×
29.12.2017
217.015.fc8c

Результат интеллектуальной деятельности: Способ регистрации малых количеств органических нано- и микрочастиц в биологических тканях

Вид РИД

Изобретение

Аннотация: Изобретение относится к области аналитической химии, в частности к масс-спектрометрическим способам измерения концентрации частиц в биологических тканях, и раскрывает способ регистрации органических нано- или микрочастиц в биологических тканях методом ускорительной масс-спектрометрии (УМС). Способ характеризуется тем, что проводят регистрацию частиц в пробах тканей с помощью ускорительного масс-спектрометра, в качестве частиц используют полимерные нано- и микросферы, молекулы мономеров которых содержат избыточное относительно фонового значения количество изотопа углерода С-14. Способ обеспечивает снижение нижней границы измеряемой концентрации органических частиц в биологических тканях, возможность исследования воздействия аэрозолей на живые организмы в естественных условиях. 2 пр.

Изобретение относится к методам измерения концентрации частиц в биологических тканях путем определения в них изотопного соотношения 14С/12С и 14С/13С с помощью ускорительного масс-спектрометра (УМС).

Известно, что метод ускорительной масс-спектрометрии УМС позволяет проводить измерение изотопного соотношения (отношение концентрации редкого изотопа к полной концентрации элемента) от 10-9 до 10-15 в образце массой от микрограмма до нанограмма (US 5209919, А61К 51/04, G01N 33/60, 11.05.1993). Благодаря высокой чувствительности метод УМС нашел применение в различных областях исследований, таких как археология, науки о Земле, фармацевтика, медицина.

Одним из применений метода УМС является исследование продуктов метаболизма лекарственных и биологически активных веществ, меченных радиоуглеродом С-14. Применение ультрамалых доз вещества (1/100 от фармакологической дозы) позволяет снизить не только радиационный уровень (существенно ниже естественного уровня, обусловленного отличными от радиоуглерода источниками излучения), но и понизить негативное влияние самого лекарственного или биологически активного препарата. Сверхчувствительность метода также дает возможность исследовать фармакокинетику от нескольких минут до нескольких месяцев, а возможность анализа малых проб (<1 мг сухого вещества, <10 мг образца тканей и <50 мкл жидкости) позволяет свести к минимуму биопсию жира, мышц и костной ткани. В результате безопасные испытания новых биоорганических веществ на человеке с использованием метода УМС позволяют сократить время и расходы, избегая длительных испытаний на животных и исключая непригодные препараты на ранних этапах его тестирования (Hellborg R (2003) Accelerator mass spectrometry - an overview. Vacuum, 70, 365-372).

С другой стороны, при исследовании воздействия аэрозольных частиц на живой организм, в том числе в работах по адресной доставке лекарств с помощью частиц-носителей лекарств и проникающей способности частиц разного состава и размера, остро стоит проблема регистрации низких концентраций частиц органического происхождения в биологических тканях. Вследствие малых размеров частиц (менее 10 мкм) и малого количества вдыхаемых (103-105 шт/см3, <100 мкг/м3) или вводимых (10-6-10-8 г на 1 г органа) частиц прямые исследования инородных частиц в живых организмах методами хроматографии, электронной, флуоресцентной микроскопии, ЯМР и масс-спектрометрии крайне осложнены или невозможны из-за недостаточной чувствительности методов.

