×
29.12.2017
217.015.f388

Результат интеллектуальной деятельности: Способ приготовления металл-нанесенного катализатора для процесса фотокаталитического окисления монооксида углерода

Вид РИД

Изобретение

Аннотация: Изобретение относится к области разработки способа получения катализатора на основе высокодисперсного диоксида титана с нанесенными наночастицами благородного металла, проявляющего активность под действием ультрафиолетового излучения в реакции фотокаталитического окисления монооксида углерода при комнатной температуре. Фотокатализатор, получаемый данным способом, преимущественно предназначен для фотокаталитической очистки воздуха от микропримесей монооксида углерода, а также от монооксида углерода, образующегося в качестве побочного продукта при фотокаталитическом окислении летучих органических соединений. Описан способ приготовления металл-нанесенного катализатора для фотокаталитического окисления монооксида углерода, содержащего диоксид титана и благородный металл. Катализатор готовят пропиткой диоксида титана, который является 100% анатазом или смесью анатаза с рутилом с содержанием анатаза не менее 50 мас.%, металлоорганическим предшественником благородного металла, не содержащим атомы фосфора, серы и хлора, который растворен в органическом растворителе, с последующим удалением растворителя и прокаливанием осадка при температуре выше температуры разложения металлоорганического предшественника, но не более 250°C. Технический результат - высокая скорость окисления монооксида углерода до углекислого газа при комнатной температуре. 8 з.п. ф-лы, 12 пр., 4 табл.

Изобретение относится к области разработки способа получения фотокатализатора на основе высокодисперсного диоксида титана с нанесенными на его поверхность наночастицами благородного металла, предназначенного преимущественно для процесса фотокаталитического окисления монооксида углерода (СО) с целью очистки воздуха от микропримесей СО и создания условий безопасного и комфортного обитания человека.

В связи с большим количеством автомобильного транспорта, предприятий промышленности и энергетики в городах остро стоит проблема загрязненности воздуха вредными соединениями, такими как летучие органические вещества, оксиды азота, серы и углерода, сероводород и др. Концентрации таких веществ зачастую невелики, но постоянный контакт с ними приносит ощутимый вред здоровью человека.

Наиболее эффективным способом очистки воздуха от малых концентраций загрязняющих веществ при комнатных температуре и влажности является фотокаталитическое окисление (RU 2259866, B01D 53/86, 10.09.2005). В ходе фотокаталитического процесса загрязнители полностью окисляются на фотокатализаторе кислородом воздуха под воздействием света видимого или ультрафиолетового диапазонов в зависимости от типа полупроводникового материала, использующегося в основе фотокатализатора. Способ фотокаталитической очистки имеет максимальную эффективность в удалении примесей органических веществ из газовой фазы и активно используется при создании бытовых и промышленных очистителей воздуха. Тем не менее, наибольшую долю среди летучих загрязняющих веществ занимает монооксид углерода. Монооксид углерода не имеет запаха и очень опасен для здоровья человека из-за того, что при его взаимодействии с гемоглобином крови образуется карбоксигемоглобин, который блокирует процессы транспортировки кислорода и клеточного дыхания. Нахождение человека в помещении с концентрацией СО в воздухе более 1250 мг/м3 в течение 1 часа приводит к летальному исходу. Поэтому необходима очистка воздуха от примесей СО.

Наиболее широко используемым фотокатализатором является диоксид титана TiO2 (RU 2408427, B01J 37/08, 10.01.2011) из-за того, что он относительно недорог, нетоксичен и проявляет максимальную фотокаталитическую активность в реакциях окисления среди изученных систем. Окислительный потенциал фотогенерированной электронной вакансии на поверхности TiO2 составляет примерно +3 В относительно нормального водородного электрода. Это означает, что с его помощью можно полностью окислить практически любые вещества. Тем не менее, монооксид углерода плохо подвергается фотокаталитическому окислению на чистом диоксиде титана, что связано со слабой адсорбцией СО на поверхности TiO2 при комнатных условиях. Поэтому необходима разработка новых типов фотокатализаторов.

