного на вращающейся оси 8, установленной в переднем 9 и заднем 10 подшипниковых узлах, воздействует на лопатки 3 изогнутой формы и приводит ротор 1 во вращение. Воздушный поток второго воздушного контура, направленный обтекателем 6 ротора 1 через вентиляционные отверстия 7 во внутреннюю полость ветрогенератора, охлаждает расположенные во внутренней полости ветрогенератора узлы (передний 9 и задний 10 подшипниковые узлы, постоянные магниты 2 индуктора, магнитопровод 4 с трехфазной обмоткой 5 якоря, трехфазный двухполупериодный выпрямитель 14).

При вращении ротора 1 с жестко закрепленными на его внутренней поверхности постоянными магнитами 2 индуктора магнитный поток постоянных магнитов 2 индуктора взаимодействует с трехфазной обмоткой 5 якоря, уложенной в пазы магнитопровода 4 якоря, жестко закрепленного одной торцевой стороной на неподвижной платформе 12, которая жестко закреплена на штанге-держателе 13.

В результате этого взаимодействия в трехфазной обмотке 5 якоря генератора наводится трехфазная система ЭДС, которая выпрямляется трехфазным двухполупериодным выпрямителем 14 и подается в сеть.

Упорная шайба 11 удерживает подшипниковый узел 10 от перемещения в осевом направлении.

Вентильный ветрогенератор постоянного тока, содержащий статор с магнитопроводом якоря, в пазы которого уложена трехфазная обмотка якоря, подключенная к трехфазному двухполупериодному выпрямителю, и ротор с постоянными магнитами индуктора, отличающийся тем, что статор, магнитопровод якоря и ротор выполнены в форме усеченного конуса, при этом основание статора выполнено в форме неподвижной платформы, жестко закрепленной на штанге-держателе, а боковая поверхность статора образована наружной стороной магнитопровода якоря с пазами, в которые уложена трехфазная обмотка якоря, при этом магнитопровод якоря одной торцевой стороной жестко закреплен на неподвижной платформе, а на противоположной торцевой стороне магнитопровода якоря установлен передний подшипниковый узел, при этом боковая поверхность ротора выполнена с лопатками изогнутой формы, передняя часть ротора выполнена с обтекателем и вентиляционными отверстиями, расположенными вокруг обтекателя по окружности с центром на оси симметрии ротора, а постоянные магниты индуктора жестко закреплены на внутренней поверхности ротора, при этом ротор жестко закреплен на вращающейся оси, установленной в переднем и заднем подшипниковых узлах, задний подшипниковый узел установлен в неподвижной платформе и закреплен от перемещения в осевом направлении упорной шайбой, а трехфазный двухполупериодный выпрямитель жестко закреплен на неподвижной платформе.
Вентильный ветрогенератор постоянного тока
Вентильный ветрогенератор постоянного тока
Вентильный ветрогенератор постоянного тока
Источник поступления информации: Роспатент

Показаны записи 231-240 из 495.
04.04.2018
№218.016.300c

Способ подготовки углеводородного газа и установка для его осуществления

Изобретение относится к области газовой промышленности, а именно к технике и технологии подготовки углеводородного газа. Способ подготовки углеводородного газа включает сепарацию газа с отводами отделенного углеводородного конденсата и воды, адсорбционную осушку и отбензинивание газа, отвод...
Тип: Изобретение
Номер охранного документа: 0002645105
Дата охранного документа: 15.02.2018
10.05.2018
№218.016.3bde

Синхронизированная аксиальная двухвходовая генераторная установка

Изобретение относится к электротехнике. Технический результат - суммирование механической энергии вращения со световой энергией с преобразованием полученной энергии в электрическую. Синхронизированная аксиальная двухвходовая генераторная установка содержит боковой аксиальный магнитопровод с...
Тип: Изобретение
Номер охранного документа: 0002647708
Дата охранного документа: 19.03.2018
10.05.2018
№218.016.40f9