Большинство работ посвящено исследованию отклика организма (иммунный ответ, цитотоксичность, физиологические проявления) на воздействие определенными частицами (Silva, V.M., Corson, N., Elder, A., , G. The rat ear vein model for investigating in vivo thrombogenicity of ultrafine particles. Toxicological Sciences, 85 (2), p. 983-989 (2005). Сложность прямого определения содержания органических частиц в организме вынуждает исследователей использовать слишком большие дозы вещества и/или вводить частицы в условиях, значительно отличающихся от наблюдаемых или применяемых в действительности, напримервнутривенно или под повышенным давлением непосредственно в дыхательные пути. Например, для того чтобы обнаружить аэрозольные частицы волокнистого углерода или полимерных сфер в образцах легких лабораторных мышей с помощью электронного микроскопа, им проводили обезболивание, трахеотомию и вводили концентрированную (5 мг/г массы лабораторной мыши) суспензию частиц под повышенным давлением (около 2 атм) (Kato, Т., Yashiro, Т., Murata, Y., Herbert, D.C., Oshikawa, К., Bando, М, Ohno, S., Sugiyama, Y. Evidence that exogenous substances can be phagocytized by alveolar epithelial cells and transported into blood capillaries. Cell and Tissue Research, 311 (1), p. 47-51 (2003)). Результаты испытаний новых лекарственных препаратов и исследований воздействия аэрозолей в таких условиях могут значительно отличаться от результатов, наблюдаемых при практическом использовании лекарств и в реальных условиях воздействия аэрозолями.

Описываемое изобретение предлагает сверхчувствительный метод ускорительной масс-спектрометрии для прямой регистрации органических частиц в тканях, в котором в качестве частиц-носителей разрабатываемых лекарств и модельной системы аэрозольных частиц следует использовать полимерные нано- или микросферы, мономеры которых содержат избыточное количество радиоуглерода. Полимерные нано- и микросферы представляют большой интерес для фармакологических и аэрозольных исследований, так как процедура синтеза полимерных сфер дает возможность строго регулировать размер частиц от нескольких десятков нм до нескольких микрон, изменять химические свойства поверхности частиц, создавая определенный состав функциональных групп, а также варьировать биосовместимость, покрывая поверхность сфер слоем различных биоорганических соединений.

Известна процедура прямой регистрации частиц в тканях (Gibaud, S., Demoy, М., Andreux, J.P., Weingarten, С, Gouritin, В., Couvreur, P. Cells involved in the capture of nanoparticles in hematopoietic organs. Journal of Pharmaceutical Sciences, 85 (9), p. 944-950 (1996)), при которой к поверхности полимерных частиц «пришивали» флуоресцирующий белок и проводили анализ частиц в тканях методом флуоресцентной микроскопии. Однако при этом удельные воздействующие дозы модельной системы были большими - порядка 15 мкг/г и вводились в организм внутривенно.

Известен способ регистрации радиоуглерода, находящегося в функциональных аминогруппах полистирольных частиц (14C-NH2-ПC), методом сцинтилляционного счета (Simon, В.Н., Ando, H.Y., Gupta, Р.К. Circulation time and body distribution of 14C-labeled amino-modified polystyrene nanoparticles in mice. Journal of Pharmaceutical Sciences, 84 (10), p. 1249-1253 (1995)). Однако из-за низкого удельного содержания меченых атомов вследствие малой концентрации функциональных групп на поверхности частиц, проблема высоких удельных доз осталась нерешенной - в описанном примере мышам внутривенно вводили 185 кБк/г или 90 мг/г 14C-NH2-ПC.

Таким образом, в литературе неизвестны способы прямой регистрации ультрамалых количеств (<1 мкг на 1 г ткани) нано- и микрочастиц в образцах биологических тканей.

Изобретение решает задачу прямого определения ультрамалого содержания частиц в биологических тканях.

Технический результат - снижение существующего на сегодняшний день нижнего предела измеряемой концентрации нано- и микрочастиц в образцах биологических тканей и проведение фармакологических и аэрозольных исследований в естественных или требуемых условиях.

Задача решается способом регистрации малых количеств органических нано- и микрочастиц в биологических тканях методом ускорительной масс-спектрометрии, при этом частицы содержат избыточную относительно фонового значения концентрацию изотопа углерода С-14, в качестве частиц используют полимерные частицы, состоящие из меченных С-14 мономеров или полимерные частицы, состоящие из меченных С-14 мономеров и сополимеров. В качестве мономеров используют меченные С-14 стирол, алкилметакрилаты, изопрен, бутадиен, хлоропрен, изобутилен, акриловые или уретановые соединения, а также любые их смеси. Полимерные частицы, состоящие из меченных С-14 мономеров, могут содержать сополимер, в качестве которого можно использовать, например, меченные или не меченные С-14 дивинилбензол, карбоновые кислоты.

