×
29.12.2017
217.015.f6f4

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МИКРОСФЕРИЧЕСКОГО КАТАЛИЗАТОРА ОКИСЛИТЕЛЬНОГО ХЛОРИРОВАНИЯ ЭТИЛЕНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области нефтехимической промышленности, а именно к приготовлению микросферического катализатора окислительного хлорирования этилена в дихлорэтан в производстве получения винилхлорида. Способ состоит из стадий получения микросферического алюмооксидного носителя через распыление суспензии, которая включает в своем составе 55-90 мас.% моногидроксида алюминия псевдобемитной структуры, 35-5 мас.% гидроксохлорида алюминия и 10-5 мас.% модифицированного крахмала, в среде дымовых газов, прокалкой носителя, пропитки полученного носителя по водопоголощению растворами солей хлоридов меди и хлоридами щелочных и щелочноземельных элементов, прокалкой катализатора. Технический результат заключается в получении микросферического катализатора окислительного хлорирования этилена с высокой каталитической активностью и стойкостью к истиранию в псевдоожиженном режиме. 1 табл., 5 пр.

Изобретение относится к области нефтехимической промышленности, а именно к приготовлению микросферического катализатора окислительного хлорирования этилена в дихлорэтан в производстве получения винилхлорида.

Катализатор окислительного хлорирования этилена (Катализатор ОХЭ) представляет собой микросферические гранулы размером 20-100 мкм, имеющий в своем составе алюмооксидный микросферический носитель и нанесенные активные компоненты. Данный катализатор используется в технологическом процессе окислительного хлорирования этилена в дихлорэтан, который является основным сырьем для получения поливинилхлорида. Поливинилхлорид широко используется во всем мире в производстве ПВХ изделий.

Микросферический алюмооксидный носитель в катализаторе ОХЭ выполняет следующие функции: обеспечивает высокую удельную поверхность катализатора, доступность активных центров для реагирующих веществ, необходимую механическую прочность, требуемую насыпную плотность и гранулометрический состав.

Для обеспечения процесса окислительного хлорирования этилена в дихлорэтан, осуществляемого в псевдоожиженном слое катализатора, наряду с каталитическими свойствами, повышенные требования предъявляются к прочности, форме, размерам микросферических частиц, насыпной плотности и развитой пористой структуре катализатора, которые определяются во многом характеристиками алюмооксидного носителя.

Из литературных данных известно, что активным компонентом современных катализаторов ОХЭ является хлорная медь, содержание которой составляет 8-12% массы катализатора. Кроме хлорида меди могут использоваться и другие ее соединения, которые под действием реакционной среды переходят в хлорную медь. Имеются сведения о том, что повышению активности хлорида меди способствует добавление хлоридов щелочных и щелочноземельных элементов. Высокая активность катализатора обусловлена равномерным распределением активного компонента в объеме микросферы катализатора, имеющего оптимальное распределение транспортных пор, которые обеспечивают доступность активных центров.

Эффективная работа катализатора определяется не только его каталитической активностью, но и стабильностью эксплуатационных характеристик в процессе окислительного хлорирования этилена. Одним из таких показателей является стойкость микросферы катализатора к истирающим нагрузкам, который во многом определяется характеристиками микросферического носителя для катализатора.

Известен способ получения микросферического катализатора окислительного хлорирования этилена [Патент США N 4377491], когда полученный в несколько стадий носитель - микросферический оксид алюминия - дополнительно прокаливают при 250-500°C в течение 1-5 часов и для однородного распределения меди на поверхности пропитывают оксид алюминия в кипящем слое при температуре не более 50°C расчетным объемом раствора CuCl2 с концентрацией 160-600 г/л. Пропитанные частицы сушат в кипящем слое, поднимая температуру со скоростью 30°C в час до 140°C, и выдерживают при этой температуре 0,5-15 часов. Такой способ пропитки и сушки позволяет добиться наиболее однородного распределения меди на поверхности. Недостатками указанного способа являются многостадийность, высокая энергоемкость процесса и необходимость использования очень концентрированных растворов.