Известно, что нанесение наночастиц благородных металлов на диоксид титана способствует улучшению его каталитических свойств во многих фотокаталитических процессах. В случае фотокаталитического окисления СО наночастицы благородного металла могут выступать в роли центров хемосорбции СО, а также увеличивать скорость переноса электрона к молекулам кислорода, приводя к образованию его поверхностно-активных форм (т.е. , ), которые в дальнейшем взаимодействуют с молекулами СО.

Известен способ синтеза фотокатализаторов с нанесенными частицами благородных металлов (RU 2243033, B01J 21/06, 27.12.2004), в котором исходный диоксид титана в виде порошка обрабатывают растворами минеральных кислот с последующим нанесением частиц металлов одного или нескольких видов (Pd, Pt, Au, Ag).

Недостатком данного метода является то, что в качестве предшественника металла используются растворы хлорсодержащих неорганических соединений (например, PdCl2, H2PtCl6, HAuCl4), что может приводить к загрязнению поверхности TiO2 атомами хлора из этих предшественников. Недостатком также является то, что восстановление проводится с помощью избытка боргидрида натрия или гидразина, что может приводить к частичному восстановлению поверхности диоксида титана. Оба этих фактора снижают активность фотокатализатора.

Известен способ получения наночастиц благородного металла на поверхности диоксида титана методом фотонанесения. Например, в работе (Е.А. Kozlova, Т.Р. Lyubina, М.А. Nasalevich, A.V. Vorontsov, A.V. Miller, V.V. Kaichev, V.N. Parmon Influence of the method of platinum deposition on activity and stability of Pt/TiO2 photocatalysts in the photocatalytic oxidation of dimethyl methylphosphonate, Catalysis Communications 12 (2011) 597-601) платину наносят путем воздействия ультрафиолетового излучения на водную суспензию диоксида титана, содержащую добавки платинохлористоводороной (H2PtCl6) и уксусной кислот, что приводит к восстановлению ионов платины до металлического состояния за счет фотогенерированных электронов и закрепления металлических частиц на поверхности диоксида титана.

Недостатком данного способа является то, что восстановление ионов металла происходит только в местах выхода фотогенерированных электронов на поверхность диоксида титана, которыми являются дефекты поверхности и поверхностные примеси. Такой механизм восстановления приводит к образованию крупных, неравномерно распределенных агломератов частиц благородного металла, что приводит к низкой активности фотокатализатора в окислении CO.

Известен способ синтеза фотокатализаторов с нанесенными биметаллическими частицами благородных металлов (US 20130022524, B01J 29/89, B01D 23/62, 24.01.2013), которые получают путем пропитки порошка диоксида титана водным раствором предшественников платины и палладия и/или никеля, в качестве которых используются неорганические соединения (например, хлориды или хлористоводородные кислоты данных металлов) или металлоорганические соединения и комплексы, с последующим химическим восстановлением этих предшественников.

Недостатком данного способа является то, что использование хлорсодержащих неорганических предшественников может приводить к загрязнению поверхности диоксида титана атомами хлора, что снижает активность фотокатализатора. В случае металлоорганических предшественников указанные в способе соединения практически не растворяются в воде, и поэтому не могут быть использованы для приготовления водных растворов благородных металлов, предназначенных для пропитки диоксида титана.

Наиболее близким к данному изобретению является способ получения фотокатализатора (US 6365545, B01J 23/40, 02.04.2002), заключающийся в добавлении порошкового диоксида титана рутильной модификации к органическому коллоидному раствору металлоорганического комплекса благородного металла, например, C10H18SPtCl1-3. Полученную суспензию наносят на стеклянную пластину, сушат и далее прокаливают при 500°С в течение 30 мин. Указанный способ позволяет получать фотокатализатор, представляющий собой диоксид титана рутильной модификации с равномерно нанесенными частицами благородного металла размером от 1 до 5 нм.

