×
19.01.2018
218.016.0193

Результат интеллектуальной деятельности: Статическое устройство для определения распределения интенсивности поля инфракрасной поверхностной электромагнитной волны вдоль её трека

Вид РИД

Изобретение

Аннотация: Изобретение относится к области оптических измерений и касается статического устройства для определения распределения интенсивности поля инфракрасной поверхностной электромагнитной волны (ПЭВ) вдоль ее трека. Устройство включает в себя источник монохроматического излучения, первый фокусирующий цилиндрический объектив, элемент преобразования излучения в ПЭВ, образец с направляющей волну плоской поверхностью, пересекающее трек ПЭВ плоское зеркало, размещенный над треком вне поля ПЭВ второй фокусирующий цилиндрический объектив, фотодетекторы, измерительные приборы и устройство обработки информации. Отражающая грань плоского зеркала образует с поверхностью образца тупой угол, причем обращенное к этой поверхности ребро плоского зеркала параллельно ей и удалено от нее на расстояние, превышающее глубину проникновения поля ПЭВ в окружающую среду. Верхняя точка отражающей грани зеркала в плоскости падения удалена от образца на расстояние h, определяемое соотношением: h≥x⋅tg(α), где x - расстояние от элемента преобразования до проекции верхней точки отражающей грани на трек, α - угол наклона максимума диаграммы направленности объемного излучения с трека ПЭВ. Технический результат заключается в увеличении отношения сигнал/шум и повышении точности измерений. 1 ил.

Изобретение относится к бесконтактным исследованиям поверхности металлов оптическими методами, а именно - к определению инфракрасных (ИК) спектров поглощения самой поверхности или ее переходного слоя путем промера распределения интенсивности поверхностной электромагнитной волны (ПЭВ), направляемой этой поверхностью, и может найти применение в исследованиях физико-химических процессов на поверхности твердого тела, в ИК-спектроскопии окисных и адсорбированных слоев, в контрольно-измерительной ИК-технике, в лазерной и интегральной оптике.

Спектроскопия поверхности твердого тела - одна из основных областей применения ПЭВ [1]. В ИК-диапазоне применяют, главным образом, абсорбционную ПЭВ-спектроскопию, в которой измеряемой величиной является длина распространения ПЭВ L (расстояние вдоль трека, на котором интенсивность поля ПЭВ уменьшается в е≈2.718 раз), достигающая в этом диапазоне 1000λ (где λ - длина волны излучения, возбуждающего ПЭВ) и которая поэтому может быть измерена непосредственно. Причем так как расстояние взаимодействия излучения с поверхностью в этом методе макроскопическое, а интенсивность поля ПЭВ максимальна на направляющей ее поверхности, то чувствительность ПЭВ-спектроскопии значительно выше чувствительности иных оптических методов контроля проводящей поверхности в ИК-диапазоне.

Точность определения величины L, а следовательно, и точность самого метода ПЭВ-спектроскопии, пропорциональна числу N измерений интенсивности ПЭВ в различных точках трека (где N≥2) и в значительной степени зависит от времени регистрации распределения интенсивности ПЭВ и стабильности во время измерений условий преобразования ПЭВ в детектируемую фотоприемниками объемную волну (ОВ); перемещение одного из элементов преобразования (излучения источника в ПЭВ или ПЭВ в ОВ) может приводить к значительным вариациям этих условий и, как следствие этого, - к большой погрешности определения L.

Известно устройство для измерения длины распространения монохроматических ПЭВ ИК-диапазона, содержащее источник монохроматического излучения, твердотельный образец с плоской поверхностью, направляющей ПЭВ, фиксированный относительно поверхности элемент преобразования излучения в ПЭВ, перемещаемый вдоль трека элемент преобразования ПЭВ в объемную волну, приемник излучения, выходящего из второго элемента преобразования, и измерительный прибор, регистрирующий сигналы с выхода фотоприемника [2].