Известен способ получения микросферического катализатора окислительного хлорирования этилена [Патент РФ №2139761, Патент РФ №2131298], где предлагают смешение отмытого осадка гидроксидов алюминия с хлорной медью или смесью хлорной меди и хлористого магния. Образовавшуюся суспензию гидроксидов алюминия с растворами хлоридов металлов подвергают распылительной сушке при температуре газов на выходе из сушилки 130-200°C с получением микросферического катализатора, который в дальнейшем прокаливают при 600-660°C в течение 2-4 часов. Недостатками указанного способа являются то, что при прокалке микросферы при 600-660°C возможны образование соединений нестехиометрического состава оксида алюминия с медью и промотирующими добавками, а также блокировка активных компонентов в объеме носителя.

Известен способ получения микросферического катализатора окислительного хлорирования этилена [Патент РФ №2281806], когда активный компонент распределен в объеме носителя катализатора неравномерно - распределение атомов меди в большей степени, внутри частицы катализатора, чем на поверхности (слой толщиной ), и атомов магния, в большей степени на поверхности (слой толщиной ), чем внутри частицы. Такая технология подразумевает раздельное нанесение растворов солей, что является недостатком такого способа.

Ближайшим известным решением аналогичной задачи по технической сущности является способ получения микросферического катализатора окислительного хлорирования этилена является изобретение [Патент США №4451683], когда сначала получают микросферический алюмооксидный носитель осаждением гидроксида алюминия взаимодействием азотной кислоты и алюмината натрия, затем распылительной сушкой отмытого и отфильтрованного гидроксида алюминия получают микросферические частицы, которые после прокаливания при 730°C превращаются в оксид алюминия - носитель для катализатора оксихлорирования. На приготовленный таким образом носитель распыляют при 70°C раствор CuCl2 или смеси CuCl2 и KCl и сушат при 130°C.

Недостатками указанного способа является многостадийность процесса, необходимость термообработки материала при высоких (730°C) температурах, недостаточная равномерность распределения активного солевого состава на поверхности и в объеме катализатора.

Основной задачей предлагаемого нами решения является разработка безотходной, бессточной и достаточно простой технологии приготовления микросферического катализатора окислительного хлорирования этилена с высокой каталитической активностью и стойкостью к истиранию в псевдоожиженном режиме.

Поставленная цель достигается предлагаемым способом получения микросферического катализатора окислительного хлорирования этилена, включающим стадии получения микросферического алюмооксидного носителя через распыление суспензии в среде дымовых газов, прокалкой носителя, пропитки полученного носителя по водопоглощению растворами солей хлоридов меди и хлоридами щелочных и щелочноземельных элементов, прокалкой катализатора.

Отличительной чертой предлагаемого способа получения катализатора является то, что суспензия для получения микросферического алюмооксидного носителя через распыление суспензии в среде дымовых газов включает в своем составе (55-90)% моногидроксида алюминия псевдобемитной структуры, (35-5)% гидроксохлорида алюминия и (10-5)% модифицированного крахмала.

Порошок моногидроксида алюминия псевдобемитной структуры в сочетании с гидроксохлоридом алюминия и модифицированного крахмала в составе суспензии обеспечивают формирование эффективной вторичной пористой структуры микросферы, а также высокую стойкость к истиранию в псевдоожиженном режиме.

Изменяя соотношение компонентов в суспензии порошка моногидроксид алюминия псевдобемитной структуры, гидроксохлорида алюминия и модифицированного крахмала, можно получит микросферический алюмооксидный носитель с различными показателями по насыпной плотности, объема пор, удельной поверхностью и стойкостью к истиранию.

Таким образом, применение порошка моногидроксид алюминия псевдобемитной структуры, гидроксохлорида алюминия и модифицированного крахмала при получении микросферического катализатора в заявляемом способе соответствует критерию "новизна".

Промышленная применимость предлагаемого способа приготовления микросферического катализатора ОХЭ подтверждается следующими примерами.

Сырье:

1. Моногидроксид алюминия псевдобемитной структуры, Na2O не более 0,1%, ППП (потери при прокаливании) = 25-27%;

2. Гидроксохлорида алюминия (содержание сухого остатка в пересчете на Al2O3 19,5-21,0%);

3. Модифицированный крахмал;

4. Вода химически очищенная (ХОВ);

Оборудование:

1. Емкость с мешалкой (Е-1) 1 м3.

2. Распылительная сушилка (РС-2) с мощностью до 250 л/ч по испаренной влаге.