Основным недостатком данного способа является использование дорогостоящих металлоорганических предшественников, содержащих атомы серы или хлора, которые после разложения могут отравлять поверхность фотокатализатора, и, как следствие, снижать его фотокаталитическую активность.

Недостатком является то, что в качестве носителя используется диоксид титана рутильной модификации, который обладает намного меньшей фотокаталитической активностью по сравнению с анатазом или смесью анатаза с рутилом.

Недостатком также является высокая температура прокаливания, которая может приводить к снижению удельной поверхности диоксида титана, а также фазовому переходу анатаза в рутил при использовании в качестве основы диоксида титана анатазной модификации.

Изобретение ставит своей задачей разработку способа получения высокоактивного фотокатализатора на основе высокодисперсного диоксида титана с нанесенными наночастицами благородного металла, предназначенного преимущественно для фотокаталитического способа удаления микропримесей CO из воздуха.

Для решения поставленной задачи предложен способ получения фотокатализатора путем термического разложения при невысокой температуре металлоорганического предшественника на поверхности нанокристаллического диоксида титана, обладающего высокой удельной поверхностью, с образованием наночастиц благородного металла, находящихся частично или полностью в металлическом состоянии.

Способ получения заключается в пропитке диоксида титана металлоорганическим предшественником благородного металла, предварительно растворенным в неароматическом органическом растворителе, не содержащем гетероатомы (Р, S, Cl), с последующим постоянным перемешиванием до полного высыхания суспензии. Оставшийся растворитель полностью удаляют на ротационном испарителе, и после этого осадок прокаливают при температуре не менее чем на 5°C выше температуры разложения используемого металлоорганического предшественника, но не более 250°C в течение 3 ч.

Диоксид титана, на который наносят благородный металл, характеризуется удельной поверхностью 10-400 м2/г и является 100% анатазом или смесью анатаза с рутилом с содержанием анатаза не менее 50 мас.%.

Благородным металлом является Pd или Pt. В качестве предшественника благородного металла преимущественно используется ацетилацетонат палладия (Pd(AcAc)2), ацетат палладия (Pd(OAc)2), ацетилацетонат платины (Pt(AcAc)2) или динитродиамминплатина (Pt(NH3)2(NO2)2). Содержание металла в фотокатализаторе составляет 0,05-4 мас.%.

В качестве неароматического органического растворителя, не содержащего также гетероатомы (Р, S, Cl), преимущественно используют ацетон, этанол, этилацетат или ацетилацетон.

Задача решается также способом окисления монооксида углерода в присутствии описанного выше катализатора. Концентрация монооксида углерода в реакционной смеси составляет не более 1000 млн д. атм. Тестирование фотокатализаторов проводят в статическом реакторе, термостатированном при температуре 25°С. Относительная влажность воздуха составляет 15%. Измерение концентраций веществ в реакторе проводят с помощью ИК-Фурье спектрометра Nicolet 380 фирмы Thermo Fisher Scientific (Германия).

Принцип работы получаемого предлагаемым способом фотокатализатора заключается в следующем: молекулы монооксида углерода адсорбируются на поверхности частиц благородного металла, после чего реагируют с фотосгенерированными активными формами кислорода, образующимися на поверхности частицы металла и/или TiO2 при его облучении ультрафиолетовым излучением.

Сущность изобретения иллюстрируется следующими примерами.

