×
19.01.2018
218.016.03c3

Результат интеллектуальной деятельности: Способ определения пластового давления метана и сорбционных параметров угольного пласта

Вид РИД

Изобретение

Аннотация: Изобретение относится к горному делу, преимущественно к угольной промышленности, и может быть использовано для обеспечения безопасности при подземной разработке газоносных угольных пластов. Техническим результатом является повышение достоверности и оперативности определения пластового давления метана и сорбционных параметров угольного пласта в исходном и влажном состояниях. Способ включает бурение пластовой скважины, герметизацию ее устья, измерение давления и дебита метана на стадиях закрытия и открытия скважины, верификацию сорбционных параметров в теоретической модели массопереноса метана с данными измерений давления и дебита метана. После достижения установившегося дебита метана в скважину нагнетают воду под давлением 10…15 МПа, закрывают устье скважины в течение времени стабилизации давлений воды и метана, затем после истечения воды из скважины измеряют текущий дебит метана, при этом по величине установившегося давления воды определяют верхний предел пластового давления метана, а по данным измерений дебита метана до и после гидрообработки верифицируют сорбционные параметры угольного пласта в исходном и влажном состояниях. 1 з.п. ф-лы, 3 ил., 4 табл.

Изобретение относится к горному делу, преимущественно к угольной промышленности, и может быть использовано для обеспечения безопасности при подземной разработке газоносных угольных пластов за счет повышения достоверности определения метанообильности очистных выработок с учетом пластового давления метана и сорбционных параметров угольного пласта.

Известен способ определения пластового давления метана в угольном пласте, включающий бурение пластовой скважины, отбор пробы угля, измерение в ней количества метана, при этом пластовое давление метана в угольном пласте определяют путем сопоставления метаноносности пробы на сорбционной изотерме Ленгмюра (Патент RU 2007586, кл. Е21В 47/01, Е21В 47/04 от 15.02.1994).

Недостатком аналога является низкая достоверность косвенной методики определения пластового давления, основанной на использовании сорбционной изотермы Ленгмюра, полученной в лабораторных условиях в испытаниях маломасштабных образцов угля, которые отражают информацию о параметрах угольного пласта с большой дисперсией статистических данных.

Прототипом изобретения является способ определения пластового давления метана и сорбционных параметров угольного пласта, включающий бурение пластовой скважины, герметизацию ее устья, измерение давления и дебита метана на стадиях закрытия и открытия скважины, верификацию сорбционных параметров в теоретической модели массопереноса метана с данными измерений давления и дебита метана (Сластунов С.В., Каркашадзе Г.Г., Мазаник Е.В. // Методика и результаты измерения пластового давления метана и сорбционных свойств угольного пласта. Газовая промышленность. - спец. вып. Метан угольных пластов (672/2012). - С. 48-49).

Недостатком прототипа является низкая оперативность измерений пластового давления метана и сорбционных параметров угольного пласта, что обусловлено малым темпом нарастания давления метана в скважине до максимального значения, соответствующего пластовому давлению метана. Этот недостаток особенно проявляется в неразгруженных от горного давления низкопроницаемых угольных пластах, где длительность достижения максимального давления метана составляет более месяца. Задержка в получении достоверной информации о пластовом давлении метана и сорбционных параметрах угольного пласта не позволяет принимать оперативные технические решения, направленные на оптимизацию очистных работ, что в конечном результате понижает безопасность горных работ. Кроме того, известный способ не позволяет получать информацию о параметрах угольного пласта во влажном состоянии, что особенно актуально при реализации технологий с гидравлической обработкой угольного пласта для обеспечения безопасности очистных работ.

Техническим результатом изобретения является повышение достоверности и оперативности определения пластового давления метана и сорбционных параметров угольного пласта в исходном и влажном состояниях.

