×
29.12.2017
217.015.f8e3

Результат интеллектуальной деятельности: Способ получения сополимеров 3,3-бис(азидометил)оксетана 3-нитратометил-3-метилоксетана

Вид РИД

Изобретение

Аннотация: Настоящее изобретение относится к способу получения сополимеров 3,3-бис(азидометил)оксетана с 3-нитратометил-3-метилоксетаном. Описан способ получения сополимеров 3,3-бис(азидометил)оксетана (БАМО) с 3-нитратометил-3-метилоксетаном (НИММО), имеющих характеристическую вязкость от 0,45 до 0,8 дл/г, для изготовления высокоэнергетических конденсированных систем, при синтезе в качестве компонентов сополимера используют 3,3-бис(азидометил)оксетан и 3-нитратометил-3-метилоксетан при соотношении мономеров НИММО : БАМО в пределах от 10÷90 мас.% до 90÷10 мас.%. Технический результат - получение сополимеров, обладающих высокой термической стойкостью, хорошей перерабатываемостью и хорошими прочностными характеристиками и высокой степенью чистоты продукта. 1 ил., 4 табл., 7 пр.

В основу настоящего изобретения положена задача создания способа получения сополимеров 3,3-бис(азидометил)оксетана (БАМО) с 3-азидометил-3-метилоксетаном (AMMO), имеющих характеристическую вязкость, измеренную в циклогексаноне при 20°С, от 0,5 до 1,05 дл/г для изготовления смесевых твердых ракетных топлив, отличающиеся тем, что в целях создания новых сополимерных материалов используют в качестве компонентов 3,3-бис(азидометил)оксетан и 3-нитратометил-3-метилоксетан при соотношении мономеров НИММО : БАМО в пределах от m=10÷90 мас.% до n=90÷10 мас.%.

В литературе не описаны сополимеры 3,3-бис(нитратометил)оксетана с 3-нитратометил-3-метилоксетаном, синтезированные на каталитической системе триизобутилалюминий - вода.

Целью предлагаемого изобретения является создание новых сополимерных материалов путем синтеза сополимеров 3,3-бис(нитратометил)оксетана с 3-нитратометил-3-метилоксетаном на основе каталитической системы триизобутилалюминий - вода с широким диапазоном деформационно-прочностных характеристик.

Сополимеры 3,3-бис(нитратометил)оксетана с 3-нитратометил-3-метилоксетаном получены в лабораторных условиях сополимеризацией 3,3-бис(нитратометил)оксетана и 3-нитратометил-3-метилоксетана на каталитической системе триизобутилалюминий (ТИБА) - вода по схеме 1:

Состав элементарных звеньев и макромолекул подтверждается результатами элементарного анализа и ИК-спектров. Полученные сополимеры имеют линейную структуру. Об этом свидетельствует как тип применяемого катализатора, так и свойства получаемых продуктов: растворимость в ряде органических растворителей - ацетоне, диметилформамиде, циклогексаноне, тетрагидрофуране, этилацетате.

Степень полимеризации предлагаемых сополимеров соответствует характеристической вязкости от 0,45 до 0,8 дл/г при m/m+n⋅100%=30÷70 мол.%.

Характерные ИК-спектры сополимеров НИММО-БАМО представлены на рисунке 1.

Характеристические волновые числа функциональных групп и связей, присутствующих в сополимерах, представлены в таблице 1.

Пример 1

Подготовка исходных компонентов.

Мономер БАМО очищали следующим образом: мономер, растворенный в диэтиловом эфире в объемном соотношении 1:5, заливали в делительную воронку. Далее прибавляли 50…100 мл 5%-ного раствора едкого калия и содержимое воронки тщательно перемешивали. Отстоявшийся водный слой сливали, оставшийся эфирный раствор повторно промывали щелочью. Далее эфирный слой промывали от остатков щелочи дистиллированной водой 5…7 раз до нейтральной пробы воды по индикатору фенолфталеина, после чего содержимое делительной воронки (эфирный слой) помещали в сосуд с прокаленным сульфатом магния на сутки для удаления влаги. Из осушенного таким образом раствора отгоняли эфир на водоструйном насосе. После удаления эфира оставшийся мономер БАМО вакуумировали на масляном насосе при температуре 60…70°С и остаточном давлении 1…2 мм рт.ст. Очищенный мономер БАМО хранили в герметичном сосуде над цеолитом.

