×
19.01.2018
218.016.00c0

Результат интеллектуальной деятельности: СПОСОБ УПРАВЛЕНИЯ КОСМИЧЕСКИМ КОРАБЛЁМ ПРИ СБЛИЖЕНИИ С КООПЕРИРУЕМЫМ КОСМИЧЕСКИМ АППАРАТОМ

Вид РИД

Изобретение

№ охранного документа
0002629644
Дата охранного документа
30.08.2017
Аннотация: Изобретение относится к операциям сближения и стыковки космических аппаратов (КА) на околокруговой орбите, например, грузового космического корабля в качестве КА и международной космической станции в качестве кооперируемого КА (ККА). После выведения КА на опорную орбиту определяют параметры импульсов сближения по параметрам орбиты ККА, измеренным до выведения КА. При отсутствии информации о фактической орбите ККА выполняют корректирующий импульс средствами ККА. Этот импульс направлен вдоль орбиты и рассчитан так, чтобы к моменту встречи скорректировать аргумент широты ККА до значения аргумента широты КА. Техническим результатом изобретения является возможность сближения КА с ККА при отсутствии информации на борту КА о фактической орбите ККА. 2 ил., 1 табл.

Предлагаемое изобретение может быть использовано в космической технике при сближении и последующей стыковке двух космических объектов, находящихся на околокруговой орбите небесного объекта, например грузового космического корабля, выводимого ракетоносителем (РН) в качестве космического корабля (КК) и международной космической станцией (МКС), в качестве кооперируемого космического аппарата (ККА).

Известен способ управления КК при сближении с ККА, выбранный в качестве аналога. После выведения КК на опорную орбиту по измерениям орбит КК и ККА, проводится определение параметров импульсов сближения, которые прикладываются к КК в определенные расчетом моменты времени. В результате проведенных импульсов сближения КК оказывается в расчетное время встречи в окрестности ККА, т.е. оба объекта располагаются на одном аргументе широты орбиты, отсчитываемом от восходящего узла орбиты [1. Р.Ф. Аппазов, О.Г. Сытин «Методы проектирования траекторий носителей и спутников Земли», Москва, Наука, 1987]. При этом ККА находится в пассивном полете, т.е. к ККА не прикладываются импульсы сближения. Продолжительность сближения по этому способу составляет около 50 часов [2. Wigbert Fehse (2003) "Automated Rendezvous and Docking of Spacecraft", Cambrige University press]. Недостатком этого способа является необходимость для определения параметров импульсов сближения иметь измерения параметров фактической орбиты КК и ККА.

Известен способ управления КК при сближении с ККА, выбранный в качестве прототипа, содержащий выведение КК на опорную орбиту, определение параметров импульсов сближения и последующее приложение импульсов сближения к КК. Этот способ разработан для проведения «быстрой» стыковки КК «Союз-ТМА» с МКС [3. Р.Ф. Муртазин, П.В. Виноградов, А.П. Александров, Н.К. Петров « «Быстрая» схема сближения: МКС становится ближе», ж. «Полет», №8, 2013]. Для ускорения стыковки в нем предлагается определять параметры импульсов сближения, используя только номинальные параметры орбиты выведения КК и измерения фактической орбиты ККА [4. Муртазин Р.Ф., Борисенко Ю.П. Патент на изобретение №2490181 от 20 августа 2013 г.]. Сразу после выведения КК на опорную орбиту выполняются первые два импульса сближения, а последующие импульсы сближения пересчитываются на борту КК с учетом уже фактических параметров орбиты КК. В результате проведенных импульсов сближения КК оказывается в расчетное время встречи в окрестности ККА, т.е. оба объекта располагаются на одном аргументе широты орбиты. В этом способе, как и в аналоге к ККА не прикладываются импульсы сближения. Раннее выполнение первых двух импульсов позволяет выполнить стыковку за 6 часов [3]. Основным недостатком такого способа управления является также то, что его реализация возможна лишь при наличии измерений фактической орбиты ККА для определения параметров импульсов сближения.

Техническим результатом изобретения является возможность сближения КК с ККА при отсутствии информации на борту КК о фактической орбите ККА.

