×
19.01.2018
218.016.01d2

Результат интеллектуальной деятельности: Способ определения показателя преломления монохроматической поверхностной электромагнитной волны инфракрасного диапазона

Вид РИД

Изобретение

Аннотация: Изобретение относится к области оптических измерений и касается способа определения показателя преломления монохроматической поверхностной электромагнитной волны инфракрасного диапазона. Способ включает в себя генерацию волны на плоской поверхности образца, размещение на пути волны плоского зеркала, отражающая грань которого наклонена относительно нормали к поверхности образца в сторону направления распространения волны, регистрацию отраженного зеркалом излучения и расчет показателя по результатам измерений. Регистрацию излучения осуществляют на поверхности образца. Зеркало размещают в плоскости, не содержащей нормаль к плоскости падения излучения. При проведении измерений плавно увеличивают от нуля угол α между нормалью к плоскости образца и зеркалом, фиксируют такое его значение α*, при котором интенсивность регистрируемого излучения обнуляется. Величину показателя рассчитывают по формуле: Технический результат заключается в уменьшении продолжительности и трудоемкости измерений. 3 ил.

Изобретение относится к оптике конденсированных сред и может быть использовано для определения оптических постоянных твердых тел, способных направлять поверхностные электромагнитные волны (ПЭВ) инфракрасного (ИК) диапазона, а также - для исследования переходного слоя на поверхности таких тел и в оптических сенсорных устройствах (Welford K. Surface plasmon-polaritons and their use // Optical and Quantum Electronics, 1991, v. 23, p. 1-27) [1].

Известен способ определения показателя преломления ПЭВ ИК области спектра, включающий формирование интерферограммы в результате сложения двух производных ПЭВ, полученных путем разделения исходной и прошедших по образцу различные расстояния, регистрацию интерферограммы в плоскости поверхности образца, расчет показателя преломления по результатам измерения периода интерферограммы (Патент РФ на изобретение №2372591) [2].

Основной недостаток способа - низкая точность определения показателя преломления, что обусловлено сравнимостью периода интерферограммы с размером чувствительного элемента (пикселя) линейки фотоприемников, регистрирующей интерференционную картину.

Известен способ определения показателя преломления ПЭВ ИК-диапазона, включающий формирование и анализ интерферограммы, получаемой в результате сложения объемной волны, являющейся частью пучка излучения, генерирующего ПЭВ, и поля исследуемой ПЭВ при перемещении в плоскости падения вдоль трека ПЭВ прилегающей к образцу линейки фотоприемников, а также - расчет искомого показателя по результатам измерений (Gerasimov V.V., Knyazev В.А., Nikitin А.K. Terahertz dispersive spectros-copy for thin-film study via surface-plasmon - bulk wave interference // Вестник НГУ (Физика), 2010, т. 5, №4, c. 158-161) [3].

Основной недостаток способа - низкая точность определения показателя преломления, вследствие наличия сильной засветки линейки приемников паразитными объемными волнами, исходящими от элемента преобразования излучения источника в ПЭВ и от неоднородностей поверхности на треке ПЭВ.

Наиболее близким по технической сущности к заявляемому способу является способ определения показателя преломления ПЭВ ИК-диапазона, включающий генерацию волны на поверхности образца, размещение на пути волны плоского зеркала, отражающая грань которого фиксирована и наклонена относительно нормали к поверхности образца в сторону направления распространения волны, регистрацию интерферограммы, получаемой при перемещении зеркала вдоль трека ПЭВ в результате сложения объемных волн, одна из которых является частью пучка излучения, генерирующего ПЭВ, а вторая порождена ПЭВ в результате ее взаимодействия с зеркалом, и - расчет искомого показателя преломления по результатам измерений (Патент РФ на изобретение №2470257). [4].

Основной недостаток способа - большая продолжительность измерений, что обусловлено необходимостью перемещения зеркала над образцом на макроскопическое расстояние (сантиметры) на котором ПЭВ приобретает набег фазы порядка 2π, а также - большая трудоемкость измерений, обусловленная необходимостью их выполнения во множестве точек трека.

Задача изобретения состоит в создании нового способа определения показателя преломления ПЭВ ИК-диапазона (являющегося вещественной частью комплексного показателя преломления ПЭВ), техническим результатом которого является уменьшение продолжительности и трудоемкости измерений.