Мономер НИММО с содержанием основного компонента 99% разгоняли на масляном насосе при остаточном давлении 1…2 мм рт.ст. Разогнанный мономер хранили над цеолитом в герметичном сосуде.

Подготовка аппаратуры. Чистые высушенные сосуд Шленка и реактор, состоящий из трехгорлой колбы с отводом, с магнитной мешалкой внутри, холодильника и термометра, подвергали «тренировке» - вакуумированию на масляном насосе (рост 1…2 мм рт.ст.) при температуре 80…90°С в течение 10 минут с последующей продувкой аргоном. Для полного удаления влаги воздуха процедуру повторяли 3-4 раза.

Приготовление каталитического комплекса. Инициирующую систему ТИБА-вода («гидролизат») готовили в предварительно «оттренированном» сосуде Шленка. Сосуд Шленка «тренировали» путем нагревания до 120…150°С при остаточном давлении 1…2 мм рт.ст. с последующим заполнением аргоном. Все соединительные шланги продували аргоном. Дозировку компонентов проводили при встречном токе аргона. В сосуд Шленка при непрерывном перемешивании магнитной мешалкой при встречном токе аргона дозировали 1,7 мл метиленхлорида (1/3 части от рассчитанного количества), остальную (2/3 часть) 3,3 мл метиленхлорида вводили позже непосредственно в реактор, затем дозировали 4,5 мл ТИБА (раствор в толуоле с концентрацией 153 г/л). После перемешивания микропипеткой вводили 0,05 мл воды (соотношение ТИБА : вода = 1,0:0,8). Воду прикапывали осторожно, чтобы температура «гидролизата» оставалась в пределах 30°С, при необходимости раствор охлаждали. После завершения дозировки воды «гидролизат» выдерживали в течение 20…30 минут при температуре 25…30°С. Таким образом приготовленный «гидролизат» готов к применению для полимеризации.

Полимеризация. Через воронку в предварительно «оттренированную» трехгорлую колбу (реактор) при встречном токе аргона заливали 1,3 г БАМО и 11,7 г мономера НИММО. Далее прибавляли 3,3 мл (2/3 часть расчетного количества) метиленхлорида. Раствор перемешивали магнитной мешалкой при температуре около 35°С. После чего осторожно вливали «гидролизат», порциями по 2…3 мл. Для начала процесса полимеризации характерен небольшой подъем температуры. В ходе полимеризации возможно выпадение образующегося полимера в виде мелкодисперсного порошка. В целом, процесс полимеризации протекает медленно. После добавления 4,5 мл (расчетного количества «гидролизата») реакционную массу выдерживали в течение 1,5…2 часов при температуре 30…40°С и далее оставляли на сутки при комнатной температуре.

Осаждение и промывка полимера. Через сутки после синтеза образовавшийся полимер высаживали и промывали в изопропиловом спирте. Процедуру промывки проводили в течение дня 3…4 раза. Далее полимер выдерживали в 0,5 н раствора соляной кислоты 2…3 раза по 15 минут, затем многократно промывали водой до полного удаления остатков кислоты (4…5 раз).

Сушка полимера. Предварительно провяленный при комнатной температуре полимер сушили в шкафу при 50…60°С до постоянной массы.

Получено 12,0 г сополимера (92,3%). Определили физико-химические и физико-механические показатели: [η] - 0,71 дл/г, содержание азота - 13,0%, плотность - 1,265 г/см3, температура начала разложения - +158°С, температура плавления - 38°С, степень кристалличности - 6,0%, предельное напряжение при разрыве - 0,9 МПа, относительная деформация при разрыве - 1300%.

Пример 2

Подготовка исходных компонентов и аппаратуры проводилась аналогично примеру 1.

Приготовление каталитического комплекса и синтез отличаются от примера 1 тем, что в сосуд Шленка дозировали 1,7 мл хлористого метилена и 4,5 мл раствора ТИБА. Затем дозировали по каплям аналогично примеру 10,05 мл воды. Далее процесс проводили аналогично примеру 1 с тем отличием, что в реактор вводили 2,4 г БАМО и 9,6 г НИММО. После высушивания получали 10,8 г полимера (выход 90,0%). Определяли физико-химические и физико-механические показатели: [η] - 0,45 дл/г, содержание азота - 17,08%, плотность - 1,272 г/см3, температура начала разложения - +158°С, температура плавления 38°С, степень кристалличности 7,1%, предельное напряжение при разрыве - 0,97 МПа, относительная деформация при разрыве - 1200%.