3. Z-образный смеситель СМП-3 с пропитывателем на 0,2 м3.

4. Вращающаяся прокалочная печь П-1 с верхним пределом температур на 800°C

Все расчеты в примерах приводятся с учетом того, что рабочим объемом емкости с мешалкой принято до 80% объема от исходного.

Пример 1

Для приготовления суспензии в 1 м3 емкость с мешалкой Е-1 заливают 0,45 м3 химочищенной воды (ХОВ), засыпают при перешивании 150 кг порошка моногидроксид алюминия псевдобемитной структуры. После засыпки всех компонентов, суспензия перемешивается в емкости в течение 1 ч. Затем формование микросфер в распылительной сушилке РС-2 в среде дымовых газов с температурой 140-170°C. После прокалка микросфер при температуре 550-650°C во вращающейся прокалочной печи П-1.

Засыпка в смеситель СМП-3 100 кг микросферического алюмокосидного носителя и нанесение пропиткой по водопоголощению растворами солей, содержащий хлорида меди 9% и хлорида щелочноземельных элементов 1% к массе носителя. Затем прокалка при температуре 290-300°C во вращающейся прокалочной печи П-1. Выгрузка готового катализатора.

Пример 2

Для приготовления суспензии в 1 м3 емкость с мешалкой Е-1 заливают 0,45 м3 химочищенной воды (ХОВ), засыпают при перешивании 135 кг порошка моногидроксид алюминия псевдобемитной структуры и 15 кг модифицированного крахмала. После засыпки всех компонентов, суспензия перемешивается в емкости в течение 1 ч. Затем формование микросфер в распылительной сушилке РС-2 в среде дымовых газов с температурой 140-170°C. После прокалка микросфер при температуре 550-650°C во вращающейся прокалочной печи П-1.

Засыпка в смеситель СМП-3 100 кг микросферического алюмокосидного носителя и нанесение пропиткой по водопоглощению растворами солей, содержащий хлорида меди 9% и хлорида щелочноземельных элементов 1% к массе носителя. Затем прокалка при температуре 290-300°C во вращающейся прокалочной печи П-1. Выгрузка готового катализатора.

Пример 3

Для приготовления суспензии в 1 м3 емкость с мешалкой Е-1 заливают 0,45 м3 химочищенной воды (ХОВ), засыпают при перешивании 135 кг порошка моногидроксид алюминия псевдобемитной структуры, 7,5 кг гидроксохлорида алюминия и 7,5 кг модифицированного крахмала. После засыпки всех компонентов, суспензия перемешивается в емкости в течение 1 ч. Затем формование микросфер в распылительной сушилке РС-2 в среде дымовых газов с температурой 140-170°C. После прокалка микросфер при температуре 550-650°C во вращающейся прокалочной печи П-1.

Засыпка в смеситель СМП-3 100 кг микросферического алюмокосидного носителя и нанесение пропиткой по водопоголощению растворами солей, содержащий хлорида меди 9% и хлорида щелочноземельных элементов 1% к массе носителя. Затем прокалка при температуре 290-300°C во вращающейся прокалочной печи П-1. Выгрузка готового катализатора.

Пример 4

Для приготовления суспензии в 1 м3 емкость с мешалкой Е-1 заливают 0,45 м3 химочищенной воды (ХОВ), засыпают при перешивании 120 кг порошка моногидроксид алюминия псевдобемитной структуры, 15 кг гидроксохлорида алюминия и 15 кг модифицированного крахмала. После засыпки всех компонентов, суспензия перемешивается в емкости в течение 1 ч. Затем формование микросфер в распылительной сушилке РС-2 в среде дымовых газов с температурой 140-170°C. После прокалка микросфер при температуре 550-650°C во вращающейся прокалочной печи П-1.

Засыпка в смеситель СМП-3 100 кг микросферического алюмокосидного носителя и нанесение пропиткой по водопоглощению растворами солей, содержащий хлорида меди 9% и хлорида щелочноземельных элементов 1% к массе носителя. Затем прокалка при температуре 290-300°C во вращающейся прокалочной печи П-1. Выгрузка готового катализатора.

