×
29.12.2017
217.015.f8c2

Результат интеллектуальной деятельности: Регистратор температуры и скорости нестационарного газового потока

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике и может быть использовано для определения температуры нестационарного газового потока, теплового импульса потока, скорости движения фронта теплового возмущения, зависимости скорости движения фронта теплового возмущения от расстояния до источника его возникновения. Заявлен регистратор температуры и скорости нестационарного газового потока, который содержит информационный датчик и блок измерения, который состоит из аналого-цифрового преобразователя, блока памяти, генератора тактовой частоты, N-аппаратно-программных каналообразующих модулей, микроЭВМ, аппаратно-программного модуля контроля внутренних питающих напряжений, блока измерения параметров окружающей среды, супервизора, радиотрансивера, com-порта, источника эталонных напряжений. При этом информационный датчик состоит из N-датчиков температуры, аналого-цифровой преобразователь является синхронным N-канальным, блок памяти энергонезависимым и перезаписываемым. Дополнительно введены приемопередатчик, персональная ЭВМ, при этом N датчиков температуры (N≥4) информационного датчика размещены перпендикулярно направлению движения фронта теплового возмущения на равных расстояниях R друг от друга, вход приемопередатчика соединен с первым выходом блока измерений, выход приемопередатчика соединен с входом персональной ЭВМ. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для определения температуры нестационарного газового потока, теплового импульса потока, скорости движения фронта теплового возмущения, зависимости скорости движения фронта теплового возмущения от расстояния до источника его возникновения.

Известен измеритель температуры, содержащий информационный датчик (датчик температуры) и блок измерения, который состоит из входного усилителя, аналого-цифрового преобразователя, коммутатора, блока управления, блока памяти, генератора тактовой частоты, адресного счетчика, положительного конденсатора, причем выход информационного датчика (датчик температуры) соединен с входом входного усилителя и вторым входом коммутатора, выход входного усилителя соединен с первым входом аналого-цифрового преобразователя и первым входом коммутатора, выход которого соединен со вторым входом аналого-цифрового преобразователя и входом положительного конденсатора, выход генератора опорной частоты соединен с первым входом блока управления, на второй вход которого поступает команда выхода, первый выход блока управления соединен с третьим входом коммутатора, второй выход - со вторым входом блока памяти, третий выход со входом адресного счетчика, выход которого соединен с третьим входом блока памяти, первый выход аналого-цифрового преобразователя соединен с первым выходом блока памяти, выход которого является цифровым выходом измерителя температуры [1].

Недостатками данного измерителя температуры является недостаточная информативность из-за отсутствия возможности определения профиля и измерения параметров теплового поля на заданной поверхности, возникающего в результате воздействия на эту поверхность распределенного источника воспламенения, низкая точность (из-за отсутствия схемы термокомпенсации холодного спая термопары), невозможность определения скорости движения фронта теплового возмущения, а также зависимости изменения скорости движения фронта теплового потока от расстояния до источника его возникновения, отсутствие возможности неконтактного съема накопленных замеров температуры.

Наиболее близким к изобретению является цифровой измеритель температуры, содержащий информационный датчик и блок измерения, который состоит из аналого-цифрового преобразователя, блока памяти, генератора тактовой частоты, N-аппаратно-программных каналообразующих модулей, микроЭВМ, аппаратно-программного модуля контроля внутренних питающих напряжений, блока измерения параметров окружающей среды, супервизора, радиотрансивера, com-порта, источника эталонных напряжений, при этом информационный датчик состоит из N-датчиков температуры, аналого-цифровой преобразователь является синхронным N-канальным, блок памяти энергонезависимым и перезаписываемым, причем группа выходов N-датчиков температуры через аппаратно-программные каналообразующие модули соединена с группой N - первых входов синхронного аналого-цифрового преобразователя, цифровой выход которого соединен с первым входом микроЭВМ, первый выход которой соединен со входом com-порта, выходы супервизора, энергонезависимого перезаписываемого блока памяти, генератора тактовой частоты, радиотрансивера, блока измерения параметров окружающей среды, аппаратно-программного модуля контроля внутренних питающих напряжений, первый выход источника эталонных напряжений соединены соответственно со вторым, третьим, четвертым, пятым, шестым, седьмым и восьмым входами микроЭВМ, второй, третий и четвертый выходы которой соединены соответственно со входами радиотрансивера, энергонезависимого перезаписываемого блока памяти и со вторым входом синхронного аналого-цифрового преобразователя, третий вход которого соединен со вторым выходом источника эталонных напряжений, выходы радиотрансивера и com-порта являются соответственно первым и вторым выходами блока измерения [2].