Способ получения растительного масла

Изобретение относится к масложировой промышленности. Способ получения растительного масла, включающий обрушивание семян с отделением оболочки, измельчение ядра с получением мятки, влаготепловую обработку мятки и выделение масла методом прессования или экстракции. Перед обрушиванием семена...
Тип: Изобретение
Номер охранного документа: 0002649019
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.40fc

Перегонный аппарат

Изобретение относится к эфирно-масличному производству. Предложен перегонный аппарат для отгонки эфирных масел из эфирно-масличного зернового сырья, включающий цилиндрический вертикальный корпус с верхней сферической крышкой с патрубком для отвода паровой фазы, загрузочное устройство, нижнее...
Тип: Изобретение
Номер охранного документа: 0002649018
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.411a

Способ получения эфирного масла мяты перечной

Изобретение относится к эфиромасличной промышленности. Способ получения эфирного масла мяты перечной в перегонных аппаратах периодического действия, включающий измельчение сырья, загрузку измельченного сырья в аппарат, отгонку эфирного масла потоком водяного пара и выгрузку отработанного...
Тип: Изобретение
Номер охранного документа: 0002649024
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.4165

Способ получения дынного масла и жмыха

Изобретение относится к масложировой промышленности. Способ получения дынного масла и жмыха включает сушку семян, очистку семян от сорных примесей, обрушивание методом однократного удара, отделение из рушанки на ситовой поверхности и в вертикальном воздушном потоке свободной плодовой оболочки,...
Тип: Изобретение
Номер охранного документа: 0002649022
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.4179

Способ предотвращения образования гидратов в газоводяной системе

Изобретение относится к предотвращению гидратообразования в газоводяных системах и может быть использовано в нефтегазодобывающей и перерабатывающей промышленности. Предлагаемый способ предотвращения образования гидратов в газоводяной системе включает определение термобарических параметров...
Тип: Изобретение
Номер охранного документа: 0002649162
Дата охранного документа: 30.03.2018
10.05.2018
№218.016.4184

Способ вскрытия продуктивного пласта на управляемой депрессии

Изобретение относится к области нефтяной и газовой промышленности, и в частности к бурению нефтяных скважин. Способ включает спуск в скважину колонны бурильных труб с долотом, обвязку устья скважины, промывку ствола скважины и подачу на долото при бурении промывочной жидкости, проведение...
Тип: Изобретение
Номер охранного документа: 0002649204
Дата охранного документа: 30.03.2018
10.05.2018
№218.016.4190

Способ управления системой приводов вибросита

Предложенный способ относится преимущественно к нефтяной и газовой промышленности и может быть применен для управления системой приводов бурового вибросита с линейной или эллиптической траекторией колебаний рамы. Способ управления системой приводов вибросита из двух дебалансных возбудителей...
Тип: Изобретение
Номер охранного документа: 0002649203
Дата охранного документа: 30.03.2018
10.05.2018
№218.016.41a1

Способ получения эфирного масла из шалфея мускатного

Изобретение относится к эфиромасличной промышленности. Способ получения эфирного масла из свежеубранного сырья шалфея мускатного в перегонных аппаратах периодического действия, включающий измельчение сырья, загрузку измельченного сырья в аппарат, отгонку эфирного масла потоком водяного острого...
Тип: Изобретение
Номер охранного документа: 0002649023
Дата охранного документа: 29.03.2018
Показаны записи 231-240 из 270.
10.05.2018
№218.016.4445

Стабилизированный аксиально-радиальный генератор постоянного тока

Изобретение относится к электротехнике, в частности к электрическим машинам постоянного тока. Технический результат - улучшение массогабаритных показателей. Стабилизированный аксиально-радиальный генератор постоянного тока содержит корпус, внутренний аксиальный магнитопровод с двумя активными...
Тип: Изобретение
Номер охранного документа: 0002649913
Дата охранного документа: 05.04.2018
10.05.2018
№218.016.44bb

Устройство для определения места повреждения кабеля

Изобретение относится к электротехнике и может быть использовано для определения мест повреждения на кабельных линиях электропередачи и связи. Устройство содержит импульсный измеритель, радиотелефон, источник радиоактивного излучения, установленный в центре свинцового контейнера в расположенном...
Тип: Изобретение
Номер охранного документа: 0002650081
Дата охранного документа: 06.04.2018
29.05.2018
№218.016.527c