Другими словами, задача решается использованием в качестве модельных частиц полимерных нано- или микросфер, мономер которых содержит избыточное относительно фонового значения количество изотопа углерода С-14, регистрацию частиц в пробах тканей проводят с помощью ускорительного масс-спектрометра (УМС). Например, в качестве частиц-носителей лекарственного препарата или аэрозольных частиц можно использовать полимерные микросферы, состоящие из цепочек стирола или алкилметакрилата, часть атомов углерода в которых являются изотопом С-14. В результате того, что удельное содержание радиоуглерода в частице можно регулировать вплоть до 100% относительно углеродных атомов, то появляется возможность проводить испытания аэрозолей в требуемых условиях и осуществлять воздействие на организм частицами любым путем, например, ингаляционным - при концентрации частиц в воздухе, не превышающей естественный уровень загрязнения. Исходное содержание радиоуглерода в частице подбирают в соответствии с применяемыми условиями воздействия (способ воздействия, доза частиц) и необходимой чувствительностью определения.

После воздействия биологические образцы сушат и подвергают процедуре пробоподготовки, типичной для ускорительной масс-спектрометрии. В частности, сухой образец сжигают в токе кислорода, выделившийся диоксид углерода направляют на анализ на ускорительном масс-спектрометре либо на стадию графитизации CO2 для получения углеродной таблетки и последующего анализа на УМС. Выделяющийся в результате окисления диоксид углерода в случае необходимости подвергают дополнительной процедуре очистки и осушки путем последовательных операций: адсорбции CO2 на сорбенте, десорбции СО2 с сорбента при нагревании, замораживанием диоксида углерода и вакуумированием с последующим размораживанием CO2 и направлением очищенного газа на анализ на ускорительном масс-спектрометре или на графитизацию с последующим анализом на УМС (Пат. РФ №2574738, G01N 1/28, B01D 59/44, 10.02.16).

Предлагаемый способ регистрации частиц и исследований воздействия частиц на живые организмы в требуемых условиях решает задачу прямого определения ультрамалого содержания частиц в биологических тканях.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1

Раствор полистирольных (ПС) монодисперсных микросфер, полученный в процессе эмульсионной полимеризации стирола, меченного С-14, по методике, описанной в E.V. Parkhomchuk et al. Ultrasensitive detection of inhaled organic aerosol particles by accelerator mass spectrometry. Chemosphere (2016) 159, 80-88, с активностью 600 кБк/г углерода и размером сфер 225 нм (по данным метода лазерного рассеяния) пропускают через форсунку для получения аэрозоля. Очищенный воздушный поток частиц направляют в камеру с лабораторными мышами (самцы линии СВА) таким образом, чтобы максимально предотвратить попадание меченых частиц на шерсть. Концентрация полистирольных ПС частиц в потоке составляет 104 шт/см3. Мышей подвергают воздействию аэрозолем однократно в течение 30 мин. После эфтаназии проводят забор органов у экспериментальных и контрольных мышей, не подвергшихся воздействию аэрозолем. Биологические образцы хранят при температуре жидкого азота, затем сушат под вакуумом и подвергают процедуре пробоподготовки с дальнейшим анализом на УМС.

Результаты УМС анализа представляют в виде величины превышения содержания радиоуглерода в органах экспериментальных мышей относительно контрольных в единицах концентрации С-14 в органах контрольных мышей: 14Сэксп/14Сконтр - 1. Анализ изотопного соотношения методом ускорительной масс-спектрометрии показывает повышенное относительное содержание радиоуглерода в легких и печени: 0,18±0.02 и 0,10±0.02, соответственно. Данное превышение означает, что в 1 г легких и печени находилось около 10-8 г ПС частиц, а суммарное количество меченных ПС частиц, введенных ингаляционным путем в экспериментальных мышей, составляло 107 шт. на 1 мышь.