Это достигается тем, что в способе определения пластового давления метана и сорбционных параметров угольного пласта, включающем бурение пластовой скважины, герметизацию ее устья, измерение давления и дебита метана на стадиях закрытия и открытия скважины, верификацию сорбционных параметров в теоретической модели массопереноса метана с данными измерений давления и дебита метана, после достижения установившегося дебита метана в скважину нагнетают воду под давлением 10…15 МПа, закрывают устье скважины в течение времени стабилизации давлений воды и метана, затем после истечения воды из скважины измеряют текущий дебит метана, при этом по величине установившегося давления воды определяют верхний предел пластового давления метана, а по данным измерений дебита метана до и после гидрообработки верифицируют сорбционные параметры угольного пласта в исходном и влажном состояниях.

По второму варианту реализации способа после истечения воды устье скважины сначала закрывают, измеряя в ней установившийся нижний предел пластового давления метана, а затем открывают для измерения дебита метана.

Изобретение поясняется чертежами, где на фигуре 1 показана схема обустройства скважины и применяемое технологическое оборудование, на фигуре 2 показан результат верификации параметров сорбции по теоретической модели и шахтным измерениям для исходного пласта, а на фигуре 3 показан аналогичный результат верификации для влажного угля.

В соответствии с изобретением в газоносный угольный пласт 1 бурят скважину 2, производят обсадку устья этой скважины обсадной трубой 3, а коаксиальное пространство между стенками скважины 2 и обсадной трубы 3 герметизируют клеем 4. После застывания клея 4 скважину разбуривают на длину 5 через обсадную трубу 3. Устьевую часть скважины 2 оборудуют краном 6 и манометром 7. Для нагнетания жидкости используют насос 8, потребляющий воду из емкости 9. Подачу воды в пласт осуществляют через рукава высокого давления 10.

Способ реализуют следующим образом. После бурения скважины 2, установки обсадной трубы 3, герметизации клеем 4 коаксиального пространства и бурения участка скважины 5 из нее истекает метан, измерение дебита которого в течение времени осуществляют ротаметром (не показан) из обсадной трубы 3. После стабилизации дебита метана во времени обсадную трубу 3 присоединяют через рукав 10 к насосу 8 с емкостью 9. Далее в скважину 5 через обсадную трубу 3 нагнетают воду под давлением 15…20 МПа, которая по исходным и вновь образованным каналам проницаемости распространяется через полость скважины 5 в угольный пласт 1. При этом формируется гидравлическая связь нагнетаемой воды с метаном в угольном пласте 1. Затем устье скважины с обсадной трубой 3 закрывают краном 6. При этом с течением времени вода под остаточным давлением распространяется вглубь пласта 1, что фиксируется в виде понижения давления воды на манометре 7. Минимальное установившееся значение давления на манометре 7 соответствует искомой величине верхнего предела пластового давления метана в угольном пласте 1. Поле этого устье скважины открывают краном 6 и избыточная свободная вода самоистечением выходит из угольного пласта 1. Капиллярная и поровая вода остается в угольном пласте 1, сохраняя его влажность, характерную для процесса гидрообработки. На заключительной стадии реализации способа аналогичным путем с помощью ротаметра (не показано) фиксируют изменение дебита метана из скважины в течение времени.

По второму варианту реализации способа после истечения воды устье скважины закрывают краном 6 и манометром 7 измеряют в ней установившееся пластовое давление метана. В этом случае реализуется режим нарастания давления метана от атмосферного до максимального, что соответствует искомой величине нижнего предела пластового давления метана в угольном пласте 1. Истинное пластовое давление метана определяют в диапазоне между величинами верхнего и нижнего пределов пластового давления.

Вместе с прямым определением пластового давления метана полученной информации достаточно для определения параметров сорбции угольного пласта в исходном и влажном состояниях. В основе методики верификации параметров сорбции лежит дифференциальное уравнение в частных производных массопереноса метана в угольном пласте, отражающее закон сохранения массы, закон фильтрации Дарси и уравнение сорбции Ленгмюра (Сластунов С.В., Каркашадзе Г.Г., Мазаник Е.В. // Методика и результаты измерения пластового давления метана и сорбционных свойств угольного пласта. Газовая промышленность. - спец. вып. Метан угольных пластов (672/2012). - С. 48-49) в виде

где t - время;

m - эффективная пористость;