Пример 5

Для приготовления суспензии в 1 м3 емкость с мешалкой Е-1 заливают 0,45 м3 химочищенной воды (ХОВ), засыпают при перешивании 112,5 кг порошка моногидроксид алюминия псевдобемитной структуры, 22,5 кг гидроксохлорида алюминия и 15 кг модифицированного крахмала. После засыпки всех компонентов, суспензия перемешивается в емкости в течение 1 ч. Затем формование микросфер в распылительной сушилке РС-2 в среде дымовых газов с температурой 140-170°C. После прокалка микросфер при температуре 550-650°C во вращающейся прокалочной печи П-1.

Засыпка в смеситель СМП-3 100 кг микросферического алюмокосидного носителя и нанесение пропиткой по водопоглощению растворами солей, содержащий хлорида меди 9% и хлорида щелочноземельных элементов 1% к массе носителя. Затем прокалка при температуре 290-300°C во вращающейся прокалочной печи П-1. Выгрузка готового катализатора.

У полученных образцов катализатора затем определяли их насыпную плотность, удельную поверхность, общий объем пор по воде, объемы мезопор и микропор, стойкость к истиранию в газовом потоке в псевдоожиженном режиме и показатели каталитической активности на лабораторной установке в процессе оксихлорирования этилена при температуре 225-235°C.

Из результатов таблицы следует, что изменение соотношения компонентов в исходной суспензии оказывает существенное влияние на характеристики гранул катализатора и на каталитическую активность. При одинаковом содержании активного компонента на показатель активности катализатора и горение этилена (побочный процесс) влияют также насыпной вес и характеристики пористой структуры самого катализатора.

Анализ представленных материалов позволяет сделать вывод о том, что предлагаемое техническое решение дает возможность получать микросферический катализатор процесса окислительного хлорирования этилена с высокими показателями каталитической активности, пористой структуры и стойкостью к истиранию в псевдоожиженном режиме.

Способ получения микросферического катализатора окислительного хлорирования этилена, состоящий из стадий получения микросферического алюмооксидного носителя через распыление суспензии, которая включает в своем составе 55-90 мас.% моногидроксида алюминия псевдобемитной структуры, 35-5 мас.% гидроксохлорида алюминия и 10-5 мас.% модифицированного крахмала, в среде дымовых газов, прокалкой носителя, пропитки полученного носителя по водопоглощению растворами солей хлоридов меди и хлоридами щелочных и щелочноземельных элементов, прокалкой катализатора.
Источник поступления информации: Роспатент

Показаны записи 171-180 из 268.
20.10.2015
№216.013.858a

Способ получения 2,3-диалкил-1,4-дициклопропил-1,4-бутандионов

Предлагаемое изобретение относится к способу получения 2,3-диалкил-1,4-дициклопропил-1,4-бутандионов общей формулы (1): где, R=CH, CH, CH, которые могут быть использованы в качестве исходных синтонов синтеза фуранов и пиролов с целью создания на их основе биологически активных соединений...
Тип: Изобретение
Номер охранного документа: 0002565789
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.858b

Способ получения n-циклопентилзамещенных 1,5,3-дитиазепанов

Изобретение относится к способу получения N-циклопентилзамещенных 1,5,3-дитиазепанов общей формулы (1): отличающийся тем, что N-циклопентилзамещенный амин (циклопентил-амин, пирролидин-3-амин, 2-амино-норборнан) подвергают взаимодействию с 1-окса-3,6-дитиациклогептаном в присутствии...
Тип: Изобретение
Номер охранного документа: 0002565790
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.86b3

Способ получения алкиловых эфиров фенантрен-9-карбоновой кислоты

Изобретение относится к области органической химии, в частности к способу получения алкиловых эфиров фенантрен-9-карбоновой кислоты, которые используются в качестве исходных соединений для получения лекарственных препаратов. Способ получения алкиловых эфиров фенантрен-9-карбоновой кислоты...
Тип: Изобретение
Номер охранного документа: 0002566086
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.87d3

Способ получения 2- и 4-(1,3,5-дитиазинан-5-ил)-фенолов

Изобретение относится к органической химии, конкретно к способу получения 2- и 4-(1,3,5-дитиазинан-5-ил)-фенолов формулы (1). Способ осуществляют путем взаимодействия или аминофенола с 1,3,5-тритианом в присутствии катализатора кристаллогидрата хлорида железа [FeCl*6HO], взятыми в мольном...
Тип: Изобретение
Номер охранного документа: 0002566374
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8f02