В примерах в качестве диоксида титана используют коммерческий диоксид титана TiO2 марки Hombifine N фирмы «Sachtleben Chemie GmbH» (Германия), являющийся 100% анатазом с характерным размером кристаллитов 10-15 нм и удельной поверхностью 347 м2/г, а также TiO2 марки Р25 фирмы «Evonik Industries AG» (Германия), содержащий 80% анатаза и 20% рутила и характеризующийся удельной поверхностью 81 м2/г. В качестве металлоорганических предшественников металлов используют: ацетилацетонат палладия (99%, (Pd(AcAc)2) или платины (97%, Pt(AcAc)2) фирмы «Sigma-Aldrich» (США), ацетат палладия (99%, Pd(OAc)2) и динитродиамминплатина (Pt(NH3)2(NO2)2) фирмы «Красцветмет» (Россия). В качестве органического растворителя используют ацетон (ОСЧ, C3H6O) фирмы «РЕАХИМ» (Россия) или этиловый спирт (70%, С2Н5ОН) фирмы «Марбиофарм» (Россия).

Для сравнительных примеров используют исходный образец диоксида титана TiO2 Hombifine N, обработанный согласно описанному выше способу, но без добавления металлорганического предшественника, а также образец диоксида титана TiO2 Hombifine N с нанесенным палладием, который синтезируют путем химического восстановления дихлорида палладия PdCl2 (Ч, «АУРАТ» (Россия)) с помощью боргидрида натрия NaBH4.

Для сравнения в качестве носителей вместо диоксида титана также используют неполупроводниковые материалы, такие как силикагель SiO2 фирмы «Sigma-Aldrich» (США) с размером частиц 10-40 мкм и удельной поверхностью 442 м2/г и гамма оксид алюминия γ-Al2O3 фирмы «Ангарский завод катализаторов и органического синтеза» (Россия) с удельной поверхностью 180 м2/г.

Примеры 1-5 иллюстрируют сущность изобретения.

Пример 1.

Синтезируют фотокатализатор на основе диоксида титана TiO2 Hombifine N с нанесенными наночастицами палладия согласно описанному выше способу. В качестве металлоорганического предшественника в данном примере используют ацетилацетонат палладия Pd(AcAc)2, растворенный в ацетоне. Осадок, полученный после удаления растворителя, прокаливают при температуре 210°C в течение 3 ч, так как температура разложения Pd(AcAc)2 составляет 205°C. Массовая доля палладия в фотокатализаторе составляет 0,05-4% от массы навески диоксида титана.

Образец помечают как ωPd1/TiO2-210, где ω - содержание Pd в мас.%.

Испытания активности синтезированных фотокатализаторов проводят в реакции фотокаталитического окисления монооксида углерода, которая протекает согласно следующему брутто-уравнению:

Испытания проводят следующим образом: в статический реактор помещают исследуемый образец, напускают 800-850 млн д. атм монооксида углерода, включают источник ультрафиолетового излучения, в качестве которого используют мощный УФ светодиод фирмы «Nichia» (Япония), и следят за изменением концентрации CO и CO2, образующегося в ходе протекания реакции под действием УФ излучения, с помощью ИК спектрометра. По начальной скорости расходования CO оценивают каталитическую активность образца в окислении CO без УФ освещения. По кинетической кривой CO также определяют время полной конверсии, за которое происходит полное удаление CO из газовой фазы.

Результаты испытаний образцов, полученных по примеру 1, представлены в таблице 1.

Из представленных в таблице 1 данных (столбец 2 и столбец 3) видно, что в диапазоне содержаний палладия от 0,05 до 4 мас.% наблюдается рост активности с увеличением количества металла. Методом просвечивающей электронной микроскопии было установлено, что палладий на поверхности диоксида титана для всех образцов представлен наночастицами размера порядка 1-2 нм.

Пример 2.

Аналогичен примеру 1 с содержанием металла 2 мас.% с тем исключением, что осадок прокаливают при температуре 250°С.

Образец помечают как 2Pd1/TiO2-250.

Пример 3.

Аналогичен примеру 1 с содержанием металла 2 мас.% с тем исключением, что осадок прокаливают при температуре 310°C.

Образец помечают как 2Pd1/TiO2-310.

Результаты испытаний образцов, полученных по примерам 1-3, представлены в таблице 2.