Основными недостатками такого устройства являются низкая точность измерений, не превышающая 10%, что обусловлено наличием паразитных приповерхностных объемных волн, порождаемых на первом элементе преобразования вследствие дифракции падающего излучения, и вариациями оптической связи между ПЭВ и вторым элементом преобразования в процессе его перемещения.

Известно устройство для зондирования поля монохроматической ИК ПЭВ над ее треком, содержащее источник лазерного излучения, твердотельный образец с направляющей ПЭВ плоской поверхностью и ребром, перпендикулярным треку, размещенный в окружающей среде над поверхностью элемент преобразования излучения в ПЭВ, способный перемещаться вдоль трека, приемник излучения, зафиксированный относительно образца и размещенный в плоскости падения на уровне волноведущей поверхности, и измерительный прибор, регистрирующий сигналы с выхода приемника [3].

Основными недостатками известного устройства являются низкая точность измерений, обусловленная наличием паразитных приповерхностных объемных волн, порождаемых при дифракции падающего излучения на элементе преобразования и вариациями оптической связи между ПЭВ и элементом преобразования в процессе его перемещения.

Известно устройство для измерения длины распространения монохроматических ПЭВ ИК-диапазона, содержащее источник излучения, направляющий ПЭВ составной твердотельный образец, состоящий из примыкающих друг к другу двух частей, первая из которых является плоскогранной, а вторая - полуцилиндром с радиусом образующей меньше длины распространения, основание которого сопряжено с торцом первой части и ориентировано перпендикулярно треку, размещенный в окружающей среде над поверхностью неподвижный элемент преобразования излучения в ПЭВ, приемник излучения, размещенный в плоскости падения излучения у края второй части, а также измерительный прибор, подключенный к приемнику; причем приемник и обе части образца размещены на подвижной платформе, способной перемещаться параллельно направляющей поверхности первой части [4].

Основным недостатком такого устройства является низкая точность измерений, обусловленная изменением величины зазора между элементом преобразования и поверхностью первой части, а также смещением пучка излучения источника относительно этого элемента в процессе перемещения платформы.

Известно устройство для определения распределения поля ИК ПЭВ над ее треком, содержащее источник лазерного излучения, твердотельный образец, волноведущая поверхность которого образована двумя плоскими гранями, сопряженными скругленным ребром, фиксированный над первой по ходу излучения гранью элемент преобразования излучения в ПЭВ, укрепленные на перемещаемой вдоль трека платформе элемент преобразования ПЭВ в объемное излучение, выполненный в виде плоского зеркала, отражающая грань которого примыкает ко второй грани образца, наклонена к ней под углом 45° и ориентирована перпендикулярно к треку, фокусирующий объектив и фотодетектор, подключенный к измерительному прибору [5].

Основным недостатком известного устройства также является низкая точность измерений, обусловленная изменением величины зазора между элементом преобразования и поверхностью второй грани образца в процессе перемещения платформы.

Известно устройство для получения спектров поглощения тонких слоев в терагерцовой области спектра, позволяющее промерять распределение интенсивности ИК ПЭВ вдоль ее трека и содержащее плавно перестраиваемый по частоте источник монохроматического излучения, твердотельный образец с плоской поверхностью и исследуемым слоем на ней, объединенный элемент преобразования объемного излучения в ПЭВ и обратно, выполненный в виде внедренной в поле ПЭВ прозрачной плоскопараллельной пластины, размером не менее длины распространения ПЭВ, и размещенную на верхней грани пластины линейку фотоприемников [6].

Основными недостатками известного устройства являются: 1) возмущение поля ПЭВ размещаемой в нем пластиной, что обусловливает отличие результатов измерений от истинного значения L; 2) перекрытие пластиной доступа к исследуемой поверхности, что во многих случаях контроля поверхности и воздействий на нее является неприемлемым.

