×
29.12.2017
217.015.f732

Результат интеллектуальной деятельности: Композиционный материал на основе алюминиевого сплава, армированный карбидом бора, и способ его получения

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, преимущественно к плавке и литью сплавов цветных металлов, и предназначено для изготовления композиционных материалов на основе алюминиевого сплава с низким коэффициентом термического расширения для деталей автомобилестроения. Композиционный материал на основе алюминиевого сплава, армированный карбидом бора ВС, содержит медь при следующем соотношении компонентов, мас.%: медь 4-6, карбид бора 1-8, алюминий - остальное. Способ получения композиционного материала включает плавление алюминия и меди технической чистоты в графито-шамотном тигле в электрической печи сопротивления, введение в расплав при температуре 850-950°С частиц ВС размером 1-20 мкм путем механического замешивания со скоростью вращения 450 об/мин с помощью четырехлопастной титановой лопатки и заливки расплава в матрицу с последующей кристаллизацией под давлением 50-200 МПа. Техническим результатом изобретения является получение композиционного материала на основе алюминиевого сплава, армированного карбидом бора, с низким коэффициентом термического расширения. 2 н.п. ф-лы, 3 пр., 10 ил.

Изобретение относится к области металлургии, преимущественно к плавке и литью сплавов цветных металлов, и предназначено для изготовления композиционных материалов на основе алюминиевого сплава с низким коэффициентом термического расширения для деталей автомобилестроения.

Как известно, поршневые силумины (сплавы на основе системы Al-Si) обладают уникальным комплексом свойств, таких как низкий коэффициент термического расширения (КТР), высокая износостойкость, технологичность при литье, однако уровень их механических свойств, как при комнатной, так и при повышенных температурах уступает большинству литейных алюминиевых сплавов. Проблему повышения механических характеристик при повышенных температурах без потери комплекса остальных свойств могут решить композиционные материалы (КМ). Исследования и разработки КМ на основе алюминиевых сплавов, армированных частицами SiC, Al2O3 и некоторыми другими, показывают возможность разработки сплавов с более высоким комплексом свойств. Такие соединения, как SiC, SiO2, AlN, BN, Si3N4, B4C, имеют более низкий КТР, чем кремний (менее 4⋅10-6 °C-1), что может позволить использовать их в качестве армирующих частиц при разработке КМ с уникальным комплексом свойств. Наиболее перспективными могут стать частицы B4C, введение которых в расплав алюминия не требует трудоемкой предварительной обработки. В настоящем патенте предлагается способ получения КМ на основе сплава Al-5% Cu с низким коэффициентом термического расширения.

Известны два основных способа получения КМ: методами порошковой металлургии и механического замешивания в расплав.

В патенте CN 1540019 A (опубликован 09.11.2005) описывается способ получения композиционного материала на основе алюминия, содержащего частицы TiC и Al2O3 в количестве 3-35 масс. %. Замешивание механически активированной смеси TiC и Al2O3, полученной в планетарной мельнице, производилось в индукционной печи при температуре 1200°C с выдержкой 3-10 минут для прохождения реакций взаимодействия между компонентами. Дальнейшая разливка осуществлялась под давлением в графитовую изложницу. Недостатком данного изобретение является применение энергозатратной технологии механического легирования, приводящей к увеличению длительности производства и стоимости конечного продукта.

В патенте CN 1327014 C (приоритет 02.06.2005) описывается композиционный материал, армированный квазикристаллическими частицами AlCuFe, и способ его получения. Способ получения заключается в замешивании квазикристаллических частиц состава AlxCuyFez, где x, y, z - атомный процент (x+y+z=100), 62≤x≤67, 21≤y≤26, 12≤z≤15, размером 20-100 мкм, в расплаве алюминиевого сплава состава AlaMbNc, где a, b, c - массовые проценты (a+b+с=100): 86≤a≤100, 0≤b≤13, 0≤c≤1, а M представляет один из элементов Mg, Cu, Si, Zn, N - один из элементов Fe, Ni, Cr. Разливка расплава осуществляется под давлением. Основным недостатком данного изобретения является высокая стоимость получения квазикристаллического порошка путем атомизации (распыления расплава под высоким давлением аргона).

В документе CN 1422971 A (опубликован 24.05.2006) описывается композиционный материал на основе алюминия и способ его получения. Материал предназначен для изготовления поршней автомобильных двигателей и содержит кремний (9-16%), медь (0,5-2,5%), никель (0,5-2,0%), магний (0,2-1,5%), титан (0,2-2,0), а также армированный частицами Al2O3 и TiC в количестве 5-15 масс. %.