Из представленных в таблице 2 данных (столбец 3) видно, что повышение температуры прокаливания, используемой для разложения металлорганического предшественника, до 310°C приводит к сильному снижению фотокаталитической активности, что обусловлено процессами спекания и укрупнения частиц благородного металла. Поэтому температура разложения металлоорганического предшественника не должна превышать 250°C.

Пример 4.

Аналогичен примеру 1 с содержанием металла 2 мас.% с тем исключением, что в качестве диоксида титана используют TiO2 Р25.

Образец помечают как 2Pd1/TiO2(P)-210.

Пример 5.

Аналогичен примеру 1 с содержанием металла 2 мас.% с тем исключением, что в качестве металлорганического предшественника используется ацетат палладия Pd(OAc)2.

Образец помечают как 2Pd2/TiO2-210.

Пример 6.

Аналогичен примеру 1 с содержанием металла 2 мас.% с тем исключением, что в качестве металлоорганического предшественника используется ацетилацетонат платины Pt(AcAc)2.

Образец помечают как 2Pt1/TiO2-210.

Пример 7.

Аналогичен примеру 1 с содержанием металла 2 мас.% с тем исключением, что в качестве металлоорганического предшественника используется динитродиамминплатина Pt(NH3)2(NO2)2, а в качестве растворителя - этиловый спирт.

Образец помечают как 2Pt2/TiO2-210.

Пример 8 (сравнительный).

Аналогичен примеру 1 с тем исключением, что в процессе синтеза не добавляют металлоорганический предшественник. В результате, образец не содержит благородного металла.

Образец помечают как 0М/TiO2-210.

Пример 9 (сравнительный).

Аналогичен примеру 1 с содержанием металла 2 мас.% с тем исключением, что в качестве носителя используют гамма-оксид алюминия Al2O3.

Образец помечают как 2Pd1/Al2O3-210.

Пример 10 (сравнительный).

Аналогичен примеру 1 с содержанием металла 2 мас.% с тем исключением, что в качестве носителя используют оксид кремния SiO2.

Образец помечают как 2Pd1/SiO2-210.

Сравнение активности образцов, полученных по примерам 1 и 4-7, с образцами сравнения, полученными по примерам 8-10, представлено в таблице 3.

Из представленных в таблице 3 данных (столбец 3 и столбец 4) видно, что образцы, содержащие в своем составе благородный металл (примеры 1 и 4-7), который наносят с использованием различных предшественников, имеют существенно большую фотокаталитическую активность в окислении СО по сравнению со сравнительными образцами чистого диоксида титана (пример 8), а также с образцами на основе неполупроводниковых носителей (примеры 9 и 10), которые не обладают фотокаталитическими свойствами.

Данные в таблице 3 показывают, что образец на основе диоксида титана, имеющего смешанный (анатаз/рутил) фазовый состав (пример 4), также проявляет высокую фотокаталитическую активность в окислении СО, немного уступая образцу на основе чистого анатаза (пример 1).

Из представленных в таблице 3 (столбец 3) данных, относящихся к образцам, полученным по примерам 1, 5 и 6, 7, также видно, что нанесение наночастиц платины позволяет получить фотокатализатор с большей фотокаталитической активностью в окислении CO. Высокая активность платинированного диоксида титана обусловлена более высоким значением работы выхода электрона для платины. Это приводит к тому, что положение квази-уровня Ферми наночастиц Pt находится близко к середине запрещенной зоны TiO2. Такое положение квази-уровня Ферми может приводить к большей вероятности переноса электрона с TiO2 на металлические наночастицы, а также с металлических наночастиц на адсорбированные молекулы кислорода.

Пример 11 (сравнительный).

Наносят частицы палладия на диоксид титана TiO2 Hombifine N путем химического восстановления неорганического предшественника - хлорида палладия PdCl2. Синтез проводят путем добавления в водную суспензию диоксида титана аликвоты 0,04 М раствора PdCl2 в соляной кислоте и перемешивания в течение 1 часа. Затем проводят полное восстановление предшественника путем добавления трехкратного мольного избытка боргидрида натрия при постоянном перемешивании в течение 3 часов. На последнем этапе образец отмывают и сушат. Количество нанесенного палладия в фотокатализаторе составляет 0,5% от массы навески диоксида титана.