Пример 3

Подготовка исходных компонентов и аппаратуры проводилась аналогично примеру 1.

Приготовление каталитического комплекса и синтез отличаются от примера 1 тем, что в сосуд Шленка дозировали 1,7 мл хлористого метилена и 4,5 мл раствора ТИБА. Затем дозировали по каплям аналогично примеру 10,05 мл воды. Далее процесс проводили аналогично примеру 1 с тем отличием, что в реактор вводили 3,6 г БАМО и 8,4 г НИММО. После высушивания получали 11,5 г полимера (выход 95,8%). Определили физико-химические в физико-механические показатели: [η] - 0,60 дл/г, содержание азота - 21,06%, плотность - 1,279 г/см3, температура начала разложения - +158°С, температура плавления 40°С, степень кристалличности 15,3%, предельное напряжение при разрыве - 1,0 МПа, относительная деформация при разрыве - 1100%.

Пример 4

Подготовка исходных компонентов и аппаратуры проводилась аналогично примеру 1.

Приготовление каталитического комплекса и синтез отличается от примера 1 тем, что в сосуд Шленка дозировали 1,7 мл хлористого метилена и 4,5 мл раствора ТИБА. Затем дозировали по каплям аналогично примеру 10,05 мл воды. Далее процесс проводили аналогично примеру 1 с таким отличием, что в реактор вводили 6,0 г БАМО и 6,0 г НИММО. После высушивания получали 11,2 г полимера (выход 93,3%). Определили физико-химические и физико-механические показатели: [η] - 0,50 дл/г, содержание азота - 29,11%, плотность - 1,292 г/см3, температура начала разложения - +158°С, температура плавления 40°С, степень кристалличности 25,4%, предельное напряжение при разрыве - 1,11 МПа, относительная деформация при разрыве - 1150%.

Пример 5

Подготовка исходных компонентов и аппаратуры проводилась аналогично примеру 1.

Приготовление каталитического комплекса и синтез отличается от примера 1 тем, что в сосуд Шленка дозировали 1,7 мл хлористого метилена и 4,5 мл раствора ТИБА. Затем дозировали по каплям аналогично примеру 10,05 мл воды. Далее процесс проводили аналогично примеру 1 с тем отличием, что в реактор вводили 8,4 г БАМО и 2,4 г НИММО. После высушивания получали 10,67 г полимера (выход 98,8%). Определили физико-химические и физико-механические показатели: [η] - 0,38 дл/г, содержание азота - 37,62%, плотность - 1,306 г/см3, температура начала разложения - +157°С, температура плавления 39°С, степень кристалличности 31,2%, предельное напряжение при разрыве - 1,18 МПа, относительная деформация при разрыве - 1060%.

Пример 6

Подготовка исходных компонентов и аппаратуры проводилась аналогично примеру 1.

Приготовление каталитического комплекса и синтез отличается от примера 1 тем, что в сосуд Шленка дозировали 1,7 мл хлористого метилена и 4,5 мл раствора ТИБА. Затем дозировали по каплям аналогично примеру 10,05 мл воды. Далее процесс проводили аналогично примеру 1 с тем отличием, что в реактор вводили 9,6 г БАМО и 3,6 г НИММО. После высушивания получали 9,72 г полимера (выход 73,6%). Определили физико-химические и физико-механические показатели: [η] - 0,44 дл/г, содержание азота - 41,51%, плотность - 1,313 г/см3, температура начала разложения - +156°С, температура плавления 48°С, степень кристалличности 35,0%, предельное напряжение при разрыве - 6,7 МПа, относительная деформация при разрыве - 600%.

Пример 7

Подготовка исходных компонентов и аппаратуры проводилась аналогично примеру 1.

Приготовление каталитического комплекса и синтез отличается от примера 1 тем, что в сосуд Шленка дозировали 1,7 мл хлористого метилена и 4,5 мл раствора ТИБА. Затем дозировали по каплям аналогично примеру 10,05 мл воды. Далее процесс проводили аналогично примеру 1 с тем отличием, что в реактор вводили 9,9 г БАМО и 1,1 г НИММО. После высушивания получали 10,7 г полимера (выход 97,3%). Определили физико-химические и физико-механические показатели: [η] - 0,66 дл/г, содержание азота - 45,71%, плотность - 1,320 г/см3, температура начала разложения - +156°С, температура плавления 48°С, степень кристалличности 39,0%, предельное напряжение при разрыве - 7,1 МПа, относительная деформация при разрыве - 570%.