Способ получения гранулированного без связующего цеолита типа nay высокой фазовой чистоты

Изобретение относится к получению гранулированного без связующего цеолита типа NaY. Способ предусматривает смешение каолина с порошкообразным цеолитом типа NaY, поливиниловым спиртом и компонентом, выбранным из белой сажи, молотого широкопористого силикагеля или аэросила. Содержание исходных...
Тип: Изобретение
Номер охранного документа: 0002568219
Дата охранного документа: 10.11.2015
10.12.2015
№216.013.96b9

Способ получения 2,3-диалкил-1-фенил(алкил)замещенных фосфол-2-ен-1-оксидов

Изобретение относится к пригодному для применения в химической промышленности способу получения 2,3-диалкил-1-фенил(алкил)фосфол-2-ен-1-оксидов формулы (1) где R=Et, Pr, Bu; R'=Me, Bu, Ph. В предложенном способе симметричные ацетилены формулы R-≡-R (R=Et, Pr, Bu) подвергают взаимодействию с...
Тип: Изобретение
Номер охранного документа: 0002570205
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.96ba

Способ получения n-арил-1,5,3-дитиазеканов

Изобретение относится к способу получения N-арил-1,5,3-дитиазеканов формулы: Сущность способа заключается во взаимодействии N,N-бис(метоксиметил)-N-арил(фенил, n-толуидин, о-анизидин, о-хлорфенил, м-хлорфенил)аминов с 1,5-пентандитиолом в присутствии катализатора кристаллогидрата...
Тип: Изобретение
Номер охранного документа: 0002570206
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.96bb

Способ получения n-арил-1,5,3-дитиазациклоундеканов

Изобретение относится к способу получения N-арил-1,5,3-дитиазациклоундеканов формулы Сущность способа заключается во взаимодействии Ν,Ν-бис(метоксиметил)-N-арил(фенил, n-толуидин, o-анизидин, o-хлорфенил, n-хлорфенил)аминов с 1,6-гександитиолом в присутствии катализатора кристаллогидрата...
Тип: Изобретение
Номер охранного документа: 0002570207
Дата охранного документа: 10.12.2015
10.03.2016
№216.014.beea

Трифенилфосфониевые соли лупановых и урсановых тритерпеноидов, способ получения и применение для лечения шистосомоза

Изобретение относится к применению трифенилфосфониевых солей лупановых и урсановых тритерпеноидов формулы 1-11 в качестве средств с шистосомицидной активностью, новым соединениям 8-11, а также способу их получения. Использование изобретения позволит расширить ассортимент лекарственных средств,...
Тип: Изобретение
Номер охранного документа: 0002576658
Дата охранного документа: 10.03.2016
27.02.2016
№216.014.c017

Способ получения n-(1-адамантил)ацетамида

Изобретение относится к области органической химии, в частности к способу получения N-(1-адамантил)ацетамида, который является предшественником биологически активных аминов, обладающих противомикробной и противовирусной активностью и используемых для лечения и профилактики гриппа, герпеса,...
Тип: Изобретение
Номер охранного документа: 0002576312
Дата охранного документа: 27.02.2016
Показаны записи 171-180 из 276.
19.01.2018
№218.016.0caa

Способ получения 10,14-бис(о,м,п-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканов

Изобретение относится к способу получения 10,14-бис(о,м,n-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканов общей формулы (1):
Тип: Изобретение
Номер охранного документа: 0002632667
Дата охранного документа: 09.10.2017
19.01.2018
№218.016.0cb2

Способ получения алкил 2-(1,11-диокса-4,8-дитиа-6-азациклотридекан-6-ил)алканоатов

Изобретение относится к способу получения алкил 2-(1,11-диокса-4,8-дитиа-6-азациклотридекан-6-ил)алканоатов общей формулы I: Технический результат: получены новые алкил 2-(1,11-диокса-4,8-дитиа-6-азациклотридекан-6-ил)алканоаты, которые могут найти применение в качестве селективных...
Тип: Изобретение
Номер охранного документа: 0002632670
Дата охранного документа: 09.10.2017
19.01.2018
№218.016.0cbc