Недостатками данного цифрового измерителя является недостаточная функциональность из-за невозможности определения скорости движения фронта теплового возмущения, а также зависимости скорости движения фронта теплового возмущения от расстояния до источника его возникновения.

Технической задачей изобретения является расширение функциональности цифрового измерителя температуры за счет дополнительного определения скорости движения фронта теплового возмущения, а также зависимости скорости движения фронта теплового потока от расстояния до источника его возникновения.

Решение технической задачи достигается тем, что в регистраторе температуры и скорости нестационарного газового потока, содержащем информационный датчик и блок измерения, который состоит из аналого-цифрового преобразователя, блока памяти, генератора тактовой частоты, N-аппаратно-программных каналообразующих модулей, микроЭВМ, аппаратно-программного модуля контроля внутренних питающих напряжений, блока измерения параметров окружающей среды, супервизора, радиотрансивера, com-порта, источника эталонных напряжений, при этом информационный датчик состоит из N-датчиков температуры, аналого-цифровой преобразователь является синхронным N-канальным, блок памяти энергонезависимым и перезаписываемым, причем группа выходов N-датчиков температуры через аппаратно-программные каналообразующие модули соединена с группой N - первых входов синхронного аналого-цифрового преобразователя, цифровой выход которого соединен с первым входом микроЭВМ, первый выход которой соединен со входом com-порта, выходы супервизора, энергонезависимого перезаписываемого блока памяти, генератора тактовой частоты, радиотрансивера, блока измерения параметров окружающей среды, аппаратно-программного модуля контроля внутренних питающих напряжений, первый выход источника эталонных напряжений соединены соответственно со вторым, третьим, четвертым, пятым, шестым, седьмым и восьмым входами микроЭВМ, второй, третий и четвертый выходы которой соединены соответственно со входами радиотрансивера, энергонезависимого перезаписываемого блока памяти и со вторым входом синхронного аналого-цифрового преобразователя, третий вход которого соединен со вторым выходом источника эталонных напряжений, выходы радиотрансивера и com-порта являются соответственно первым и вторым выходами блока измерения дополнительно введены приемопередатчик, персональная ЭВМ, при этом N датчиков температуры (N≥4) информационного датчика размещены перпендикулярно направлению движения фронта теплового возмущения на равных расстояниях R друг от друга, вход приемопередатчика соединен с первым выходом блока измерений, выход приемопередатчика соединен с входом персональной ЭВМ.

Новыми элементами, обладающими существенными отличиями по устройству, являются: приемопередатчик, персональная ЭВМ, N датчиков температуры (N≥4) информационного датчика размещены перпендикулярно направлению движения фронта теплового возмущения на равных расстояниях R друг от друга, вход приемопередатчика соединен с первым выходом блока измерений, выход приемопередатчика соединен с входом персональной ЭВМ, а также связи между известными и новыми элементами устройства.

На фигуре 1 приведена функциональная схема регистратора температуры и скорости нестационарного газового потока.

Регистратор температуры и скорости нестационарного газового потока содержит N датчиков 1 температуры, N аппаратно-программных каналообразующих модулей 2 и блок 3 измерения, который состоит из N-канального синхронного аналого-цифрового преобразователя 4, микроЭВМ 5, супервизора 6, энергонезависимого перезаписываемого блока 7 памяти, генератора 8 тактовой частоты, радиотрансивера 9, аппаратно-программного модуля 10 контроля внутренних питающих напряжений, COM-порта 11, блока 12 измерения параметров окружающей среды и источника 13 эталонных напряжений, при этом группа выходов N датчиков 1 температуры через N аппаратно-программных каналообразующих модулей 2 соединена с группой N первых входов синхронного аналого-цифрового преобразователя 4, цифровой выход которого соединен с первым входом микроЭВМ 5, первый выход которой соединен со входом COM-порта 11, выходы супервизора 6, энергонезависимого перезаписываемого блока 7 памяти, генератора 8 тактовой частоты, радиотрансивера 9, блока 12 измерения параметров окружающей среды, аппаратно-программного модуля 10 контроля внутренних питающих напряжений, первый выход источника 13 эталонных напряжений соединены соответственно со вторым, третьим, четвертым, пятым, шестым, седьмым и восьмым входами микроЭВМ 5, второй, третий и четвертый выходы которой соединены соответственно со входами радиотрансивера 9, энергонезависимого перезаписываемого блока 7 памяти и вторым входом синхронного аналого-цифрового преобразователя 4, третий вход которого соединен со вторым выходом источника эталонных напряжений 13, выходы радиотрансивера 9 и com-порта 11 являются соответственно первым и вторым выходами блока 3 измерения, приемопередатчик 14, персональную ЭВМ 15, при этом N датчиков температуры (N≥4) информационного датчика размещены перпендикулярно направлению движения фронта темпового возмущения на равных расстояниях R друг от друга, вход приемопередатчика 14 соединен с первым выходом блока 3 измерений, выход приемопередатчика 15 соединен с входом персональной ЭВМ 15.