Пример 2

Испытания проводят по примеру 1, но с тем отличием, что микросферы состоят из полиметилметакрилата, активность радиоуглерода 600 кБк на 1 г углерода, размер частиц составляет 70 нм, концентрация частиц в потоке составляет 103 шт/см3. Воздействие аэрозолем проводят в течение 5 дней по 30 мин в день.

Через 6 месяцев после воздействия частицы обнаружены в легких, сердце, печени и мозге экспериментальных мышей, в которых УМС анализ показал статистически достоверное превышение содержания радиоуглерода. Суммарное количество введенных ингаляционным путем частиц в каждую мышь составило 6⋅106 шт.

Аналогичные результаты получают в случае использования в качестве мономеров меченные С-14 стирол, алкилметакрилаты, изопрен, бутадиен, хлоропрен, изобутилен, акриловые или уретановые соединения, а также любые их смеси.

При этом полимерные частицы, состоящие из меченных С-14 мономеров, могут содержать дополнительно сополимер, в качестве которого можно использовать, например, меченные или не меченные С-14 дивинилбензол, карбоновые кислоты.

Способ регистрации органических нано- или микрочастиц в биологических тканях методом ускорительной масс-спектрометрии (УМС), отличающийся тем, что в качестве нано- или микрочастиц используют полимерные частицы, состоящие из меченных радиоактивным углеродом С-14 мономеров, выбранных из С-14 стирола, аклилметакрилатов, изопрена, бутадиена, хлоропрена, изобутилена, акриловых или уретановых соединений, или из указанных выше С-14 мономеров и сополимеров, выбранных из меченных или не меченных С-14 дивинилбензола, карбоновых кислот, при осуществлении способа из раствора меченых частиц получают аэрозоль, вводят ингаляционно подопытным мышам, затем анализируют образцы биологических тканей с применением метода УМС.
Источник поступления информации: Роспатент

Показаны записи 31-40 из 76.
20.01.2018
№218.016.0f4a

Волоконный задающий генератор

Изобретение относится к лазерной технике. Волоконный задающий генератор содержит источник накачки и резонатор, состоящий из двух волоконных частей - активной нелинейной петли и длинной линейной части, соединяющихся посредством четырехпортового волоконного ответвителя; активная петля образует...
Тип: Изобретение
Номер охранного документа: 0002633285
Дата охранного документа: 11.10.2017
13.02.2018
№218.016.22d6

N-[3-оксолуп-20(29)-ен-28-оил]-2,2,6,6-тетраметилпиперидин-4-иламин, обладающий цитотоксической активностью в отношении опухолевых клеток человека

Изобретение относится к N-[3-оксолуп-20(29)-ен-28-оил]-2,2,6,6-тетраметилпиперидин-4-иламину структурной формулы обладающему цитотоксической активностью в отношении опухолевых клеток человека. Технический результат: получено новое соединение, обладающее способностью подавлять рост опухолевых...
Тип: Изобретение
Номер охранного документа: 0002641900
Дата охранного документа: 23.01.2018
10.05.2018
№218.016.38dd

Способ анализа спектрально-временной эволюции излучения

Способ анализа спектрально-временной эволюции излучения включает в себя получение сигнала оптического гетеродина, измерение интенсивности сигнала, получение аналитической формы сигнала при помощи гильбертова дополнения. Далее вычисляют автокорреляционную функцию методом быстрого преобразования...
Тип: Изобретение
Номер охранного документа: 0002646940
Дата охранного документа: 12.03.2018
10.05.2018
№218.016.3ac3

Композиция, обладающая иммуностимулирующим действием для сублингвального применения

Изобретение относится к фармацевтической промышленности и медицине, в частности иммунологии, и представляет собой композицию, обладающую иммуностимулирующим действием для сублингвального применения, состоящую из двуспиральной РНК бактериофага Ф6 в количестве 0,5±0,1 мг, одноцепочечной дрожжевой...
Тип: Изобретение
Номер охранного документа: 0002647455
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.4304