Сущность изобретения состоит в том, что в известном способе определения показателя преломления ПЭВ ИК-диапазона, включающем генерацию волны на поверхности образца, размещение на пути волны плоского зеркала, отражающая грань которого наклонена относительно нормали к поверхности образца в сторону направления распространения волны, регистрацию отраженного зеркалом излучения и расчет показателя по результатам измерений, согласно изобретению, регистрацию излучения осуществляют на поверхности образца, зеркало размещают в плоскости, не содержащей нормаль к плоскости падения излучения, и, плавно увеличивая от нуля угол α между нормалью к плоскости образца и зеркалом, фиксируют такое его значение α*, при котором интенсивность регистрируемого излучения обнуляется, а величину искомого показателя κ' рассчитывают по формуле: .

Уменьшение продолжительности измерений и снижение их трудоемкости в предлагаемом способе достигается в результате отказа от амплитудно-фазовых измерений и выполнении вместо них измерения угла наклона зеркала, при котором интенсивность отраженной зеркалом ПЭВ становится равной нулю (обнуляется).

Покажем, каким образом можно определить показатель преломления ПЭВ ИК-диапазона, не прибегая к трудоемким интерферометрическим измерениям (как это необходимо делать в способе-прототипе).

Известно, что вещественная часть k' волнового числа ПЭВ k больше волнового числа ko=2π/λ плоской волны в воздухе (где λ - длина этой волны), что обуславливает неизлучающий характер ПЭВ [1]. Отношение k/kо=κ называют комплексным показателем преломления ПЭВ, а его вещественную часть Re(κ)=κ' - просто, показателем преломления ПЭВ, так как частное от деления скорости света на κ' равно фазовой скорости ПЭВ. При размещении в поле ПЭВ какого-либо предмета (края экрана, дифракционной решетки на поверхности образца, ребра прозрачной призмы и т.п.), волновой вектор ПЭВ , в результате дифракции волны на этом предмете, получает отрицательное приращение . Если выполняется условие:

где Δk - модуль приращения , то ПЭВ преобразуется в плоскую волну, распространяющуюся в окружающей среде (обычно, воздухе) под некоторым углом к поверхности образца. Если таким предметом является плоское зеркало, отражающая грань которого примыкает к поверхности образца, перпендикулярна треку ПЭВ и отклонена (в сторону направления распространения ПЭВ) от нормали к поверхности на угол α, а величина Δk удовлетворяет равенству (1), то ПЭВ трансформируется в плоскую волну, распространяющуюся под углом 2α к поверхности в направлении, противоположном ходу ПЭВ (Рис. 1, где: 1 - образец; 2 - зеркало).

Однако, если условие (1) не выполнено, то ПЭВ сохраняет свою природу и, после взаимодействия с зеркалом, распространяется по образцу в обратную сторону. Размещение зеркала в плоскости, не содержащей нормали к плоскости падения излучения (т.е. поворот зеркала на угол β относительно трека ПЭВ, см. Рис. 2б), приводит только к изменению направления распространения отраженной ПЭВ в соответствии законом отражения плоской волны плоским зеркалом (Bell R.J., Goben С.А., Davarpanah М, Bhasin K., Begley D.L., Bauer A.C. Two-dimensional optics with surface electromagnetic waves // Applied Optics, 1975, v. 14 (6), p. 1322-1325.) [5]. Поскольку проекция волнового вектора ПЭВ на направление распространения порожденной на зеркале плоской волны, при выполнении равенства (1), должна быть равна ko то, согласно Рис. 1 и с учетом факта, что [1], имеем ko/k'=cos(2α). Отсюда получим расчетную формулу:

Таким образом, плавно увеличивая угол α наклона зеркала и регистрируя его значение α*, при котором интенсивность отраженной ПЭВ становится равной нулю, а падающая на зеркало ПЭВ преобразуется в плоскую волну, можно рассчитать по формуле (2) искомое значение показателя преломления κ' монохроматической ПЭВ.

Изобретение поясняется чертежами: на Рис. 1 представлена векторная диаграмма преобразования ПЭВ в плоскую волну при взаимодействии с плоским зеркалом, отражающая грань которого перпендикулярна плоскости падения и наклонена на угол α относительно нормали к поверхности образца; на Рис. 2 (а - вид сбоку; б - вид сверху) изображена схема устройства, реализующего заявляемый способ; на Рис. 3 приведена расчетная зависимость функции (κ'-1) от угла α, позволяющая определить значение показателя преломления ПЭВ κ' по измеренному значению α*.