ρ - плотность метана;

а - параметр кривой Ленгмюра;

b - сорбционная емкость угля;

Р - давление метана в пласте;

k - газопроницаемость угля;

μ - динамическая вязкость газа;

div - дивергенция,

Методика верификации параметров сорбции Ленгмюра базируется на решении уравнения (1) с учетом краевых условий в виде начального распределения давления метана в угольном пласте и граничных условий в виде давления метана на полости скважины и в пласте - на удалении от скважины. Последовательность верификации заключается в первоочередном вычислении коэффициента проницаемости угольного пласта вокруг скважины по результатам измерений установившегося дебита метана. Характерно, что в установившемся режиме фильтрации коэффициент проницаемости угля, в соответствии с уравнением (1), зависит от найденного пластового давления метана и не зависит от параметров сорбции и поэтому определяется однозначно. Что касается оставшихся двух параметров сорбции, то их вычисляют по двум или более измеренным значениям дебита метана в различные моменты времени в нестационарном режиме истечения метана из скважины. При этом значения параметров Ленгмюра угольного пласта в исходном состоянии отличаются от этих же параметров пласта во влажном состоянии. Что касается коэффициента проницаемости угля, то эти данные для практики представляют ограниченный интерес, поскольку их значения характеризуют ситуацию с деформациями на локальном участке вокруг скважины и поэтому не несут объективной информации об угольном пласте. При этом достоверная информация о пластовом давлении метана и параметрах сорбции Ленгмюра угольного пласта в исходном и влажном состояниях, определенная оперативно, позволяет принимать обоснованные технические решения по снижению метанообильности очистных выработок, что обеспечивает более высокую безопасность очистных работ с высокой производительностью.

Пример реализации. Угольный пласт «Болдыревский», шахта им. С.М. Кирова, разрабатывается по столбовой системе разработки. Из вентиляционного штрека лавы 24-58 пробурена скважина длиной 36 м. Обсадка скважины произведена стальными трубами диаметром 70 мм при толщине стенки 5 мм. Коаксиальное пространство между скважиной и трубой заполняют путем нагнетания шахтного двухкомпонентного герметика «Шахтиклей». После герметизации скважина пробурена на дополнительную длину 3 м буровой коронкой диаметром 50 мм. Затем после обустройства скважины по фигуре 1 с помощью пластикового ротаметра фирмы Dwyer выполнены замеры дебита метана, представленные в таблице 1.

Далее в скважину осуществили нагнетание воды под предельным давлением 14 МПа. Скважину закрыли и выдержали под давлением в течение 4 суток. Результаты измерений давления воды представлены в таблице 2.

По данным таблицы 2 принимаем, что верхний предел пластового давления метана составляет 3,2 МПа.

Затем открывают кран и осуществляют самопроизвольный слив воды из скважины. После слива воды скважину закрывают краном 6 и манометром 7 измеряют нарастание давления метана в скважине вплоть до величины нижнего предела пластового давления. Результаты измерений представлены в таблице 3.

Таким образом, истинное пластовое давление метана определяется в диапазоне между верхним и нижним пределами и составляет 3,1…3.2 МПа.

В последующем измеряют дебит метана из скважины, результаты которого представлены в таблице 4.

Полученных данных достаточно для верификации сорбционных параметров угольного пласта в исходном и влажном состояниях.

На фигуре 2 показан результат верификации параметров сорбции по теоретической модели и шахтным измерениям для исходного пласта, по которым получены следующие результаты:

коэффициент проницаемости k1=0,04 мД;

сорбционная емкость угля b=30,5 м3/т;

параметр изотермы сорбции Ленгмюра a=0,26⋅10-6 Па-1.

На фигуре 3 показан аналогичный результат верификации для влажного угля:

коэффициент проницаемости k1=0,5 мД;

сорбционная емкость угля b1=24,1 м3/т;

параметр изотермы сорбции Ленгмюра а1=0,19⋅10-6 Па-1.