Наиболее близким по технической сущности к заявляемому устройству является устройство для измерения длины распространения ИК поверхностных плазмонов (разновидности ПЭВ) по реальной поверхности, содержащее источник монохроматического излучения, фокусирующий цилиндрический объектив, ось которого перпендикулярна плоскости падения излучения, элемент преобразования излучения в ПЭВ, твердотельный образец с направляющей волну плоской поверхностью, размещенные в окружающей среде над треком ПЭВ, но вне ее поля, два комплекта для регистрации объемного излучения с трека, каждый из которых состоит из регулируемой щелевой диафрагмы, фокусирующей линзы, детектора излучения и гальванометра, а также устройство для обработки информации [7].

Основными недостатками такого устройства являются низкая точность измерений вследствие регистрации излучения всего только с двух точек трека (в то время как точность определения длины распространения ПЭВ пропорциональна числу N≥2 измерений интенсивности в различных точках трека) и низкое соотношение сигнал/шум, что обусловлено засветкой фотодетекторов объемным излучением, порождаемым ПЭВ при дифракции на ребре образца, поскольку для детектирования излучения (максимум диаграммы направленности которого отклонен от поверхности образца на 2-3 градуса [8]) с трека фотодетекторы приходится размещать за этим ребром в дальней волновой зоне.

Техническим результатом, на достижение которого направлено изобретение, является повышение точности и соотношения сигнал/шум измерений, выполняемых с применением известного способа [7].

Технический результат достигается тем, что устройство для определения распределения интенсивности поля ИК ПЭВ вдоль ее трека, содержащее источник монохроматического излучения, фокусирующий цилиндрический объектив, ось которого перпендикулярна плоскости падения излучения, элемент преобразования излучения в ПЭВ, твердотельный образец с направляющей волну плоской поверхностью, фотодетекторы, размещенные в окружающей среде над треком ПЭВ вне ее поля, сопряженные с детекторами измерительные приборы и устройство обработки информации, согласно изобретению дополнительно содержит пересекающее трек ПЭВ плоское зеркало, отражающая грань которого образует с поверхностью образца тупой угол, причем обращенное к этой поверхности ребро зеркала параллельно ей и удалено от нее на расстояние, превышающее глубину проникновения поля ПЭВ в окружающую среду, а верхняя точка отражающей грани в плоскости падения удалена от образца на расстояние h, определяемое соотношением: h≥х⋅tg(α), где х - расстояние от элемента преобразования до проекции верхней точки отражающей грани на трек, α - угол наклона максимума диаграммы направленности объемного излучения с трека, возникающего в результате рассеяния ПЭВ на неоднородностях поверхности образца, дополнительный фокусирующий цилиндрический объектив, размещенный над треком вне поля ПЭВ таким образом, что его ось лежит в плоскости падения и отклонена от нормали к поверхности образца, а фотодетекторы объединены в фиксированную на главной фокальной линии дополнительного фокусирующего цилиндрического объектива линейку.

Повышение точности измерений (пропорциональной числу N контролируемых точек трека) достигается в результате измерения интенсивности объемного излучения не из двух, а из большего числа точек трека. Для этого в главном фокусе дополнительного фокусирующего цилиндрического объектива размещают линейку из примыкающих друг к другу N>2 фотодетекторов. Повышение соотношения сигнал/шум измерений распределения интенсивности поля ПЭВ, выполняемых путем регистрации объемного излучения с трека ПЭВ, достигается в результате размещения линейки фотодетекторов вне области, охватываемой объемными волнами, порождаемыми ПЭВ при их дифракции на ребре образца.