Технический результат достигается благодаря тому, что в способе управления КК при сближении с ККА, включающем выведение КК на опорную орбиту, определение параметров импульсов сближения и последующее приложение импульсов сближения к КК, в отличие от известного, измеряют параметры орбиты ККА перед выведением КК, с учетом которых производят определение параметров импульсов сближения, а за заданное время t до момента завершения сближения, к ККА прикладывают импульс VKKA, направленный вдоль орбиты, который определяют по формуле:

где ϕ1 - аргумент широты ККА на момент сближения, соответствующий номинальным параметрам орбиты,

ϕ2 - аргумент широты ККА на момент сближения, соответствующий фактическим параметрам орбиты,

Rз - радиус Земли,

h - высота орбиты ККА.

Технический результат в предлагаемом способе управления достигается за счет того, что отсутствие информации о фактической орбите ККА на борту КК парируется выполнением корректирующего импульса средствами ККА. После выполнения импульсов сближения КК из-за неточного знания фактических параметров орбиты ККА в расчетное время встречи аргументы широты орбиты КК и ККА будут различаться. Для согласования аргументов широты за время t до момента сближения, к ККА прикладывается импульс, направленный вдоль орбиты, который позволит к моменту встречи скорректировать аргумент широты ККА до значения аргумента широты КК.

Сущность изобретения поясняется фиг. 1÷2 и табл. 1, где

на фиг.1 приведена циклограмма «быстрой» четырехвитковой схемы сближения КК с МКС,

на фиг. 2 приведена циклограмма выполнения импульса средствами ККА для реализации предлагаемого способа в «быстрой» четырехвитковой схеме сближения,

в табл. 1 представлены ошибки прогноза МКС по аргументу широты орбиты.

На фиг. 1 и 2 отмечены следующие позиции: 1 - выведение КК, 2 - наземно-измерительные пункты (НИП), 3 - первый двухимпульсный маневр, 4 - корректирующий двухимпульсный маневр, 5 - автономный участок сближения, 6 - совместная фаза полета после стыковки, 7 - корректирующий импульс VKKA.

На фиг. 1 в качестве примера представлена циклограмма проведения основных технологических операций при реализации четырехвитковой схемы сближения КК с МКС, рассматриваемой в качестве прототипа. После выведения (1) и окончания зоны НИПов на 1-м витке (2) выполняется первый двухимпульсный маневр сближения (3). Данные по времени проведения и характеристикам импульсов маневра рассчитываются по вектору состояния КО и номинальному вектору выведения КК и передаются в бортовой вычислительный контур (БВК) КК в зоне НИПов на 1-м витке. Последующие импульсы сближения (4) пересчитываются на борту КК с учетом уже фактических параметров орбиты КК, полученных с помощью измерений с НИПов на 1-м витке. После автономного участка сближения (5) выполняется стыковка и КК с ККА находятся в совместной фазе полета (6).

На фиг. 2 представлена циклограмма выполнения импульса средствами ККА для реализации предлагаемого способа в «быстрой» четырехвитковой схеме сближения КК с МКС. В этой схеме ККА выполняет корректирующий импульс VKKA в диапазоне (7) от одних суток до и одного витка после выведения КК.

В табл.1 представлены ошибки прогноза МКС по аргументу широты орбиты, зафиксированные при сравнении прогнозов орбиты МКС, проведенных с разницей в 7 дней в первой половине 2015 года. В таблице представлена дата сравнения прогнозов и зафиксированная в эту дату ошибка по аргументу широты орбиты Δϕ. Как видно из таблицы, предельная ошибка при семидневном прогнозе составила 3.4Ο.

Рассмотрим пример. На опорную орбиту выводится КК для последующей стыковки с МКС. За некоторое время до старта, определяемое технологическими ограничениями, в БКУ КК заносится первичная номинальная информация о векторе МКС на расчетный момент стыковки. Очевидно, что из-за ошибок в прогнозе фактический вектор состояния МКС на момент выведения будет отличаться от первичной информации. Сразу после выведения КК на опорную орбиту через НИПы в БКУ КК должна быть передана уточненная информация о фактической орбите МКС, которая используется для последующего расчета на борту КК импульсов сближения. В случае невозможности передачи обновленной информации о фактических параметрах, например при отказе приемного устройства БКУ КК, которое может быть обнаружено и до старта КК, расчет импульсов коррекции на борту КК будет выполнен по первичной информации с соответствующими ошибками по прогнозу в векторе состояния ККА. При этом КК сблизится не с ККА, а с некоторой фиктивной целью и в результате стыковка космических объектов не состоится.