Таким образом, в соответствии с представленным способом оперативно осуществляют прямое определение пластового давления метана и далее путем верификации вычисляют параметры сорбции угольного пласта в исходном и влажном состояниях. Достоверность получаемой информации достигается за счет прямых экспериментов с натурным объектом.

Потребителем полученной информации является технический отдел шахты, планирующий безопасную выемку исходного или увлажненного угля при высоких нагрузках на очистные забои.


Способ определения пластового давления метана и сорбционных параметров угольного пласта
Способ определения пластового давления метана и сорбционных параметров угольного пласта
Способ определения пластового давления метана и сорбционных параметров угольного пласта
Источник поступления информации: Роспатент

Показаны записи 241-250 из 329.
19.01.2019
№219.016.b20e

Способ получения интерметаллических покрытий с использованием механохимического синтеза и последующей лазерной обработки

Изобретение относится к способу создания интерметаллических покрытий на основе соединений NiAl и Ni3Al. Осуществляют механоактивационную обработку в шаровой мельнице в течение 30-60 минут совместно с металлическим изделием, на которое наносится покрытие. Затем проводят лазерную обработку...
Тип: Изобретение
Номер охранного документа: 0002677575
Дата охранного документа: 17.01.2019
19.01.2019
№219.016.b20f

Способ вскрытия эвдиалитового концентрата

Изобретение относится к металлургии редких металлов. Способ переработки эвдиалитового концентрата включает предварительную механоактивацию концентрата и последующую гидрометаллургическую обработку. Предварительную обработку проводят до суммарного количества усвоенной эвдиалитом энергии в виде...
Тип: Изобретение
Номер охранного документа: 0002677571
Дата охранного документа: 17.01.2019
25.01.2019
№219.016.b3d9

Способ обработки магниевого сплава системы mg-y-nd-zr методом равноканального углового прессования

Изобретение относится к области металлургии, в частности к термомеханической обработке сплавов на основе магния, и может быть использовано в авиастроении, ракетной технике, в конструкциях автомобилей, хорошая биосовместимость позволяет использовать магниевые сплавы в медицине. Способ...
Тип: Изобретение
Номер охранного документа: 0002678111
Дата охранного документа: 23.01.2019
15.02.2019
№219.016.bac8

Способ получения порошка гафната диспрозия для поглощающих элементов ядерного реактора

Изобретение относится к ядерной технике, в частности к поглощающим нейтроны материалам (гафнат диспрозия - DyНfО), и может быть использовано в стержнях регулирования ядерных реакторов. Способ включает получение порошка гафната диспрозия путем механической активации смеси компонентов - диоксида...
Тип: Изобретение
Номер охранного документа: 0002679822
Дата охранного документа: 13.02.2019
03.03.2019
№219.016.d278

Способ получения узкофракционных сферических порошков из жаропрочных сплавов на основе алюминида никеля

Изобретение относится к области порошковой металлургии. Способ получения узкофракционных сферических порошков из жаропрочных сплавов на основе алюминида никеля включает стадию предварительного выделения заданной фракции путем классификации исходного порошкообразного материала зернистостью 5-150...
Тип: Изобретение
Номер охранного документа: 0002681022
Дата охранного документа: 01.03.2019
15.03.2019
№219.016.dfe2

Способ получения высокотемпературного термоэлектрического материала на основе кобальтита кальция

Изобретение относится к получению высокотемпературного термоэлектрического материала на основе кобальтита кальция и может быть использовано при производстве устройств термоэлектрического генерирования электроэнергии. Способ включает получение водного раствора из нитратов кобальта и кальция,...
Тип: Изобретение
Номер охранного документа: 0002681860
Дата охранного документа: 13.03.2019
27.04.2019
№219.017.3d45

Способ синтеза нанокомпозитов ag/c

Изобретение относится к области химии и нанотехнологии. Способ синтеза нанокомпозитов Ag/C включает приготовление совместного раствора полиакрилонитрила (ПАН) и нитрата серебра в диметилформамиде (ДМФА), выдержку до полного растворения всех компонентов, удаление диметилформамида путем...
Тип: Изобретение
Номер охранного документа: 0002686223
Дата охранного документа: 24.04.2019
14.05.2019
№219.017.5183