В патенте CN 102534314 A (опубликован 19.08.2013) описывается композиционный материал на основе алюминия, армированный частицами гексаборида лантана, и способ его получения. Материал содержит 5-20% Si, 0.68-6.82% La, 0.32-3.18% B. Материал получается сплавлением чистых алюминия, лантана, кремния и лигатуры алюминий - бор при температуре 800-1200°C и обычным литьем. Армирование происходит за счет взаимодействия лантана и алюминия в жидком расплаве.

В патенте US 13554896 (опубликован 25.07.2013) описывается метод получения композиционного материал на основе алюминия, армированного частицами TiC, TiB2, V, Zr, заключающийся в интенсивном перемешивании расплава алюминия сжатым инертным газом для равномерного распределения армирующих частиц. Недостатком изобретений CN 1422971 A, CN 102534314 A и US 13554896 является отсутствие давления при кристаллизации, что приводит к повышенной пористости изделий и, как следствие, к снижению механических свойств.

В патенте CN 103757449 A (опубликован 30.04.2014) описывается композиционный материал на основе алюминия, армированный частицами TiB2. Метод получения материала заключается в замешивании частиц TiB2 в расплав алюминия при температуре 1100°C-1400°C и литье под давлением. Недостатком данного изобретения является высокая температура замешивания частиц, при которой происходит сильное окисление расплава и появление большого количество неметаллических включений, что приводит к снижению механических свойств.

Наиболее близким к предлагаемому изобретению является патент US 12897651 (опубликован 05.04.2012), предложен композиционный материал на основе алюминия, армированный частицами Al2O3, SiC, C, SiO2, B, BN, B4C и AlN в количестве более 10% размером 0,1-1 мкм. В качестве алюминиевой матрицы может быть использован один из сплавов систем Al-Si, Al-Cu, серий 2xxx, 6xxx. Недостатком данного изобретения является отсутствие давления при кристаллизации, что приводит к повышенной пористости изделий и, как следствие, снижение механических свойств.

Техническим результатом данного изобретения является композиционный материал на основе алюминиевого сплава, армированный карбидом бора, с низким коэффициентом термического расширения. Технический результат достигается за счет сплавления металлов алюминия (86-95 масс. %) и меди (4-6 масс. %) технической чистоты в графито-шамотном тигле в электрической печи сопротивления, введения в расплав при температуре 850-950°С частиц карбида бора (1-8 масс. %) размером 1-20 мкм путем механического замешивания со скоростью вращения 450 об/мин с помощью четырехлопастной титановой лопатки (Фиг. 1) и заливки расплава в матрицу с последующей кристаллизацией под давлением 50-200 МПа. Четырехлопастная титановая лопатка имеет следующие характеристики: две пары лопастей толщиной 2 мм, шириной 25 мм и длиной 70 мм расположены на прутке диаметром 10 мм на расстоянии 30 мм друг от друга. Оси лопастей расположены под углом 90 градусов друг к другу и к оси прутка. Каждая лопасть имеет загиб под углом 30 градусов.

Описание чертежей

Фиг. 1 - Внешний вид сконструированной четырехлопастной титановой лопатки.

Фиг. 2 - Микроструктура композиционного материала Al-5%Cu-2%В4С.

Фиг. 3 - Рентгенограмма композиционного материала Al-5%Cu-2%В4С.

Фиг. 4 - Микроструктура композиционного материала Al-5%Cu-5%В4С.

Фиг. 5 - Рентгенограмма композиционного материала Al-5%Cu-5%В4С.

Фиг. 6 - Микроструктура композиционного материала Al-5%Cu-7%В4С.

Фиг. 7 - Рентгенограмма композиционного материала Al-5%Cu-7%В4С.

Фиг. 8 - Пористость матрицы и композиционных материалов.

Фиг. 9 - Коэффициент термического расширения в интервале 20-200°С матрицы и композиционных материалов.

Фиг. 10 - Термокинетические кривые старения матрицы и композиционных материалов.

Осуществление изобретения.