На Рис. 1 приведена схема заявляемого устройства, где цифрами обозначены: 1 - источник монохроматического ИК-излучения; 2 - цилиндрический фокусирующий объектив, ось которого перпендикулярна плоскости падения излучения; 3 - элемент преобразования объемного излучения источника 1 в ПЭВ; 4 - твердотельный образец с направляющей ПЭВ плоской поверхностью; 5 - пересекающее трек плоское зеркало, отражающая грань которого отклонена от нормали к поверхности образца 4 в сторону направления распространения излучения, а обращенное к образцу 4 ребро параллельно этой поверхности; 6 - дополнительный фокусирующий цилиндрический объектив, ось которого лежит в плоскости падения излучения и отклонена от нормали к поверхности образца 4; 7 - линейка фотодетекторов, установленная на главной фокальной линии дополнительного фокусирующего цилиндрического объектива 6; 8 - сопряженный с линейкой 7 набор электроизмерительных приборов; 9 - устройство обработки информации.

Заявляемое устройство работает следующим образом. Излучение источника 1, имеющее отличную от нуля компоненту электрического поля в плоскости падения, падает на объектив 2 и концентрируется им на элемент 3. Излучение источника 1, преобразованное элементом 3 в ПЭВ, переходит с него на плоскую поверхность образца 4. По мере распространения ПЭВ по образцу 4 ее интенсивность уменьшается по экспоненциальному закону вследствие как джоулевых потерь в металле, так и радиационных потерь, обусловленных испусканием объемных волн (ОВ) с трека ПЭВ в результате рассеяния ПЭВ на статистически равномерно распределенных неоднородностях (шероховатостях, зернах и инородных включениях материала образца 4) направляющей их поверхности [8]. Интенсивность этих ОВ пропорциональна интенсивности ПЭВ в данной точке трека; поэтому регистрируя ее, например, в максимуме диаграммы направленности ОВ, можно определить распределение интенсивности ПЭВ вдоль трека и, таким образом, определить длину распространения ПЭВ. Объемное излучение с трека имеет узкую диаграмму направленности (не больше 1° на уровне 0.5), максимум которой отклонен от поверхности образца 4 на угол α=(1°÷3°). ОВ, достигнув зеркала 5, отражаются им на объектив 6, который концентрирует их все на свою главную фокальную линию, где размещена линейка 7 (ввиду узости диаграммы, ОВ, распространяющиеся под углами, не совпадающими с углом наклона максимума диаграммы, создают только незначительный экспоненциально спадающий фон). Фотодетекторы линейки 7 вырабатывают электрические сигналы, пропорциональные интенсивностям ОВ, излученных с соответствующих точек трека ПЭВ сигналы регистрируются набором приборов 8 и обрабатываются устройством 9, рассчитывающим по совокупности сигналов искомую длину распространения ПЭВ.

Отметим, что: 1) с целью повышение соотношения сигнал/шум ребро зеркала 5, обращенное к образцу 4, удалено от него на расстояние d, не меньшее глубины проникновения поля ПЭВ в окружающую среду; это позволяет устранить паразитные (в данном случае) ОВ, порождаемые в результате дифракции ПЭВ на ребре зеркала 5; 2) размер контролируемого участка трека определяется выражением:

где h≥х⋅tg(α) - расстояние от верхней точки отражающей грани зеркала 5 до образца 4, х - расстояние от элемента преобразования 3 до проекции верхней точки зеркала 5 на трек ПЭВ, β - угол отклонения зеркала 5 от плоскости грани образца 4.