Способ получения (1,11-диокса-4,8-дитиа-6-азациклотридекан-6-ил)-хинолинов

Изобретение относится к способу получения (1,11-диокса-4,8-дитиа-6-азациклотридекан-6-ил)-хинолинов общей формулы (1): которые могут найти применение в качестве сорбентов и экстрагентов драгоценных металлов, а также селективных комплексообразователей. Технический результат: разработан новый...
Тип: Изобретение
Номер охранного документа: 0002632673
Дата охранного документа: 09.10.2017
19.01.2018
№218.016.0cd2

Способ получения 2,7-дициклоалкил-2,3а,5а,7,8а,10а-гексаазапергидропиренов

Изобретение относится к способу получения 2,7-дициклоалкил-2,3а,5а,7,8а,10а-гексаазапергидропиренов общей формулы (1): при котором 1,3,5-трициклоалкил-1,3,5-триазины, где R указаны выше, подвергают взаимодействию с 1,4,5,8-тетраазадекалином в среде метанола в присутствии катализатора NiCl при...
Тип: Изобретение
Номер охранного документа: 0002632669
Дата охранного документа: 09.10.2017
19.01.2018
№218.016.0cd4

Способ получения 10,14-бис(3-хлорфенил)-12-галогенфенил-7,8,16,17-тетраокса-10,12,14-триазаспиро[5,11]гептадеканов

Изобретение относится к способу получения 10,14-бис(3-хлорфенил)-12-галогенфенил-7,8,16,17-тетраокса-10,12,14-триазаспиро[5.11]гептадеканов общей формулы (1): при котором галогенанилины (о-,м-,п-броманилин, м-хлоранилин, п-фторанилин) подвергают взаимодействию с...
Тип: Изобретение
Номер охранного документа: 0002632665
Дата охранного документа: 09.10.2017
19.01.2018
№218.016.0cd6

Способ совместного получения метил 2-(1, 5, 8-тритиа-3-азациклодекан-3-ил)алканоатов и диметил 2, 2'-(1, 5, 8, 11, 15, 18-гексатиа-3, 13-диазациклоикозан-3, 13-диил)диалканоатов

Изобретение относится к способу совместного получения метил 2-(1,5,8-тритиа-3-азациклодекан-3-ил)алканоатов и диметил 2,2'-(1,5,8,11,15,18-гексатиа-3,13-диазациклоикозан-3,13-диил)диалканоатов общей формулы (1):
Тип: Изобретение
Номер охранного документа: 0002632672
Дата охранного документа: 09.10.2017
20.01.2018
№218.016.1485

Способ получения 4-трет-бутил-пирокатехина и катализатор для его получения

Настоящее изобретение относится к способу получения 4-трет-бутил-пирокатехина, который находит широкое применение в качестве ингибитора полимеризации диеновых углеводородов, стабилизаторов непредельных альдегидов, полимерных материалов, этилцеллюлозных искусственных смол, в качестве...
Тип: Изобретение
Номер охранного документа: 0002634728
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.1d4c

Способ восстановления активности катализатора гидроочистки углеводородного сырья

Изобретение относится к способу регенерации дезактивированного катализатора гидроочистки нефтепродуктов, путем выжига кокса в двухконтурном реакторе регенерации при 500-600°С, с последующей пропиткой растворами нескольких кислот с термообработками, включающими сушку и прокалку. Промежуточную...
Тип: Изобретение
Номер охранного документа: 0002640655
Дата охранного документа: 11.01.2018
13.02.2018
№218.016.26ce

Способ получения циклических эфиров из диолов

Предлагаемое изобретение относится к способу получения циклических эфиров формулы I каталитической циклодегидратацией 1,n-диолов в присутствии катализатора CuBr, при мольном соотношении [CuBr]:[диол] = 1-2:100 и при температуре 175-190°C в течение 3-10 ч в инертной атмосфере. Выход циклических...
Тип: Изобретение
Номер охранного документа: 0002644163
Дата охранного документа: 08.02.2018
13.02.2018
№218.016.26cf

Способ получения 2-этил-3,5-диметилпиридина

Изобретение относится к способу получения 2-этил-3,5-диметилпиридина, который заключается во взаимодействии пропиональдегида и аммиака в присутствии гранулированного без связующих веществ цеолита Y-mmm в Н-форме, при мольном соотношении пропиональдегид : аммиак, равном 1:1,5-3, температуре...
Тип: Изобретение
Номер охранного документа: 0002644164
Дата охранного документа: 08.02.2018
+ добавить свой РИД