Для решения поставленной задачи предлагается следующая технология: в расплав алюминия марки А85 при температуре 900°C вводится медь марки М0, после растворения меди предварительно подогретый до 250°C порошок карбида бора размера 1-20 мкм с помощью титановой трубки с воронкой вводят в расплав при его постоянном перемешивании четырехлопастной титановой лопаткой, затем расплав заливают в цилиндрическую стальную изложницу, разогретую до 250°C, и проводят прессование расплава давлением в 50-200 МПа. Температура расплава 900°C выбрана, поскольку, начиная примерно с этой температуры, существенно повышается смачиваемость частиц расплавом, а при более высоких происходит сильное окисление и газонасыщение. Подогрев частиц до температур более 250°C приводил к частичному спеканию порошка, что существенно затрудняло его ведение. Скорость вращения четырехлопастной титановой лопатки подбиралась эмпирически из двух соображений: во-первых, для введения частиц необходимо было создать воронку в расплаве, во-вторых, при очень высоких скоростях происходило сильное газонасыщение расплава. Оптимально подобранная скорость составила примерно 450 об/мин.

Исследование структуры сплавов проводят с использованием растровой электронной микроскопии, рентгеноструктурного анализа. Оценку механических свойств проводили по результатам измерения твердости методом Виккерса (HV). Определение пористости осуществляли по отклонению теоретической плотности от экспериментальной методом гидростатического взвешивания. Средний линейный коэффициент термического расширения (КТР) определяли с использованием дилатометра Linseis L75 в температурном интервале 20-200°C.

Пример 1

КМ состава Al-5% Cu-2% B4C был получен следующим образом.

Для приготовления КМ использовались чистые металлы: алюминий и медь и частицы карбида бора размером 1-20 мкм. Плавку вели в графито-шамотных тиглях в печи сопротивления фирмы «Nabertherm». Разливку осуществляли при температуре 900°C в цилиндрическую стальную форму с диаметром 50 мм и под давлением в 100 МПа проводили прессование расплава.

После получения слитка образец исследовали методом рентгеноструктурного анализа и на растровом электронном микроскопе. На Фиг. 2 представлена микроструктура, а на Фиг. 3 рентгенограмма полученного образца. Как видно, структура представлена неравновесными включениями фазы Al2Cu, а частицы B4C однородно распределены в матрице (Фиг. 2). Кристаллизация под давлением приводит к повышению смачиваемости частиц расплавом, в результате чего на межфазной границе частица/матрица образуются фазы AlB2 и Al3BC (Фиг. 3). Пористость КМ Al-5% Cu-2% B4C незначительно повышается с 0,75 до 1,2% (Фиг. 8) (на Фиг. 8 (М) - сокращенное наименование матрицы Al-5% Cu), коэффициент термического расширения в интервале 20-200°C уменьшается на 0,9⋅10-6 °C-1 (Фиг. 9) (на Фиг. 9 (М) - сокращенное наименование матрицы Al-5% Cu), максимальная твердость в состаренном при 200°C выше на 6 HV (Фиг. 10) в сравнении с матричным сплавом.

Пример 2

КМ состава Al-5% Cu-5% B4C был получен следующим образом.

Для приготовления КМ использовались чистые металлы: алюминий и медь и частицы карбида бора размером 1-20 мкм. Плавку вели в графито-шамотных тиглях в печи сопротивления фирмы «Nabertherm». Разливку осуществляли при температуре 900°C в цилиндрическую стальную форму с диаметром 50 мм и под давлением в 130 МПа проводили прессование расплава.

После получения слитка образец исследовали методом рентгеноструктурного анализа и на растровом электронном микроскопе. На Фиг. 4 представлена микроструктура, а на Фиг. 5 рентгенограмма полученного образца. Как видно, структура представлена неравновесными включениями фазы Al2Cu, а частицы B4C однородно распределены в матрице (Фиг. 4). Кристаллизация под давлением приводит к повышению смачиваемости частиц расплавом, в результате чего на межфазной границе частица/матрица образуются фазы AlB2 и Al3BC (Фиг. 5). Пористость КМ Al-5% Cu-5% B4C незначительно повышается с 0,75 до 0,9% (Фиг. 8), коэффициент термического расширения в интервале 20-200°C уменьшается на 1,9⋅10-6 °C-1 (Фиг. 9), максимальная твердость в состаренном при 200°C выше на 16 HV (Фиг. 10) в сравнении с матричным сплавом.

Пример 3.