Пример применения заявляемого устройства для определения распределения интенсивности поля ИК ПЭВ вдоль ее трека. Для этого обратимся к результатам измерений характеристик ПЭВ, генерируемых излучением с λ=130 мкм в планарной структуре «напыленное золото (образец) - слой сульфида цинка толщиной 0.4 мкм - воздух» [8]. Длина распространения таких ПЭВ составляет 160 мм, глубина проникновения их поля в воздух d≈0.5 мм, а угол α наклона максимума диаграммы направленности ОВ, излучаемых с трека, равен 2°36'. Положим угол β=450+α/2=46°18' (тогда лучи, отраженные зеркалом 5, перпендикулярны поверхности образца 4, что облегчает расчеты), расстояние х=120 мм, тогда верхняя точка отражающей грани зеркала 5 должна быть удалена от поверхности образца 4 на расстояние h≥7 мм. Подставив эти значения величин d, α, β и h в формулу (1), получим, что размер контролируемого участка трека b≈100 мм. Согласно данным, представленным на рис. 8 работы [8], интенсивность ПЭВ на участке такого размера экспоненциально уменьшается примерно на 45%. Если ось дополнительного фокусирующего цилиндрического объектива 6 направить параллельно отражающей грани зеркала 5, то линейку 7 следует выбрать длиной l≥(h-d)/sin(β+α/2)≈9.0 мм. Отметим, что размер линейки 7 не должен быть меньше изображения освещенной части отражающей грани зеркала 5 и что размер этого изображения можно регулировать (подстраиваясь под размер имеющейся линейки) наклоном оси зеркала дополнительного фокусирующего цилиндрического объектива 6. Выбрав в качестве линейки 7 матрицу болометрических приемников с характерным размером 50 мкм каждый и имеющей общую протяженность больше l, получим, что изображение наблюдаемого участка трека ПЭВ проецируется на N=180 пикселей. Такое большое количество контролируемых точек трека позволяет определить длину распространения ПЭВ со значительно более высокой точностью по сравнению с устройством-прототипом, в котором N=2. Размещение же линейки 7 вне области, охватываемой объемными волнами, порождаемыми ПЭВ при их дифракции на ребре образца, и концентрация объемного излучения дополнительным фокусирующим цилиндрическим объективом 6 со всего поперечного сечения трека пучка ПЭВ обеспечивают повышение отношения сигнал/шум в процессе измерений по сравнению с устройством-прототипом.

Таким образом, приведенный пример наглядно демонстрирует возможность определения распределения интенсивности поля ИК ПЭВ по реальной (содержащей статистически равномерно распределенные неоднородности) поверхности металла заявляемым устройством без перемещения приемника вдоль трека ПЭВ с более высокой точностью и большим соотношением сигнал/шум по сравнению с устройством-прототипом.

Источники информации

1. Климов В.В. Наноплазмоника (Гл. 4) // М.: Физматлит, 2009. - 480 с.

2. Жижин Г.Н., Москалева М.А., Шомина Е.В., Яковлев В.А. Селективное поглощение ПЭВ, распространяющейся по металлу в присутствии тонкой диэлектрической пленки // Письма в ЖЭТФ, 1976, т. 24, вып. 4, с. 221-225.

3. Gerasimov V.V., Knyazev В.A., Nikitin А.К., Zhizhin G.N. A way to determine the permittivity of metallized surfaces at terahertz frequencies // Applied Physics Letters, 2011, v. 98, No. 17, 171912.

4. Никитин A.K., Жижин Г.Н., Князев Б.А., Никитин В.В. Устройство для измерения длины распространения монохроматических поверхностных электромагнитных волн инфракрасного диапазона // Патент РФ на изобретение №2470269, бюл. №35 от 20.12.2012 г.

5. Gerasimov V.V., Knyazev В.А., Kotelnikov I.A., Nikitin A.K., Cherkassky V.S., Kulipanov G.N., Zhizhin G.N. Surface plasmon-polaritons launched using a terahertz free electron laser: propagating along a gold-ZnS-air interface and decoupling to free waves at the surface tail end // Journal of the Optical Society of America (B), 2013, v. 30, Is. 8, p. 2182-2190.

6. Никитин A.K., Жижин Г.Н., Богомолов Г.Д., Никитин В.В., Чудинова Г.К. Устройство для получения спектров поглощения тонких слоев в терагерцовой области спектра // Патент РФ на изобретение №2345351, бюл. №3, 27.01.2009 г.