Способ определения места повреждения кабельной линии

Изобретение относится к метрологии. Способ определения места повреждения кабеля заключается в том, что зондируют измеряемую кабельную линию импульсами напряжения, принимают импульсы, отраженные от неоднородностей волнового сопротивления, выделяют отраженные от неоднородностей волнового...
Тип: Изобретение
Номер охранного документа: 0002653583
Дата охранного документа: 11.05.2018
09.06.2018
№218.016.5a90

Синхронизированный аксиальный двухвходовый бесконтактный ветро-солнечный генератор

Изобретение относится к электротехнике, к электромеханическим преобразователям энергии, и может быть использовано в качестве преобразователя механической энергии вращения, например энергии ветра, подаваемой на механический вход машины, и электрической энергии постоянного тока, например световой...
Тип: Изобретение
Номер охранного документа: 0002655379
Дата охранного документа: 28.05.2018
25.06.2018
№218.016.672a

Многофазный ветрогенератор переменного тока

Изобретение относится к электротехнике, в частности к электромеханическим преобразователям энергии. Технический результат состоит в уменьшении осевого и диаметрального размеров, минимизации разности частоты номинального и фактического выходного напряжения, уменьшении порогового значения...
Тип: Изобретение
Номер охранного документа: 0002658316
Дата охранного документа: 20.06.2018
08.03.2019
№219.016.d49e

Катализатор для синтеза глиоксаля и способ синтеза глиоксаля

Изобретение относится к области каталитического органического синтеза карбонильных соединений, конкретно к способу синтеза глиоксаля - бифункционального простейшего диальдегида, а также к катализатору для его синтеза. Описан катализатор для синтеза глиоксаля, включающий кремнийсодержащий...
Тип: Изобретение
Номер охранного документа: 0002340395
Дата охранного документа: 10.12.2008
08.03.2019
№219.016.d526

Способ получения формальдегидсодержащей смолы с пониженной эмиссией формальдегида и функциональных материалов на ее основе

Изобретение относится к химической промышленности и может быть использовано для снижения содержания в материалах, получаемых на основе формальдегидосодержащих смол, несвязанного формальдегида. Способ получения глиоксальсодержащей карбамидоформальдегидной смолы с пониженной эмиссией фенола...
Тип: Изобретение
Номер охранного документа: 0002413737
Дата охранного документа: 10.03.2011
19.04.2019
№219.017.330c

Способ получения 2,4,6,8-тетраазабицикло[3.3.0]октан-3,7-диона

Изобретение относится к способу получения 2,4,6,8-тетраазабицикло[3.3.0]октан-3,7-диона (гликолурила), реакцию ведут при 80°С, в течение 60 мин, причем используют концентрированную серную кислоту в водной среде и реагенты берут в следующих мольных соотношениях: глиоксаль 2,0; мочевина 4,0;...
Тип: Изобретение
Номер охранного документа: 0002439072
Дата охранного документа: 10.01.2012
20.04.2019
№219.017.3532

Стабилизированная двухвходовая ветро-солнечная аксиально-радиальная электрическая машина-генератор

Изобретение относится к области электротехники и может быть использовано в преобразователях кинетической энергии ветра и световой энергии Солнца в суммарную электрическую энергию переменного тока. Технический результат - обеспечение возможности суммирования механической энергии и световой...
Тип: Изобретение
Номер охранного документа: 0002685424
Дата охранного документа: 18.04.2019
27.04.2019
№219.017.3cac

Аксиальный многофазный стабилизируемый трансформатор-фазорегулятор

Изобретение относится к области электротехники и может быть использовано, например, в лабораторных условиях для поверки электросчетчиков, в радиотехнических устройствах и т.д. Технический результат - стабилизация выходного напряжения трансформатора-фазорегулятора по величине, повышение...
Тип: Изобретение
Номер охранного документа: 0002686084
Дата охранного документа: 24.04.2019
+ добавить свой РИД