Образец помечают как 0,5Pd3/TiO2-X.

Пример 12 (сравнительный).

Наносят частицы палладия на диоксид титана TiO2 Hombifine N путем фотохимического восстановления неорганического предшественника - хлорида палладия PdCl2. Синтез проводят путем добавления в водно-этанольную суспензию диоксида титана аликвоты 0,04 М раствора PdCl2 в соляной кислоте и перемешивания в течение 1 часа. Для восстановления предшественника полученную суспензию облучают ультрафиолетовым излучением мощного УФ светодиода в течение 3 часов. Общая мощность ультрафиолетового излучения составляет 2,1 Вт. На последнем этапе образец отмывают и сушат. Количество нанесенного палладия в фотокатализаторе составляет 0,5% от массы навески диоксида титана.

Образец помечают как 0,5Pd3/TiO2-Φ.

Сравнение активности одного из образцов, полученного по примеру 1 с содержанием палладия 0,5 мас.%, с образцами сравнения, полученными по примерам 11 и 12, представлено в таблице 4.

Из представленных в таблице 4 данных (столбец 3) видно, что образец, полученный по примеру 1, имеет существенно большую фотокаталитическую активность в окислении СО по сравнению со сравнительными образцами, синтезированными по примерам 11 и 12. Высокая активность образца, полученного термическим разложением Pd(AcAc)2, обусловлена более равномерным распределением наночастиц (1-2 нм) палладия на поверхности диоксида титана, а также тем, что металлорганический предшественник в отличие от PdCl2 не содержит хлорид-ионов, которые снижают фотокаталитическую активность.

Источник поступления информации: Роспатент

Показаны записи 31-40 из 70.
29.05.2018
№218.016.5306

Интерферометр для определения показателя преломления инфракрасной поверхностной электромагнитной волны

Изобретение относится к области оптических измерений и касается интерферометра для определения показателя преломления инфракрасной поверхностной электромагнитной волны (ПЭВ). Интерферометр содержит источник коллимированного p-поляризованного монохроматического излучения, элемент преобразования...
Тип: Изобретение
Номер охранного документа: 0002653590
Дата охранного документа: 11.05.2018
08.07.2018
№218.016.6e77

Катализатор гидрирования фурфурола

Изобретение относится к области разработки катализатора селективного гидрирования фурфурола до фурфурилового спирта. Катализатор содержит Ni и Мо в форме сплава и в качестве модификатора до 4 мас. % углерода в форме карбида Ni и/или Мо, причем соотношение Ni к Мо в катализаторе варьируется до...
Тип: Изобретение
Номер охранного документа: 0002660439
Дата охранного документа: 06.07.2018
14.07.2018
№218.016.716e

Способ изготовления биметаллического электрода путем электрошлаковой наплавки

Изобретение относится к области металлургии и может быть использовано в литейном производстве при изготовлении биметаллических деталей. В способе используют стальную трубу, которую жестко закрепляют на стальной пластине - нижнем электроде, образующем донную часть отрезка стальной трубы,...
Тип: Изобретение
Номер охранного документа: 0002661322
Дата охранного документа: 13.07.2018
22.09.2018
№218.016.8974

Способ геологического картирования аккреционных комплексов

Изобретение относится к области геологического картирования и может быть использовано для картирования аккреционных комплексов горных пород. Сущность: выделяют пачки пород (хорсы), ограниченные двумя системами надвигов, характеризуемые повторяемостью одинаковых ассоциаций пород, включающих в...
Тип: Изобретение
Номер охранного документа: 0002667329
Дата охранного документа: 18.09.2018
12.12.2018
№218.016.a57f

Способ обнаружения неструктурных элементов геологического разреза по сейсмограммам общего выноса