7. Князев Б.А., Никитин А.К., Жижин Г.Н. Способ измерения длины распространения инфракрасных поверхностных плазмонов по реальной поверхности // Патент РФ на изобретение №2512659, бюл. №1 от 10.01.2014 г. (прототип)

8. Gerasimov V.V., Knyazev В.А., Lemzyakov A.G., Nikitin A.K., Zhizhin G.N. Growth of terahertz surface plasmon propagation length due to thin-layer dielectric coating // Journal of Optical Society of America (B), 2016, v. 33, Is. 11, p. 2196-2203.

9. Демьяненко M.A., Есаев Д.Г., Овсюк B.H., Фомин Б.И., Асеев А.Л., Князев Б.А., Кулипанов Г.Н., Винокуров Н.А. Матричные микроболометрические приемники для инфракрасного и терагерцового диапазонов // Оптический журнал, 2009, т. 76, вып. 12, с. 5-11.

Статическое устройство для определения распределения интенсивности поля инфракрасной поверхностной электромагнитной волны (ПЭВ) вдоль ее трека, содержащее источник монохроматического излучения, фокусирующий цилиндрический объектив, ось которого перпендикулярна плоскости падения излучения, элемент преобразования излучения в ПЭВ, твердотельный образец с направляющей волну плоской поверхностью, фотодетекторы, размещенные в окружающей среде над треком ПЭВ вне ее поля, сопряженные с детекторами измерительные приборы и устройство обработки информации, отличающееся тем, что оно дополнительно содержит пересекающее трек ПЭВ плоское зеркало, отражающая грань которого образует с поверхностью образца тупой угол, причем обращенное к этой поверхности ребро плоского зеркала параллельно ей и удалено от нее на расстояние, превышающее глубину проникновения поля ПЭВ в окружающую среду, а верхняя точка отражающей грани в плоскости падения удалена от образца на расстояние h, определяемое соотношением: h≥x⋅tg(α), где x - расстояние от элемента преобразования до проекции верхней точки отражающей грани на трек, α - угол наклона максимума диаграммы направленности объемного излучения с трека ПЭВ, возникающего в результате рассеяния ПЭВ на неоднородностях поверхности образца, дополнительный фокусирующий цилиндрический объектив, размещенный над треком вне поля ПЭВ таким образом, что его ось лежит в плоскости падения и отклонена от нормали к поверхности образца, а фотодетекторы объединены в фиксированную на главной фокальной линии дополнительного фокусирующего цилиндрического объектива линейку.
Статическое устройство для определения распределения интенсивности поля инфракрасной поверхностной электромагнитной волны вдоль её трека
Статическое устройство для определения распределения интенсивности поля инфракрасной поверхностной электромагнитной волны вдоль её трека
Источник поступления информации: Роспатент

Показаны записи 71-78 из 78.
16.05.2023
№223.018.6048

Устройство оптического восстановления телекоммуникационного сигнала с амплитудной модуляцией и способ создания этого устройства

Изобретение относится к устройствам, предназначенным для исправления искажений оптических телекоммуникационных сигналов, и может быть использовано для компенсации хроматической дисперсии и нелинейных искажений в сигнале до момента непосредственного детектирования. Технический результат состоит...
Тип: Изобретение
Номер охранного документа: 0002749670
Дата охранного документа: 16.06.2021
16.05.2023
№223.018.6100

Способ определения поглощенной дозы ядер отдачи

Изобретение относится к области биотехнологии, а именно к определению поглощенной дозы ядер отдачи, как суммы доз быстрых нейтронов и тепловых нейтронов. Способ включает облучение клеточных культур γ-излучением и смешанным излучением (γ-излучение и нейтронное). Далее осуществляют определение...
Тип: Изобретение
Номер охранного документа: 0002743417
Дата охранного документа: 18.02.2021
16.05.2023
№223.018.635b