Регистратор температуры и скорости нестационарного газового потока работает следующим образом.

При включении регистратора происходит контроль питающих напряжений с помощью аппаратно-программного модуля 10 контроля внутренних питающих напряжений, тестирование внутренних узлов микроЭВМ 5, контроль работоспособности энергонезависимого перезаписываемого блока 7 памяти и радиотрансивера 9.

После появления нестационарного газового потока происходит воздействие теплового поля на N датчиков 1 температуры, сигналы с выходов которых усиливаются и интерполируются N аппаратно-программными каналообразующими модулями 2 и поступают на N первых входов синхронного N-канального аналого-цифрового преобразователя 4, где из аналоговой формы преобразуются в цифровую. С выхода синхронного N-канального аналого-цифрового преобразователя 4 сигналы поступают на первый вход микроЭВМ 5. С учетом того что N-канальный аналого-цифровой преобразователь 4 является синхронным, то появление сигнала на одном из N датчиков 1 температуры приводит к фиксации этого момента микроЭВМ 5. Затем с некоторой задержкой во времени приходят сигналы с других датчиков, моменты появления которых также фиксируются микроЭВМ 5.

Сигналы с N датчиков 1 температуры, размещенных перпендикулярно направлению движения фронта теплового потока на равных расстояниях R друг от друга, поступают через N-канальный аналого-цифровой преобразователь 4 на первый вход микроЭВМ 5.

МикроЭВМ 5 является основным функциональным узлом прибора, осуществляющим регистрацию результатов экспериментов.

Результаты обработки записываются в энергонезависимом перезаписываемом блоке 7 памяти и поступают на вход радиотрансивера 9.

В энергонезависимом перезаписываемом блоке 7 памяти результаты могут храниться длительное время.

С выхода блока 12 измерения параметров окружающей среды на вход микроЭВМ 5 поступает информация об атмосферном давлении, температуре и влажности окружающей среды, которая учитывается при определении вышеуказанных параметров теплового поля и фиксации условий проведения экспериментов.

Источник 13 эталонных напряжений обеспечивает питание аналого-цифрового преобразователя 4 и микроЭВМ 5 высокостабильными эталонными напряжениями.

Радиотрансивер 9 позволяет осуществить неконтактную передачу результатов экспериментов в радиолокационном диапазоне длин волн по запросу приемопередатчика 14.

Супервизор 10 отслеживает величину напряжения питания микроЭВМ 5 и фиксирует те моменты, когда оно находится ниже допустимого уровня, предотвращая сбои в работе регистратора температуры и определении скорости нестационарного газового потока.

При возникновении необходимости или отказе радиотрансивера 9 информация о результатах экспериментов может быть считана в помощью внешнего устройства через COM-порт 11.

Приемопередатчик 14 формирует запрос и принимает с радиотрансивера (с первого выхода блока измерений) результаты эксперимента, которые передает на вход персональной ЭВМ 15.

Персональная ЭВМ 15 обрабатывает результаты эксперимента и определяет для каждого из N датчиков величину температуры на фронте теплового возмущения, импульс теплового возмущения. Кроме того, с учетом расположения N датчиков температуры относительно источника теплового возмущения и расстояния R между ними, а также времени t прохождения фронтом теплового возмущения расстояния R, по формуле она рассчитывает скорость V движения фронта теплового возмущения на участке от R1 до R2, R2 до R3, R3 до R4 и т.д. Так как датчиков температуры должно быть N≥4, то в результате расчетов получается набор скоростей V1, V2 V3, … Vn-1, из анализа которого определяется зависимость скорости движения фронта теплового возмущения от расстояния до источника его возникновения.

Использование предлагаемого технического решения позволяет расширить функциональные возможности, повысить точность и удобство эксплуатации регистратора температуры и скорости нестационарного газового потока.

Источники информации

1. Устройство регистрации термо-ЭДС ИТ-4К-0,1. Техническое описание и инструкция по эксплуатации.

2. Мужичек С.М., Яковлев А.А., Ефанов В.В. Патент РФ на изобретение №2365884, 2009 (прототип).