КМ состава Al-5% Cu-7% B4C был получен следующим образом:

Для приготовления КМ использовались чистые металлы: алюминий и медь и частицы карбида бора размером 1-20 мкм. Плавку вели в графито-шамотных тиглях в печи сопротивления фирмы «Nabertherm». Разливку осуществляли при температуре 900°C в цилиндрическую стальную форму с диаметром 50 мм и под давлением в 90 МПа проводили прессование расплава.

После получения слитка образец исследовали методом рентгеноструктурного анализа и на растровом электронном микроскопе. На Фиг. 6 представлена микроструктура, а на Фиг. 7 рентгенограмма полученного образца. Как видно, структура представлена неравновесными включениями фазы Al2Cu, а частицы B4C однородно распределены в матрице (Фиг. 6). Кристаллизация под давлением приводит к повышению смачиваемости частиц расплавом, в результате чего на межфазной границе частица/матрица образуются фазы AlB2 и Al3BC (Фиг. 7). Пористость КМ Al-5% Cu-5% B4C практически не изменяется (Фиг. 8), коэффициент термического расширения в интервале 20-200°C уменьшается на 2,6⋅10-6 °C-1 (Фиг. 9), максимальная твердость в состаренном при 200°C выше на 19 HV (Фиг. 10) в сравнении с матричным сплавом.


Композиционный материал на основе алюминиевого сплава, армированный карбидом бора, и способ его получения
Композиционный материал на основе алюминиевого сплава, армированный карбидом бора, и способ его получения
Композиционный материал на основе алюминиевого сплава, армированный карбидом бора, и способ его получения
Композиционный материал на основе алюминиевого сплава, армированный карбидом бора, и способ его получения
Источник поступления информации: Роспатент

Показаны записи 191-200 из 324.
18.05.2018
№218.016.50a6

Алмазное буровое долото

Изобретение относится к породоразрушающему инструменту, в частности к алмазным буровым долотам, предназначенным для бурения глубоких нефтегазовых скважин. Технический результат заключается в повышении ресурса работы долота. Алмазное буровое долото содержит корпус с присоединительной резьбой и...
Тип: Изобретение
Номер охранного документа: 0002653212
Дата охранного документа: 07.05.2018
18.05.2018
№218.016.5126

Композит с металлической матрицей и упрочняющими наночастицами карбида титана и способ его изготовления

Группа изобретений относится к композитам с алюминиевой матрицей и упрочняющими наночастицами карбида титана. Композит содержит упрочняющие наночастицы карбида титана округлой формы размером 5-500 нм в количестве 1-50 об. % от всего объема композита и алюминиевую матрицу, имеющую литую...
Тип: Изобретение
Номер охранного документа: 0002653393
Дата охранного документа: 08.05.2018
18.05.2018
№218.016.522b

Способ импульсно-периодического лазерно-ультразвукового контроля твердых материалов и устройство для его осуществления

Использование: для неразрушающего контроля материалов ультразвуковыми методами. Сущность изобретения заключается в том, что выполняют генерацию серии оптических импульсов, преобразование их в акустические сигналы, излучение полученных сигналов в исследуемый материал, возбуждение продольных и...
Тип: Изобретение
Номер охранного документа: 0002653123
Дата охранного документа: 07.05.2018
18.05.2018
№218.016.523f

Устройство измерения поверхностного натяжения и коэффициента вязкости металлов

Изобретение относится к средствам определения физико-химических констант вещества, а именно его поверхностного натяжения и коэффициента вязкости. Устройство содержит печь электросопротивления, установленную с возможностью вертикального перемещения посредством подвижного держателя, измерительную...
Тип: Изобретение
Номер охранного документа: 0002653114
Дата охранного документа: 07.05.2018
29.05.2018
№218.016.572a

Способ дробления материалов и устройство для его осуществления

Группа изобретений относится к способу дробления и устройству для его осуществления, которые могут найти применение в горнодобывающей, металлургической, строительной и других отраслях промышленности, связанных с дезинтеграцией материалов. Способ дробления материалов заключается в том, что перед...
Тип: Изобретение
Номер охранного документа: 0002654788
Дата охранного документа: 22.05.2018
29.05.2018
№218.016.589b

Датчик измерения механических деформаций

Изобретение относится к измерительной технике и представляет собой датчик механических деформаций на основе аморфных ферромагнитных микропроводов. Датчик конструктивно объединяет магниточувствительный элемент и электронное измерительное устройство. Магниточувствительный элемент представляет...
Тип: Изобретение
Номер охранного документа: 0002653563
Дата охранного документа: 11.05.2018
09.06.2018
№218.016.5caa