Способ мониторинга роста клеточных культур и устройство для его осуществления

Группа изобретений относится к области биотехнологии. Предложен способ, состоящий в том, что в культуральный матрас через боковую поверхность направляют горизонтальный луч лазера. При этом культуральный матрас размещают на панели с вертикальными отверстиями, расположенными по ходу луча лазера...
Тип: Изобретение
Номер охранного документа: 0002776488
Дата охранного документа: 21.07.2022
21.05.2023
№223.018.683b

Способ осуществления эксперимента для исследования механохимических превращений и устройство для реализации протекания механохимических превращений

Группа изобретений относится к области механохимии. Раскрыт способ осуществления эксперимента для исследования механохимических превращений, включающий использование мельницы с барабаном для получения механического воздействия в отношении объекта исследования. При этом сначала во внутренний...
Тип: Изобретение
Номер охранного документа: 0002794882
Дата охранного документа: 25.04.2023
27.05.2023
№223.018.7105

Штамм escherichia coli bl21(de3)plyss/pet15b-hiscpf1 - продуцент рнк-направляемой эндонуклеазы crispr/cpf1

Изобретение относится к штамму Escherichia coli, продуцирующему рнк-направляемую эндонуклеазу CRISPR/CPF1. Предложен штамм Escherichia coli BL21(DE3)pLysS/pET15b-HisCpf1, продуцирующий рнк-направляемую эндонуклеазу CRISPR/CPF1 и полученный путем трансформации клеток Escherichia coli штамма...
Тип: Изобретение
Номер охранного документа: 0002774120
Дата охранного документа: 15.06.2022
27.05.2023
№223.018.7212

Способ пластики молочной железы

Изобретение относится к медицине, а именно к реконструктивно-пластической хирургии молочной железы. В положении стоя наносят линии разметки: срединную линию, разделяющую грудную клетку на две равные части, отмечают от яремной вырезки до мечевидного отростка грудины; линию, обозначающую...
Тип: Изобретение
Номер охранного документа: 0002749478
Дата охранного документа: 11.06.2021
16.06.2023
№223.018.7c09

Способ экспресс-диагностики состояния устойчивости колонн газовых скважин методом стоячих волн

Изобретение относится к области геофизических методов контроля состояния колонн газовых скважин при их эксплуатации. Предложен способ использования упругих стоячих волн для обнаружения потери устойчивости колонн газовых скважин, а также для оценки целостности колонн газовых скважин и...
Тип: Изобретение
Номер охранного документа: 0002745542
Дата охранного документа: 26.03.2021
17.06.2023
№223.018.811f

Монокристаллический материал для твердотельной дозиметрии

Изобретение относится к материалам для термодозиметрических устройств, которые могут быть использованы в качестве твердотельных термолюминесцентных детекторов ионизирующих излучений. Монокристаллический материал для твердотельной дозиметрии - фторидоборат с «антицеолитной» структурой -...
Тип: Изобретение
Номер охранного документа: 0002763462
Дата охранного документа: 29.12.2021
Показаны записи 51-52 из 52.
06.07.2020
№220.018.2fb2

Устройство для преобразования инфракрасного излучения в поверхностную электромагнитную волну на цилиндрическом проводнике

Устройство относится к области информационных технологий, реализуемых с использованием поверхностных электромагнитных волн (ПЭВ) инфракрасного и терагерцового диапазонов. Устройство содержит источник излучения с плоским волновым фронтом, поляризационный конвертер, придающий излучению радиальную...
Тип: Изобретение
Номер охранного документа: 0002725643
Дата охранного документа: 03.07.2020
16.06.2023
№223.018.79d3

Способ визуализации неоднородностей плоской полупроводниковой поверхности в терагерцовом излучении

Изобретение относится к оптическим методам контроля качества поверхности полупроводниковых и металлических изделий, в которых взаимодействие зондирующего излучения с поверхностью опосредовано поверхностной электромагнитной волной (ПЭВ), возбуждаемой падающим излучением и направляемой...
Тип: Изобретение
Номер охранного документа: 0002737725
Дата охранного документа: 02.12.2020
+ добавить свой РИД