Условия получения и основные физико-химические и физико-механические характеристики полученных сополимеров приведены также в таблицах 2-4.

Предлагаемое изобретение обладает следующими технико-экономическими преимуществами.

Полученные физико-химические и деформационно-прочностные характеристики синтезированных сополимеров БАМО с НИММО при различных их соотношениях показывают, что полимеры обладают высокой термической стойкостью (температура начала разложения в пределах не менее 156°С), хорошей перерабатываемостью (температура текучести 20…50°С) и хорошими прочностными характеристиками (предельное напряжение при растяжении в пределах 0,9…7,1 МПа).

Способ получения сополимеров 3,3-бис(азидометил)оксетана (БАМО) с 3-нитратометил-3-метилоксетаном (НИММО), имеющие характеристическую вязкость от 0,45 до 0,8 дл/г, для изготовления высокоэнергетических конденсированных систем, при синтезе в качестве компонентов сополимера используют 3,3-бис(азидометил)оксетан и 3-нитратометил-3-метилоксетан при соотношении мономеров НИММО : БАМО в пределах от 10÷90 мас.% до 90÷10 мас.%.
Способ получения сополимеров 3,3-бис(азидометил)оксетана 3-нитратометил-3-метилоксетана
Источник поступления информации: Роспатент

Показаны записи 61-66 из 66.
09.08.2018
№218.016.789f

Полиуретановая композиция

Изобретение относится к полиуретановой композиции и может быть использовано в качестве покрытий металлических конструкций, испытывающих повышенные вибрационные нагрузки, а также покрытий корпусов транспортных средств, судов, двигателей и т.п. Полиуретановая композиция содержит компонент А на...
Тип: Изобретение
Номер охранного документа: 0002663158
Дата охранного документа: 01.08.2018
06.06.2019
№219.017.7420

Состав цветного огня и способ его изготовления

Изобретение относится к области пиротехники, а именно к производству составов цветного огня для фейерверков и сигнальных изделий. Состав цветного огня включает утилизируемые баллиститные пороха и топлива или их смесь с горюче-связующей добавкой, содержащей "ловушечный" коллоксилин,...
Тип: Изобретение
Номер охранного документа: 0002690467
Дата охранного документа: 03.06.2019
27.07.2019
№219.017.b9b9

Универсальный электровоспламенитель заряда твердотопливного генератора давления

Изобретение относится к твердотопливным генераторам давления и может быть применено для термобарохимической обработки продуктивного пласта скважины с целью интенсификации нефтегазодобычи. Универсальный электровоспламенитель заряда твердотопливного генератора давления скважинного представляет...
Тип: Изобретение
Номер охранного документа: 0002695729
Дата охранного документа: 25.07.2019
14.08.2019
№219.017.bf3a

Установка для определения скорости горения твёрдого топлива

Изобретение относится к измерительной технике: устройству приборов, предназначенных для определения скорости горения твердых топлив (ТТ), используемых в аппаратах для глубоководных систем, ствольных системах различного назначения и др., работающих при высоких давлениях (от двадцати до сотен...
Тип: Изобретение
Номер охранного документа: 0002697072
Дата охранного документа: 12.08.2019
02.10.2019
№219.017.ccd5

Манометрическая бомба высокого давления

Изобретение относится к области измерительной техники, позволяющей исследовать закономерности горения порохов и твердых топлив в условиях возрастающего давления. Изобретение касается манометрической бомбы, содержащей корпус, выполненный из двух цилиндров, с натягом вставленных один в другой,...
Тип: Изобретение
Номер охранного документа: 0002701522
Дата охранного документа: 27.09.2019
08.12.2019
№219.017.eb59

Заряд газогенератора скважинного

Изобретение относится к твердотопливным зарядам в составе газогенератора скважинного, применяемым при комплексной обработке скважин в составе импульсных бескорпусных устройств, для увеличения углеводородоотдачи. Заряд состоит из набора однотипных секций, изготовленных из баллиститного топлива...
Тип: Изобретение
Номер охранного документа: 0002708134
Дата охранного документа: 04.12.2019
Показаны записи 61-70 из 82.
20.02.2019
№219.016.c102

Способ изготовления заряда из баллиститного твердого ракетного топлива

Изобретение относится к изготовлению зарядов твердого ракетного топлива. Способ изготовления заряда из баллиститного твердого ракетного топлива включает смешение компонентов топлива в нейтральной среде с введением стеарата цинка, отжим топливной массы, вальцевание топливной массы с переработкой...
Тип: Изобретение
Номер охранного документа: 0002360894
Дата охранного документа: 10.07.2009
01.03.2019
№219.016.c950