Заявляемый способ может быть реализован с использованием устройства, схема которого приведена на Рис. 2, где цифрами обозначены: 1 - образец, имеющий две способные направлять ПЭВ плоские грани, сопряженные закругленным ребром 3 с радиусом R, удовлетворяющим условию 10λ<R<L (где L - длина распространения ПЭВ); 2 - плоское зеркало, снабженное двумя осями вращения, одна из которых совпадает с ребром отражающей грани зеркала, прилегающим ко второй (по ходу пучка ПЭВ) грани образца 1, а вторая совпадает с нормалью к этой грани, восстановленной из центра пучка ПЭВ на выше упомянутом ребре зеркала; 4 - источник р-поляризованного монохроматического ИК излучения; 5 - элемент преобразования излучения источника 4 в ПЭВ; 6 - фотоприемник, размещенный на свободном ребре первой грани образца 1; 7 - измерительный прибор, подключенный к фотоприемнику 6.

Устройство работает, и способ осуществляется, следующим образом. Излучение источника 4, коллимированное в плоскости перпендикулярной плоскости падения, направляют на элемент 5, преобразующий объемную волну в параллельный пучок лучей ПЭВ на первой грани образца 1. Пройдя эту грань (содержащую элемент 5), ПЭВ преодолевает (с небольшими дополнительными, по сравнению с плоской поверхностью, радиационными потерями) закругленное ребро 3 и переходит на вторую грань образца 1. Пройдя некоторое расстояние по второй грани, ПЭВ взаимодействует с зеркалом 2, ребро которого, прилегающее к поверхности образца 1, отклонено от нормали к треку ПЭВ на угол β, что позволяет разнести треки поверхностных волн (падающей на зеркало 2 и отраженной от него) на угол 2β. В исходном состоянии зеркало 2 ориентировано перпендикулярно к поверхности образца 1, поэтому отраженное излучение существует в форме ПЭВ, которая достигает ребра 3, переходит со второй на первую грань образца 1 и падает на входное отверстие приемника 6, порождая регистрируемый прибором 7 сигнал. Затем зеркало 2 отклоняют от нормали к поверхности второй грани образца 1, постепенно увеличивая угол α и контролируя при этом величину сигнала, регистрируемого прибором 7. При некотором значении α=α* достигается равенство (1) и падающая на зеркало ПЭВ преобразуется в плоскую волну, уходящую в окружающую среду под углом 2α*, что сопровождается обнулением интенсивности отраженной ПЭВ и сигнала на приборе 7. Искомое значение показателя преломления κ' либо рассчитывают по формуле (2), подставляя в нее измеренное значение угла α*, либо определяют его по предварительно построенному графику зависимости (κ'-1) от α, рассчитанному по формуле (2) и представленному на Рис. 3. Наличие у образца 1 двух сопряженных скругленным ребром 3 плоских граней объясняется необходимостью экранирования приемника 6 от паразитных засветок его объемными волнами, порождаемыми при дифракции излучения источника 1 на элементе 5.

В качестве примера применения заявляемого способа, рассмотрим возможность определения показателя преломления ПЭВ, генерируемой излучением с λ=50 мкм на размещенной в вакууме плоской поверхности. Пусть зеркало 2, отражающее ПЭВ, установлено на гониометре, имеющем инструментальную погрешность равную 10ʺ, что соответствует 5×10-5 радиан, а измеренное значение угла α*=1°30'00ʺ; тогда искомое значение κ', согласно графику на Рис. 3, равно 1.00137±5×10-5. При этом, для определения значения α* исследователю потребуется контролировать наличие сигнала с прибора 7, изменяя угол наклона α зеркала 2 не более 540 раз (частное от деления значения угла α* на погрешность гониометра, равную 10ʺ). Определение же величины κ' способом, взятом в качестве прототипа, при соблюдении прочих равных условий измерений потребует значительно больше времени и усилий, поскольку этот способ-прототип предусматривает, во-первых, два этапа измерений (вначале амплитудных, затем фазовых), и, во-вторых, - для его реализации, при одной и той же точности определения κ', необходимо будет оценить результат интерференции опорного и реперного пучков в 5000 положениях наклонного зеркала, перемещаемого вдоль трека ПЭВ с шагом 10 мкм на расстояние 50 мм, соответствующее изменению разности фаз пучков на 2π.