Чтобы обеспечить приемлемые условия для перехода в автономный участок, предлагается с помощью импульса, прикладываемого к ККА, переместить ККА в окрестность фиктивной точки. Для этого можно воспользоваться имеющейся на МКС автоматической программой PDAM (Prompt Debris Avoidance Maneuver) - «быстрый маневр уклонения от космического мусора», позволяющей оперативно выполнить импульс в направлении вдоль орбиты.

Необходимую величину импульса для перевода ККА с фактического положения на фиктивный аргумент широты, соответствующий номинальным параметрам орбиты, первоначально заложенным в БКУ КК можно, используя уравнения относительного движения [1]:

Здесь x - фиктивное положение ККА вдоль орбиты, x0 - фактическое положение ККА вдоль орбиты, y0 - высотное рассогласование между фактическим и фиктивным положением ККА, ΔVx - составляющая импульса коррекции в направлении вдоль орбиты, ΔVy - составляющая импульса в направлении вдоль радиуса-вектора, ω - угловая скорость вращения ККА относительно Земли на высоте h и t - время отсчитываемое от момента приложения импульса коррекции до момента сближения.

Так как предлагается управлять рассогласованием вдоль орбиты только с помощью составляющей импульса ККА вдоль орбиты, т.е. ΔVx (далее в тексте VKKA), и при этом предполагая, что высотное рассогласование близко к нулю, т.е. y0=0, то уравнение можно упростить:

Первое слагаемое при VKKA имеет периодическую составляющую sin ωt с периодом в один виток и поэтому при оценке сдвига между двумя положениями ККА можно воспользоваться только вековой составляющей:

Относительное движение предлагается рассматривать в орбитальной цилиндрической системе координат (ЦСК) [1], в которой положение КК относительно ККА характеризуется смещением вдоль дуги опорной орбиты x-x0=Δϕ⋅R, где R=R3+h.

Допустим ϕ1 - аргумент широты ККА на момент сближения, соответствующий номинальным параметрам орбиты, а ϕ2 - аргумент широты ККА на момент сближения, соответствующий фактическим параметрам орбиты: x-x0=(ϕ12)⋅(RЗ+h) или, подставляя в (1): (ϕ12)⋅(RЗ+h)=-3t⋅VKKA,

и, как следствие:

В этой формуле время t приложения импульса до момента сближения определяет величину потребного импульса. Для минимизации расхода топлива желательно увеличить это время, но с другой стороны возможны различные ограничения технологического порядка. Как правило, для парирования ошибки в аргументах широты при семидневном прогнозе, согласно табл. 1, достаточно выбирать момент приложения импульса в диапазоне от одних суток до и одного витка после выведения КК, как представлено на фиг. 2.

Рассмотрим пример выбора величины импульса VKKA в зависимости от момент его приложения. Допустим величина импульса VKKA равна 1.6 м/с, ошибка в аргументах широты при семидневном прогнозе соответствует предельной из табл. 1, т.е. Δϕ=ϕ21=3.4Ο~0.06 радиан. Пусть высота орбиты ККА h=400 км, а RЗ=6378 км. Тогда, согласно формуле для t составит:

Как известно, в сутках 86.4 тыс. сек, поэтому время t приложения импульса VKKA составит около суток до момента сближения КК и ККА.

В случае если величина Δϕ=0.1Ο~0.002 радиан соответствует минимальному из табл.1, то время t для приложения импульса величиной 1.6 м/с составит 2.8 тыс. сек, равное длительности половины витка. Очевидно, в этом случае момент приложения импульса очень близок к моменту сближения, поэтому величину импульса можно существенно уменьшить, например до VKKA=0.3 м/с. Тогда время t приложения импульса VKKA составит около трех витков до момента сближения, что будет соответствовать одному витку после выведения КК.

Предлагаемый способ управления позволит выполнять сближение КК с ККА в случае физической невозможности передачи на борт космического корабля параметров фактической орбиты кооперируемого космического аппарата.