Заряд твердого ракетного топлива для разгонно-маршевого ракетного двигателя управляемой ракеты

Заряд твердого ракетного топлива для разгонно-маршевого ракетного двигателя управляемой ракеты включает топливную шашку, бронированную по заднему торцу и боковой поверхности ацетилцеллюлозным бронесоставом. Поверх бронесостава нанесен экранирующий поверхностный пленочный слой на основе...
Тип: Изобретение
Номер охранного документа: 0002282741
Дата охранного документа: 27.08.2006
08.03.2019
№219.016.d587

Установка для приготовления баллиститного пороха

Изобретение относится к области ракетной техники, а именно к установке для приготовления баллиститного пороха, и может быть применено в пороховой промышленности для производства твердотопливных двигателей различных ракет и других изделий из баллиститного пороха. Установка содержит конструктивно...
Тип: Изобретение
Номер охранного документа: 0002434831
Дата охранного документа: 27.11.2011
11.03.2019
№219.016.dadb

Способ отделения дифениламина от примесей

Изобретение относится к порохам и топливам на основе нитроглицерина и нитратов целлюлозы. Предложен способ отделения дифениламина (ДФА) от примесей, содержащих амины и его производные. ДФА обрабатывают изопропиловым спиртом в весовом соотношении 1:1,5...1,7 при нагревании до температуры...
Тип: Изобретение
Номер охранного документа: 0002323197
Дата охранного документа: 27.04.2008
11.03.2019
№219.016.dcff

Способ изготовления заряда баллиститного твердого ракетного топлива

Изобретение относится к области ракетной техники, а именно к способам изготовления зарядов твердого ракетного топлива, и может быть использовано при отработке рецептур и технологии изготовления баллиститных твердых ракетных топлив, опытных и серийных зарядов к ракетным и артиллерийским...
Тип: Изобретение
Номер охранного документа: 0002434832
Дата охранного документа: 27.11.2011
29.03.2019
№219.016.ee21

Способ получения целлюлозы

Изобретение относится к области целлюлозно-бумажного производства, может быть использовано при получении целлюлозы из недревесного однолетнего растительного сырья. Способ получения целлюлозы включает дробление и очистку целлюлозосодержащего материала, варку в щелочном растворе,...
Тип: Изобретение
Номер охранного документа: 0002683179
Дата охранного документа: 26.03.2019
29.03.2019
№219.016.f60a

Экструдер для переработки баллиститных порохов и топлив

Изобретение относится к оборудованию, предназначенному для переработки баллиститных порохов и топлив и изготовления зарядов из них, и может быть эффективно использовано на фазе гомогенизации пороховой массы и прессования зарядов. Изобретение представляет собой экструдер, рабочий орган которого...
Тип: Изобретение
Номер охранного документа: 0002451003
Дата охранного документа: 20.05.2012
19.04.2019
№219.017.327d

Биологически разрушаемая термопластичная композиция

Изобретение относится к получению биологически разрушаемой термопластичной композиции, используемой для производства различных тароупаковочных изделий. Биологически разрушаемая термопластическая композиция содержит диацетат целлюлозы с содержанием ацетатных групп 56,4%, в количестве 25 мас.ч.,...
Тип: Изобретение
Номер охранного документа: 0002404205
Дата охранного документа: 20.11.2010
25.04.2019
№219.017.3b16

Способ измельчения нитратов целлюлозы

Изобретение относится к области технологии производства нитратов целлюлозы (НЦ) с содержанием азота 209,0 мл NO/г и более, изготавливаемых из древесного целлюлозного сырья марки ЦА и хлопкового сырья марки ХЦ, а именно к технологии промышленного измельчения их на дисковой мельнице МД-31 и...
Тип: Изобретение
Номер охранного документа: 0002685662
Дата охранного документа: 22.04.2019
29.04.2019
№219.017.3ee9

Взрывчатый состав и способ его изготовления

Изобретение относится к взрывчатым веществам. Предложен взрывчатый состав, содержащий белила цинковые или окись цинка в виде порошка в качестве сенсибилизатора и двухосновный и(или) трехосновный порох, и(или) двухосновное и(или) трехосновное ракетное топливо. А также предложен способ...
Тип: Изобретение
Номер охранного документа: 0002281275
Дата охранного документа: 10.08.2006
+ добавить свой РИД