Изобретение относится к области сейсморазведки, а именно к методам построения разрезов геологической среды по сейсмическим данным (сейсмических разрезов), позволяющий, используя различие свойств отраженных и рассеянных событий на сейсмограммах общего выноса, более устойчиво (надежно) и с...
Тип: Изобретение
Номер охранного документа: 0002674419
Дата охранного документа: 07.12.2018
26.01.2019
№219.016.b4c8

Способ подготовки пылеугольного топлива для сжигания

Изобретение описывает способ подготовки пылеугольного топлива для сжигания, включающий сушку и дробление сырого угля, при этом на этот уголь перед дроблением наносят модифицированное жидкое стекло (МЖС), обладающее высоким коэффициентом смачивания поверхности угольной пыли, образующейся в...
Тип: Изобретение
Номер охранного документа: 0002678310
Дата охранного документа: 25.01.2019
01.03.2019
№219.016.c876

Способ оценки числа функционирующих кровеносных капилляров у человека (варианты)

Группа изобретений относится к медицине, а именно к сердечно-сосудистым заболеваниям, физиологии, спортивной медицине. Группа изобретений представлена способами оценки числа функционирующих кровеносных капилляров у человека в коронарном, большом кругах кровообращения и в скелетных мышцах....
Тип: Изобретение
Номер охранного документа: 0002680798
Дата охранного документа: 26.02.2019
01.03.2019
№219.016.c8ba

Способ получения фурфурилового спирта путем селективного гидрирования фурфурола

Изобретение относится к способу получения фурфурилового спирта путем селективного гидрирования фурфурола, который заключается в гидрировании фурфурола в присутствии гетерогенного катализатора, где используемый катализатор содержит: 5,0-40,0 мас. % CuO; носитель - остальное; при этом носитель...
Тип: Изобретение
Номер охранного документа: 0002680799
Дата охранного документа: 27.02.2019
30.05.2019
№219.017.6b6e

Катализатор селективного гидрирования фурфурола

Изобретение относится к катализатору селективного гидрирования фурфурола до фурфурилового спирта, содержащему оксиды меди и железа, при этом в его составе 5,0-40,0 мас.% CuO, носитель - остальное, причем в качестве носителя взята шпинель со структурой FeO, содержащая 48-85,5 мас.% FeO, а также...
Тип: Изобретение
Номер охранного документа: 0002689418
Дата охранного документа: 28.05.2019
30.05.2019
№219.017.6b81

Способ приготовления катализатора селективного гидрирования фурфурола

Изобретение относится к способу приготовления катализатора селективного гидрирования фурфурола до фурфурилового спирта, который заключается в том, что смешивают кристаллогидраты нитратов меди, железа и алюминия, далее полученную смесь кристаллогидратов нитратов меди, железа и алюминия сплавляют...
Тип: Изобретение
Номер охранного документа: 0002689417
Дата охранного документа: 28.05.2019
Показаны записи 31-32 из 32.
05.07.2019
№219.017.a6b2

Композитный адсорбционно-каталитический материал для фотокаталитического окисления

Изобретение относится к составу структурно-организованного материала на основе тканого неорганического материала. На поверхность неорганического материала нанесен композитный фотокаталитически активный материал на основе адсорбента большой удельной поверхности с нанесенным промежуточным...
Тип: Изобретение
Номер охранного документа: 0002465046
Дата охранного документа: 27.10.2012
20.04.2023
№223.018.4dfa

Композиция для нанесения фотоактивного покрытия на поверхность пористых и непористых материалов и обеспечения окислительной деструкции химических веществ

Изобретение относится к химической промышленности, охране здоровья человека и окружающей среды. Композиция для нанесения фотоактивного покрытия на поверхность материалов и обеспечения окислительной деструкции химических веществ содержит полярный органический растворитель, кремнийорганическое...
Тип: Изобретение
Номер охранного документа: 0002793180
Дата охранного документа: 29.03.2023
+ добавить свой РИД