Способ измерения пространственно-временной эволюции излучения

Изобретение относится к методам спектроскопии высокого разрешения и пространственно-временного анализа оптического излучения со сложной структурой и относительно быстрой эволюцией. Оно может быть использовано при проведении научных и прикладных исследований лазерных систем, в том числе...
Тип: Изобретение
Номер охранного документа: 0002649643
Дата охранного документа: 04.04.2018
29.05.2018
№218.016.5306

Интерферометр для определения показателя преломления инфракрасной поверхностной электромагнитной волны

Изобретение относится к области оптических измерений и касается интерферометра для определения показателя преломления инфракрасной поверхностной электромагнитной волны (ПЭВ). Интерферометр содержит источник коллимированного p-поляризованного монохроматического излучения, элемент преобразования...
Тип: Изобретение
Номер охранного документа: 0002653590
Дата охранного документа: 11.05.2018
08.07.2018
№218.016.6e77

Катализатор гидрирования фурфурола

Изобретение относится к области разработки катализатора селективного гидрирования фурфурола до фурфурилового спирта. Катализатор содержит Ni и Мо в форме сплава и в качестве модификатора до 4 мас. % углерода в форме карбида Ni и/или Мо, причем соотношение Ni к Мо в катализаторе варьируется до...
Тип: Изобретение
Номер охранного документа: 0002660439
Дата охранного документа: 06.07.2018
14.07.2018
№218.016.716e

Способ изготовления биметаллического электрода путем электрошлаковой наплавки

Изобретение относится к области металлургии и может быть использовано в литейном производстве при изготовлении биметаллических деталей. В способе используют стальную трубу, которую жестко закрепляют на стальной пластине - нижнем электроде, образующем донную часть отрезка стальной трубы,...
Тип: Изобретение
Номер охранного документа: 0002661322
Дата охранного документа: 13.07.2018
22.09.2018
№218.016.8974

Способ геологического картирования аккреционных комплексов

Изобретение относится к области геологического картирования и может быть использовано для картирования аккреционных комплексов горных пород. Сущность: выделяют пачки пород (хорсы), ограниченные двумя системами надвигов, характеризуемые повторяемостью одинаковых ассоциаций пород, включающих в...
Тип: Изобретение
Номер охранного документа: 0002667329
Дата охранного документа: 18.09.2018
12.12.2018
№218.016.a57f

Способ обнаружения неструктурных элементов геологического разреза по сейсмограммам общего выноса

Изобретение относится к области сейсморазведки, а именно к методам построения разрезов геологической среды по сейсмическим данным (сейсмических разрезов), позволяющий, используя различие свойств отраженных и рассеянных событий на сейсмограммах общего выноса, более устойчиво (надежно) и с...
Тип: Изобретение
Номер охранного документа: 0002674419
Дата охранного документа: 07.12.2018
Показаны записи 31-40 из 43.
20.01.2018
№218.016.0f4a

Волоконный задающий генератор

Изобретение относится к лазерной технике. Волоконный задающий генератор содержит источник накачки и резонатор, состоящий из двух волоконных частей - активной нелинейной петли и длинной линейной части, соединяющихся посредством четырехпортового волоконного ответвителя; активная петля образует...
Тип: Изобретение
Номер охранного документа: 0002633285
Дата охранного документа: 11.10.2017
13.02.2018
№218.016.22d6

N-[3-оксолуп-20(29)-ен-28-оил]-2,2,6,6-тетраметилпиперидин-4-иламин, обладающий цитотоксической активностью в отношении опухолевых клеток человека

Изобретение относится к N-[3-оксолуп-20(29)-ен-28-оил]-2,2,6,6-тетраметилпиперидин-4-иламину структурной формулы обладающему цитотоксической активностью в отношении опухолевых клеток человека. Технический результат: получено новое соединение, обладающее способностью подавлять рост опухолевых...
Тип: Изобретение
Номер охранного документа: 0002641900
Дата охранного документа: 23.01.2018
03.11.2018
№218.016.9a19