Регистратор температуры и скорости нестационарного газового потока, содержащий информационный датчик и блок измерения, который состоит из аналого-цифрового преобразователя, блока памяти, генератора тактовой частоты, N-аппаратно-программных каналообразующих модулей, микроЭВМ, аппаратно-программного модуля контроля внутренних питающих напряжений, блока измерения параметров окружающей среды, супервизора, радиотрансивера, com-порта, источника эталонных напряжений, при этом информационный датчик состоит из N-датчиков температуры, аналого-цифровой преобразователь является синхронным N-канальным, блок памяти энергонезависимым и перезаписываемым, причем группа выходов N-датчиков температуры через аппаратно-программные каналообразующие модули соединена с группой N - первых входов синхронного аналого-цифрового преобразователя, цифровой выход которого соединен с первым входом микроЭВМ, первый выход которой соединен со входом com-порта, выходы супервизора, энергонезависимого перезаписываемого блока памяти, генератора тактовой частоты, радиотрансивера, блока измерения параметров окружающей среды, аппаратно-программного модуля контроля внутренних питающих напряжений, первый выход источника эталонных напряжений соединены соответственно со вторым, третьим, четвертым, пятым, шестым, седьмым и восьмым входами микроЭВМ, второй, третий и четвертый выходы которой соединены соответственно со входами радиотрансивера, энергонезависимого перезаписываемого блока памяти и со вторым входом синхронного аналого-цифрового преобразователя, третий вход которого соединен со вторым выходом источника эталонных напряжений, выходы радиотрансивера и com-порта являются соответственно первым и вторым выходами блока измерения, отличающийся тем, что дополнительно введены приемопередатчик, персональная ЭВМ, при этом N датчиков температуры (N≥4) информационного датчика размещены перпендикулярно направлению движения фронта теплового возмущения на равных расстояниях R друг от друга, вход приемопередатчика соединен с первым выходом блока измерений, выход приемопередатчика соединен с входом персональной ЭВМ.
Регистратор температуры и скорости нестационарного газового потока
Регистратор температуры и скорости нестационарного газового потока
Источник поступления информации: Роспатент

Показаны записи 101-110 из 113.
09.06.2019
№219.017.7658

Способ измерения удельного электрического сопротивления металлического образца в процессе его растяжения

Изобретение относится к области испытательной техники и может быть использовано для измерения удельного электрического сопротивления металлических образцов в процессе растяжения при механических испытаниях. При растяжении образца расстояние между его произвольными точками 1 и 2 увеличивается,...
Тип: Изобретение
Номер охранного документа: 0002690972
Дата охранного документа: 07.06.2019
20.06.2019
№219.017.8d66

Способ наведения беспилотного летательного аппарата

Изобретение относится к области авиационной техники и может быть использовано в системах управления и наведения беспилотных летательных аппаратов: управляемых ракет, корректируемых авиабомб и других аппаратов класса «воздух - поверхность». Технический результат – повышение эффективности...
Тип: Изобретение
Номер охранного документа: 0002691902
Дата охранного документа: 18.06.2019
11.07.2019
№219.017.b247

Система передачи информации в реальном времени на базе полностью оптической спектрально-уплотнённой бортовой сети реального времени

Изобретение относится к области передачи информации. Технический результат заявленного изобретения заключается в повышении надежности при выполнении обмена информацией между бортовыми системами в режиме реального времени, а также при реализации процедуры реконфигурации комплекса бортового...
Тип: Изобретение
Номер охранного документа: 0002694137
Дата охранного документа: 09.07.2019
25.07.2019
№219.017.b854

Способ исключения эффекта разделения изображения рамками мониторов визуализации внекабинной обстановки авиационных тренажеров

Изобретение относится к военным авиационным тренажерам, в особенности к комплексам полунатурного моделирования. В способе исключения эффекта разделения изображения рамками мониторов визуализации внекабинной обстановки в авиационных тренажерах предварительно формируется изображение местности и...
Тип: Изобретение
Номер охранного документа: 0002695480
Дата охранного документа: 23.07.2019
26.07.2019
№219.017.b944

Способ прицеливания при сбросе грузов в точку земной поверхности с маневрирующего летательного аппарата

Изобретение относится к области авиационных средств прицеливания при сбросе грузов с летательного аппарата. Сущность изобретения заключается в том, что измеряют текущие значения фазовых координат летательного аппарата и цели, решают задачу прогнозирования фазовых координат движения...
Тип: Изобретение
Номер охранного документа: 0002695591
Дата охранного документа: 24.07.2019
02.08.2019
№219.017.bbb8