СПОСОБ УПРАВЛЕНИЯ КОСМИЧЕСКИМ КОРАБЛЁМ ПРИ СБЛИЖЕНИИ С КООПЕРИРУЕМЫМ КОСМИЧЕСКИМ АППАРАТОМ
СПОСОБ УПРАВЛЕНИЯ КОСМИЧЕСКИМ КОРАБЛЁМ ПРИ СБЛИЖЕНИИ С КООПЕРИРУЕМЫМ КОСМИЧЕСКИМ АППАРАТОМ
Источник поступления информации: Роспатент

Показаны записи 291-300 из 370.
20.02.2019
№219.016.c05f

Способ диагностики нерастворенных газовых включений в заправленных рабочими телами гидравлических системах космических аппаратов

Изобретение относится к космической технике и предназначено для использования, преимущественно, в гидравлических системах терморегулирования пилотируемых космических аппаратов в ходе орбитального полета. Предлагаемый способ включает предварительную разгрузку рабочего тела (РТ) системы от...
Тип: Изобретение
Номер охранного документа: 0002304072
Дата охранного документа: 10.08.2007
20.02.2019
№219.016.c0c1

Устройство подачи термостатирующей среды в отсек ракеты-носителя

Изобретение относится к устройствам воздушного термостатирования объектов, например приборов системы управления полезного груза и других объектов, размещаемых в отсеках ракетных блоков и блоках космической головной части ракеты-носителя, в период их предстартовой подготовки. Устройство согласно...
Тип: Изобретение
Номер охранного документа: 0002368548
Дата охранного документа: 27.09.2009
01.03.2019
№219.016.cf47

Релейный регулятор

Изобретение относится к автоматике и может быть использовано в системах управления различными инерционными объектами, например поворотными платформами, промышленными роботами, летательными аппаратами. Релейный регулятор содержит первое и второе сравнивающие устройства, первый и второй...
Тип: Изобретение
Номер охранного документа: 0002403607
Дата охранного документа: 10.11.2010
11.03.2019
№219.016.d840

Способ формирования меток времени и устройство для его реализации

Изобретение относится к вычислительной и импульсной технике и может быть использовано в системах, использующих программно-временные устройства. Техническим результатом изобретения является упрощение способа и устройства реализации за счет снижения объема преобразуемой информации. Технический...
Тип: Изобретение
Номер охранного документа: 0002391773
Дата охранного документа: 10.06.2010
11.03.2019
№219.016.d842

Привод

Изобретение может быть использовано в качестве приводов автоматики изделий авиационной и ракетной техники. Привод содержит корпус (1), размещенный в нем двигатель (2), связанный с выступающим из корпуса со стороны его первого торца (3) выходным валом (4), а также датчик (16) угла поворота. Вал...
Тип: Изобретение
Номер охранного документа: 0002391583
Дата охранного документа: 10.06.2010
11.03.2019
№219.016.d941

Радиальный вентилятор

Изобретение относится к вентиляторостроению и может быть использовано в составе систем терморегулирования изделий авиационной и ракетной техники, а также в других областях техники. Технический результат заключается в повышении надежности радиального вентилятора за счет устранения возможности...
Тип: Изобретение
Номер охранного документа: 0002354850
Дата охранного документа: 10.05.2009
11.03.2019
№219.016.d96f

Космическая головная часть ракеты-носителя

Изобретение относится к ракетно-космической технике и может быть использовано при проектировании и создании космической головной части. Космическая головная часть ракеты-носителя содержит обтекатель, космический аппарат, состоящий из, по крайней мере одного отсека, на поверхности которого...
Тип: Изобретение
Номер охранного документа: 0002355607
Дата охранного документа: 20.05.2009
11.03.2019
№219.016.d9c7

Способ разрушения микроорганизмов-биодеструкторов на поверхностях объектов в жилых отсеках космической станции

Изобретение относится к области очистки или защиты окружающей среды внутри обитаемых орбитальных станций от разрушающего воздействия микроорганизмов. Способ разрушения микроорганизмов-биодеструкторов на поверхностях объектов в жилых отсеках космической станции включает периодическое облучение...
Тип: Изобретение
Номер охранного документа: 0002372942
Дата охранного документа: 20.11.2009
11.03.2019
№219.016.d9d4