Таким образом, замена двухэтапной методики амплитудно-фазовых измерений на определение угла наклона зеркала, при котором интенсивность отраженной им ПЭВ обнуляется, позволяет значительно упростить процедуру измерений, уменьшить ее продолжительность и трудоемкость без понижения точности определения показателя преломления ПЭВ.

Источники информации

1. Welford K. Surface plasmon-polaritons and their use // Optical and Quantum Electronics, 1991, v. 23, p. 1-27.

2. Жижин Г.Н., Кирьянов А.П., Никитин A.K., Хитров О.В. Способ определения показателя преломления поверхностной электромагнитной волны инфракрасной области спектра // Патент РФ на изобретение №2372591. - Бюл. №31 от 10.11.2009 г.

3. Gerasimov V.V., Knyazev В.A., Nikitin А.K. Terahertz dispersive spectros-copy for thin-film study via surface-plasmon - bulk wave interference // Вестник НГУ (Физика), 2010, т. 5, №4, c. 158-161.

4. Никитин A.K., Кирьянов А.П., Жижин Г.Н., Чудинова Г.К. Способ определения толщины однородного нанослоя в инфракрасном излучении // Патент РФ на изобретение №2470257. Бюл. №35 от 20.12.2012 г. (прототип)

5. Bell R.J., Goben С.А., Davarpanah М., Bhasin K., Begley D.L., Bauer A.C. Two-dimensional optics with surface electromagnetic waves // Applied Optics, 1975, v. 14 (6), p. 1322-1325.

Способ определения показателя преломления монохроматической поверхностной электромагнитной волны инфракрасного диапазона, включающий генерацию волны на плоской поверхности образца, размещение на пути волны плоского зеркала, отражающая грань которого наклонена относительно нормали к поверхности образца в сторону направления распространения волны, регистрацию отраженного зеркалом излучения и расчет показателя по результатам измерений, отличающийся тем, что регистрацию излучения осуществляют на поверхности образца, зеркало размещают в плоскости, не содержащей нормаль к плоскости падения излучения, и, плавно увеличивая от нуля угол α между нормалью к плоскости образца и зеркалом, фиксируют такое его значение α*, при котором интенсивность регистрируемого излучения обнуляется, а величину искомого показателя рассчитывают по формуле:
Способ определения показателя преломления монохроматической поверхностной электромагнитной волны инфракрасного диапазона
Способ определения показателя преломления монохроматической поверхностной электромагнитной волны инфракрасного диапазона
Способ определения показателя преломления монохроматической поверхностной электромагнитной волны инфракрасного диапазона
Способ определения показателя преломления монохроматической поверхностной электромагнитной волны инфракрасного диапазона
Способ определения показателя преломления монохроматической поверхностной электромагнитной волны инфракрасного диапазона
Способ определения показателя преломления монохроматической поверхностной электромагнитной волны инфракрасного диапазона
Способ определения показателя преломления монохроматической поверхностной электромагнитной волны инфракрасного диапазона
Способ определения показателя преломления монохроматической поверхностной электромагнитной волны инфракрасного диапазона
Источник поступления информации: Роспатент

Показаны записи 71-78 из 78.
16.05.2023
№223.018.6048

Устройство оптического восстановления телекоммуникационного сигнала с амплитудной модуляцией и способ создания этого устройства

Изобретение относится к устройствам, предназначенным для исправления искажений оптических телекоммуникационных сигналов, и может быть использовано для компенсации хроматической дисперсии и нелинейных искажений в сигнале до момента непосредственного детектирования. Технический результат состоит...
Тип: Изобретение
Номер охранного документа: 0002749670
Дата охранного документа: 16.06.2021
16.05.2023
№223.018.6100

Способ определения поглощенной дозы ядер отдачи

Изобретение относится к области биотехнологии, а именно к определению поглощенной дозы ядер отдачи, как суммы доз быстрых нейтронов и тепловых нейтронов. Способ включает облучение клеточных культур γ-излучением и смешанным излучением (γ-излучение и нейтронное). Далее осуществляют определение...
Тип: Изобретение
Номер охранного документа: 0002743417
Дата охранного документа: 18.02.2021
16.05.2023
№223.018.635b