Поглотитель диоксида углерода, способ его приготовления и способ очистки газовых смесей

Изобретение относится к поглотителю для удаления диоксида углерода из газовых смесей, способу его приготовления, а также к способу очистки газовых смесей от диоксида углерода. Предложенный поглотитель представляет собой оксид кальция, содержащий макропоры, образующие связанную пространственную...
Тип: Изобретение
Номер охранного документа: 0002671583
Дата охранного документа: 02.11.2018
24.08.2019
№219.017.c352

Катализатор защитного слоя для переработки тяжелого нефтяного сырья

Настоящее изобретение относится к катализатору защитного слоя для переработки тяжелого нефтяного сырья. Катализатор представляет собой смесь γ- и δ-модификаций оксида алюминия, которая содержит макропоры, образующие пространственную структуру. Доля макропор с размером в диапазоне от 50 нм до 15...
Тип: Изобретение
Номер охранного документа: 0002698191
Дата охранного документа: 23.08.2019
27.08.2019
№219.017.c3ff

Бифункциональный катализатор защитного слоя для переработки тяжелого нефтяного сырья и способ его приготовления

Настоящее изобретение относится к бифункциональному катализатору защитного слоя процесса переработки тяжелого нефтяного сырья, а также к способу его получения. Катализатор содержит активный компонент и носитель. Носитель содержит оксид алюминия, а активный компонент представляет собой...
Тип: Изобретение
Номер охранного документа: 0002698265
Дата охранного документа: 26.08.2019
07.09.2019
№219.017.c88a

Катализатор защитного слоя для переработки тяжелого нефтяного сырья и способ его приготовления

Изобретение относится к катализаторам, используемым в процессах гидропереработки тяжелого нефтяного сырья и остатков. Катализатор защитного слоя для переработки тяжелого нефтяного сырья, содержащий активный компонент и носитель, в качестве носителя содержит оксид алюминия, а в качестве...
Тип: Изобретение
Номер охранного документа: 0002699354
Дата охранного документа: 05.09.2019
04.10.2019
№219.017.d234

Способ получения углеродного материала

Изобретение может быть использовано при изготовлении конденсаторов и суперконденсаторов. Сначала исходный углеродный материал с высокой удельной поверхностью - не менее 300 м/г пропитывают по влагоемкости концентрированным раствором щелочи или соды, или соли щелочного металла. Затем проводят...
Тип: Изобретение
Номер охранного документа: 0002701908
Дата охранного документа: 02.10.2019
26.10.2019
№219.017.dae1

Способ переработки тяжелого нефтяного сырья на защитном слое бифункционального катализатора

Изобретение раскрывает способ переработки тяжелого нефтяного сырья на защитном слое катализатора, в котором тяжелое нефтяное сырье пропускают через неподвижный слой катализатора при температуре 300-600°С, скорости подачи сырья через катализатор 0,2-2 г-сырья/г-катализатора/ч, в присутствии...
Тип: Изобретение
Номер охранного документа: 0002704123
Дата охранного документа: 24.10.2019
26.10.2019
№219.017.db0a

Способ переработки тяжелого нефтяного сырья на катализаторе защитного слоя

Изобретение описывает способ переработки тяжелого нефтяного сырья на защитном слое катализатора, в котором тяжелое нефтяное сырье пропускают через неподвижный слой катализатора при температуре 300-600°С, скорости подачи сырья через катализатор 0,2-2г-сырья/г-катализатора/ч, в присутствии...
Тип: Изобретение
Номер охранного документа: 0002704122
Дата охранного документа: 24.10.2019
16.11.2019
№219.017.e346

Способ получения композитных каркасных материалов (варианты)

Изобретение относится к области приготовления широкого круга композитных материалов и может найти широкое применение в производстве катализаторов, носителей, сорбентов и др. Изобретение касается способа получения композитных каркасных материалов, таких как носители, катализаторы и сорбенты, с...
Тип: Изобретение
Номер охранного документа: 0002706222
Дата охранного документа: 15.11.2019
+ добавить свой РИД