Резервированный счетчик для формирования меток времени

Использование: в области вычислительной и импульсной техники при построении высоконадежных резервированных систем для счета и обработки цифровой информации. Технический результат заключается в упрощении схемной реализации устройства. Устройство состоит из m каналов, каждый из которых содержит...
Тип: Изобретение
Номер охранного документа: 0002379829
Дата охранного документа: 20.01.2010
11.03.2019
№219.016.d9e0

Резервированный счетчик

Изобретение используется в области вычислительной и импульсной техники для счета и обработки цифровой информации. Технический результат заключается в упрощении схемной реализации устройства. Устройство состоит из m каналов, каждый из которых содержит n-разрядный счетчик, блок из n мажоритарных...
Тип: Изобретение
Номер охранного документа: 0002379828
Дата охранного документа: 20.01.2010
Показаны записи 291-297 из 297.
20.12.2018
№218.016.a9e5

Способ построения ориентации космического объекта, отделяемого от другого космического объекта

Изобретение относится к космической технике. Способ построения ориентации космического объекта (КО), отделяемого от другого космического объекта (ДКО), включает выполнение импульсов для разворота связки ДКО и КО в необходимую ориентацию, используя для определения параметров разворота данные об...
Тип: Изобретение
Номер охранного документа: 0002675483
Дата охранного документа: 19.12.2018
24.12.2019
№219.017.f168

Способ управления движением космического объекта при перелёте с орбиты земли на орбиту луны

Изобретение относится к межпланетным перелётам, например при доставке космических объектов (КО) на станцию, расположенную на высокой окололунной орбите. Способ включает перелет от Земли к Луне по траектории с пролетом Луны на заданной высоте, где выполняют первый тормозной импульс для перевода...
Тип: Изобретение
Номер охранного документа: 0002709951
Дата охранного документа: 23.12.2019
24.01.2020
№220.017.f93e

Способ управления транспортной космической системой при перелёте космического корабля с окололунной орбиты на околоземную орбиту

Изобретение относится к транспортировке полезных грузов при перелетах космического корабля (КК), например, с окололунной на околоземную орбитальную станцию. Способ включает стыковку КК с разгонным блоком (РБ) и выдачу с помощью РБ импульса для перелета с окололунной орбиты к Земле по пролетной...
Тип: Изобретение
Номер охранного документа: 0002711822
Дата охранного документа: 22.01.2020
01.07.2020
№220.018.2d31

Способ управления транспортной космической системой при перелёте космического корабля с орбиты луны на орбиту земли

Изобретение относится к управлению транспортной системой (ТС) при перелетах космического корабля (КК) с окололунной на околоземную орбитальную станцию (ОС). Способ включает выполнение КК перелета от Луны к Земле по траектории с пролетом Земли на заданной высоте без аэродинамического зонта. По...
Тип: Изобретение
Номер охранного документа: 0002725091
Дата охранного документа: 29.06.2020
01.07.2020
№220.018.2d3b

Способ управления транспортной космической системой

Изобретение относится к перелётам многоразового пилотируемого корабля (МПК) между орбитальной станцией (ОС) на орбите вокруг планеты с атмосферой (Земли) и базовой станцией (БС) на поверхности другого небесного тела (Луны). Способ включает отстыковку МПК от ОС, выведение на опорную орбиту...
Тип: Изобретение
Номер охранного документа: 0002725007
Дата охранного документа: 29.06.2020
23.05.2023
№223.018.6de5

Способ управления транспортной системой при выполнении перелёта на высокоэнергетическую орбиту

Изобретение относится к выведению космических объектов (КО) с помощью разгонных блоков (РБ) на высокоэнергетические орбиты (например, к Луне) в несколько этапов по двухпусковой схеме. Способ включает выведение КО на околоземную орбиту и стыковку с околоземной станцией (ОС). РБ отдельно от КО...
Тип: Изобретение
Номер охранного документа: 0002759372
Дата охранного документа: 12.11.2021
23.05.2023
№223.018.6df1

Способ управления движением космического объекта при сближении с другим космическим объектом

Изобретение относится к космической технике, а более конкретно к сближению космических объектов. Способ управления движением космического объекта (КО) при сближении с другим космическим объектом (ДКО) включает выведение КО на опорную орбиту с отклонением от плоскости орбиты ДКО по долготе...
Тип: Изобретение
Номер охранного документа: 0002759360
Дата охранного документа: 12.11.2021
+ добавить свой РИД