Способ мониторинга роста клеточных культур и устройство для его осуществления

Группа изобретений относится к области биотехнологии. Предложен способ, состоящий в том, что в культуральный матрас через боковую поверхность направляют горизонтальный луч лазера. При этом культуральный матрас размещают на панели с вертикальными отверстиями, расположенными по ходу луча лазера...
Тип: Изобретение
Номер охранного документа: 0002776488
Дата охранного документа: 21.07.2022
21.05.2023
№223.018.683b

Способ осуществления эксперимента для исследования механохимических превращений и устройство для реализации протекания механохимических превращений

Группа изобретений относится к области механохимии. Раскрыт способ осуществления эксперимента для исследования механохимических превращений, включающий использование мельницы с барабаном для получения механического воздействия в отношении объекта исследования. При этом сначала во внутренний...
Тип: Изобретение
Номер охранного документа: 0002794882
Дата охранного документа: 25.04.2023
27.05.2023
№223.018.7105

Штамм escherichia coli bl21(de3)plyss/pet15b-hiscpf1 - продуцент рнк-направляемой эндонуклеазы crispr/cpf1

Изобретение относится к штамму Escherichia coli, продуцирующему рнк-направляемую эндонуклеазу CRISPR/CPF1. Предложен штамм Escherichia coli BL21(DE3)pLysS/pET15b-HisCpf1, продуцирующий рнк-направляемую эндонуклеазу CRISPR/CPF1 и полученный путем трансформации клеток Escherichia coli штамма...
Тип: Изобретение
Номер охранного документа: 0002774120
Дата охранного документа: 15.06.2022
27.05.2023
№223.018.7212

Способ пластики молочной железы

Изобретение относится к медицине, а именно к реконструктивно-пластической хирургии молочной железы. В положении стоя наносят линии разметки: срединную линию, разделяющую грудную клетку на две равные части, отмечают от яремной вырезки до мечевидного отростка грудины; линию, обозначающую...
Тип: Изобретение
Номер охранного документа: 0002749478
Дата охранного документа: 11.06.2021
16.06.2023
№223.018.7c09

Способ экспресс-диагностики состояния устойчивости колонн газовых скважин методом стоячих волн

Изобретение относится к области геофизических методов контроля состояния колонн газовых скважин при их эксплуатации. Предложен способ использования упругих стоячих волн для обнаружения потери устойчивости колонн газовых скважин, а также для оценки целостности колонн газовых скважин и...
Тип: Изобретение
Номер охранного документа: 0002745542
Дата охранного документа: 26.03.2021
17.06.2023
№223.018.811f

Монокристаллический материал для твердотельной дозиметрии

Изобретение относится к материалам для термодозиметрических устройств, которые могут быть использованы в качестве твердотельных термолюминесцентных детекторов ионизирующих излучений. Монокристаллический материал для твердотельной дозиметрии - фторидоборат с «антицеолитной» структурой -...
Тип: Изобретение
Номер охранного документа: 0002763462
Дата охранного документа: 29.12.2021
Показаны записи 51-52 из 52.
06.07.2020
№220.018.2fb2

Устройство для преобразования инфракрасного излучения в поверхностную электромагнитную волну на цилиндрическом проводнике

Устройство относится к области информационных технологий, реализуемых с использованием поверхностных электромагнитных волн (ПЭВ) инфракрасного и терагерцового диапазонов. Устройство содержит источник излучения с плоским волновым фронтом, поляризационный конвертер, придающий излучению радиальную...
Тип: Изобретение
Номер охранного документа: 0002725643
Дата охранного документа: 03.07.2020
16.06.2023
№223.018.79d3

Способ визуализации неоднородностей плоской полупроводниковой поверхности в терагерцовом излучении

Изобретение относится к оптическим методам контроля качества поверхности полупроводниковых и металлических изделий, в которых взаимодействие зондирующего излучения с поверхностью опосредовано поверхностной электромагнитной волной (ПЭВ), возбуждаемой падающим излучением и направляемой...
Тип: Изобретение
Номер охранного документа: 0002737725
Дата охранного документа: 02.12.2020
+ добавить свой РИД