Способ оценки радиальной скорости объекта

Изобретение относится к способам оценки радиальной скорости объектов вдоль оси X, перпендикулярной траектории полета носителя радиолокатора бокового обзора (РЛ БО) - оси Y. Оценка осуществляется по радиолокационным изображениям (РЛИ) местности, формируемым в РЛ БО при проведении зондирования...
Тип: Изобретение
Номер охранного документа: 0002696084
Дата охранного документа: 31.07.2019
01.11.2019
№219.017.dc88

Способ диагностики двухполюсного ротора с постоянными магнитами

Изобретение относится к области энергомашиностроения, в частности к устройствам, используемым для диагностики электрических машин с постоянными магнитами в синхронных машинах. Технический результат: повышение точности и эффективности диагностики двухполюсных роторов с постоянными магнитами....
Тип: Изобретение
Номер охранного документа: 0002704567
Дата охранного документа: 29.10.2019
29.11.2019
№219.017.e74a

Способ прицеливания при стрельбе из пушки по маневрирующей воздушной цели

Изобретение относится к способам прицеливания при стрельбе из пушки самолета-истребителя по маневрирующей воздушной цели. Для прицеливания определяют тип цели (8), вводят размах ее крыльев (3) в вычислитель, вычисляют прогнозируемую трассу снарядов (5). Сигнал прогнозируемой трассы снарядов (5)...
Тип: Изобретение
Номер охранного документа: 0002707325
Дата охранного документа: 26.11.2019
08.02.2020
№220.018.008a

Способ сопровождения в радиолокационной станции воздушной цели из класса "самолёт с турбореактивным двигателем" при воздействии уводящих по дальности и скорости помех

Изобретение относится к области вторичной цифровой обработки радиолокационных сигналов и может быть использовано в радиолокационной станции (РЛС) для формирования при сопровождении воздушной цели (ВЦ) из класса «самолет с турбореактивным двигателем» достоверной идентификации совместного или...
Тип: Изобретение
Номер охранного документа: 0002713635
Дата охранного документа: 05.02.2020
07.03.2020
№220.018.0a50

Модуль типовых авиационных интерфейсов

Изобретение относится к области вычислительной техники. Технический результат заключается в расширении функциональных возможностей за счет возможности подключения к оптическим или медным линиям связи для обмена данными по сети AFDX, Ethernet и возможности подключения мезонинов с набором...
Тип: Изобретение
Номер охранного документа: 0002716033
Дата охранного документа: 05.03.2020
Показаны записи 91-94 из 94.
20.04.2023
№223.018.4ba4

Способ сопровождения воздушной цели из класса "самолёт с турбореактивным двигателем" при воздействии уводящих по дальности и скорости помех

Изобретение относится к области цифровой обработки радиолокационных сигналов и может быть использовано в радиолокационной станции (РЛС) для формирования при сопровождении воздушной цели (ВЦ) из класса «самолет с турбореактивным двигателем» достоверной идентификации совместного или раздельного...
Тип: Изобретение
Номер охранного документа: 0002764781
Дата охранного документа: 21.01.2022
20.04.2023
№223.018.4c17

Способ комплексирования информации радиолокационной станции и радиолокационных головок самонаведения ракет, пущенных носителем по воздушной цели при воздействии уводящих по дальности и скорости помех

Изобретение относится к области цифровой обработки радиолокационных сигналов и может быть использовано в радиолокационной станции (РЛС) носителя и радиолокационных головках самонаведения (РГС) его управляемых ракет для одновременного формирования при сопровождении воздушной цели (ВЦ) из класса...
Тип: Изобретение
Номер охранного документа: 0002765145
Дата охранного документа: 26.01.2022
10.05.2023
№223.018.5320

Способ динамической юстировки систем координат вертолета на основе их векторного согласования

Изобретение относится к способу динамической юстировки систем координат вертолета на основе их векторного согласования. Для динамической юстировки измеряют три ортогональные проекции векторов линейной и угловой скорости вертолета, которые измеряют в результате независимой обработки потоков...
Тип: Изобретение
Номер охранного документа: 0002795354
Дата охранного документа: 03.05.2023
20.05.2023
№223.018.67c1

Способ комплексирования информации при определении направления беспилотного летательного аппарата на воздушный объект и величины предполагаемого промаха

Изобретение относится к области цифровой обработки сигналов и может быть использовано в бортовых цифровых вычислительных машинах (БЦВМ) пилотируемых летательных аппаратов (ЛА) и беспилотных летательных аппаратов (БПЛА) при их самонаведении на воздушный объект (ВО) по информации от нескольких...
Тип: Изобретение
Номер охранного документа: 0002794733
Дата охранного документа: 24.04.2023
+ добавить свой РИД