Способ получения порошка молибдена

Изобретение относится к получению порошка молибдена. Способ включает засыпку оксида молибдена MoO в лодочку, загрузку лодочки в трубчатую печь, подачу в трубчатую печь водорода и двухстадийное восстановление оксида молибдена MoO с продвижением лодочки в печи. Подачу водорода осуществляют...
Тип: Изобретение
Номер охранного документа: 0002656124
Дата охранного документа: 01.06.2018
09.06.2018
№218.016.5db3

Способ газификации различных видов топлива в политопливном газогенераторе

Изобретение может быть использовано в энергетике и химической промышленности. Газификацию топлива осуществляют в политопливном газогенераторе барботажного типа. В ванну оксидного расплава сбоку струями подают газообразный окислитель. Брикеты, состоящие из твердого и жидкого топлива, загружают...
Тип: Изобретение
Номер охранного документа: 0002656487
Дата охранного документа: 05.06.2018
09.06.2018
№218.016.5f84

Способ получения модифицированных кристаллов магнетита

Изобретение относится к области неорганической химии и касается способа получения модифицированных кристаллов магнетита FeO, содержащих на поверхности флуоресцентный краситель, что дает возможность визуализировать и отслеживать их поведение как в живой клетке, так и в живом организме in vivo....
Тип: Изобретение
Номер охранного документа: 0002656667
Дата охранного документа: 06.06.2018
14.06.2018
№218.016.61b1

Способ выбора мест размещения углепородных отвалов

Изобретение относится к горной промышленности, может быть использовано при выборе мест для расположения углепородных отвалов и предназначено для предотвращения самовозгорания складируемой горной массы. Техническим результатом изобретения является предотвращение самовозгорания складируемой...
Тип: Изобретение
Номер охранного документа: 0002657302
Дата охранного документа: 13.06.2018
Показаны записи 181-185 из 185.
20.05.2019
№219.017.5d46

Алюминиевый материал для аддитивных технологий

Изобретение относится к области металлургии, прежде всего к составу и технологии получения заготовок и деталей из материалов на основе алюминия, в т.ч. с использованием технологий селективного лазерного сплавления. Сплав на основе алюминия содержит, мас. %: Si 10,0-14,0; Mg 0,3-1,0; Cu 0,3-1,0;...
Тип: Изобретение
Номер охранного документа: 0002688039
Дата охранного документа: 17.05.2019
18.10.2019
№219.017.d7d5

Магнитомягкий нанокристаллический материал на основе железа

Изобретение относится к области металлургии, в частности к аморфным и нанокристаллическим магнитомягким сплавам на основе железа, получаемым в виде тонкой ленты литьем расплава на поверхность охлаждающего тела и его скоростной закалкой и используемым, в основном, для изготовления из ленты...
Тип: Изобретение
Номер охранного документа: 0002703319
Дата охранного документа: 16.10.2019
16.05.2023
№223.018.60f8

Термостойкий электропроводный алюминиевый сплав (варианты)

Изобретение относится к области металлургии, в частности к сплаву на основе алюминия, и может быть использовано при получении изделий электротехнического назначения при производстве кабельно-проводниковой продукции для электропроводки зданий и сооружений. Термостойкий электропроводный...
Тип: Изобретение
Номер охранного документа: 0002743499
Дата охранного документа: 19.02.2021
20.05.2023
№223.018.6572

Порошковый алюминиевый материал

Изобретение относится к области металлургии, а именно к составу жаропрочного сплава на основе алюминия и порошку из него, для использования при изготовлении деталей методами аддитивных технологий. Порошковый сплав на основе алюминия содержит, мас.%: медь 6,0-7,0, магний 0,2-0,8, марганец...
Тип: Изобретение
Номер охранного документа: 0002741022
Дата охранного документа: 22.01.2021
21.05.2023
№223.018.68be

Магнитомягкий аморфный материал на основе fe-ni в виде ленты

Изобретение относится к области металлургии, в частности к аморфным магнитомягким сплавам на основе системы Fe-Ni, полученным в виде ленты в процессе закалки расплава на вращающийся медный диск, и может быть использовано в электротехнических устройствах, например, в магнитопроводах и...
Тип: Изобретение
Номер охранного документа: 0002794652
Дата охранного документа: 24.04.2023
+ добавить свой РИД