Способ получения проницаемого пеноматериала из сверхупругих сплавов системы титан-цирконий-ниобий

Изобретение относится к порошковой металлургии, в частности к получению проницаемого пеноматериала из сверхупругого сплава системы титан-цирконий-ниобий. Может использоваться в медицине, в качестве костных имплантатов, и в других отраслях техники, в качестве фильтровальных элементов. Сферичные...
Тип: Изобретение
Номер охранного документа: 0002687352
Дата охранного документа: 13.05.2019
14.05.2019
№219.017.518b

Способ получения твердых сплавов с округлыми зернами карбида вольфрама для породоразрушающего инструмента

Изобретение относится к области порошковой металлургии, в частности, к крупнозернистым твердым сплавам системы WC-Co/Ni/Fe. Может применяться для производства породоразрушающего твердосплавного инструмента. Крупнозернистые узкофракционные порошки WC с зернистостью 5-20 мкм смешивают без размола...
Тип: Изобретение
Номер охранного документа: 0002687355
Дата охранного документа: 13.05.2019
14.05.2019
№219.017.51ca

Литейный магниевый сплав

Изобретение относится к области металлургии, а именно к литейным сплавам на основе магния, и может быть использовано при получении деталей для авиакосмической промышленности, работающих под действием высоких нагрузок при температурах до 250°С и кратковременно при температурах до 300°С....
Тип: Изобретение
Номер охранного документа: 0002687359
Дата охранного документа: 13.05.2019
Показаны записи 181-186 из 186.
04.04.2018
№218.016.318e

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов в производстве гексаферрита стронция, что обеспечивает...
Тип: Изобретение
Номер охранного документа: 0002645192
Дата охранного документа: 16.02.2018
04.04.2018
№218.016.3504

Способ получения электроконтактного композитного материала на основе меди, содержащего кластеры на основе частиц тугоплавкого металла

Изобретение относится к получению электроконтактного композитного материала на основе меди, содержащего кластеры на основе частиц тугоплавкого металла. Способ включает механическую обработку смеси порошков меди и тугоплавного металла в атмосфере аргона при соотношении масс шаров и смеси...
Тип: Изобретение
Номер охранного документа: 0002645855
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.352f

Электросталеплавильный агрегат ковш-печь (эса-кп)

Изобретение относится к области металлургии, а конкретнее к области электрометаллургии стали и, в частности, к агрегатам ковш-печь (АКОС). Агрегат содержит футерованный ковш со сводом, установленные в его днище шиберные блоки с топливно-кислородными горелками (ТКГ) для нагрева и расплавления...
Тип: Изобретение
Номер охранного документа: 0002645858
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.35f0

Металлополимерные подшипники скольжения, выполненные из ориентированного полимерного нанокомпозиционного материала

Изобретение относится к машиностроению и может применяться в узлах трения, работающих в условиях сухого трения и химически агрессивных средах. Металлополимерный подшипник скольжения состоит из металлической втулки, на которую нанесен слой антифрикционного полимерного нанокомпозиционного...
Тип: Изобретение
Номер охранного документа: 0002646205
Дата охранного документа: 01.03.2018
14.06.2018
№218.016.61b1

Способ выбора мест размещения углепородных отвалов

Изобретение относится к горной промышленности, может быть использовано при выборе мест для расположения углепородных отвалов и предназначено для предотвращения самовозгорания складируемой горной массы. Техническим результатом изобретения является предотвращение самовозгорания складируемой...
Тип: Изобретение
Номер охранного документа: 0002657302
Дата охранного документа: 13.06.2018
01.07.2018
№218.016.69aa

Способ подготовки газоносного угольного пласта к отработке

Изобретение относится к горной промышленности и предназначено для обеспечения безопасности очистных работ при подземной отработке газоносных угольных пластов при столбовой системе разработки. Техническим результатом является повышение безопасности отработки газоносного угольного пласта....
Тип: Изобретение
Номер охранного документа: 0002659298
Дата охранного документа: 29.06.2018
+ добавить свой РИД