×
29.12.2017
217.015.f377

Результат интеллектуальной деятельности: Способ получения сверхпластичного плакированного материала на основе алюминия

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано для изготовления сверхпластичных слоистых листов из алюминиевого сплава с повышенной коррозионной стойкостью. Проводят химическую обработку последовательно 40%-ным раствором NaOH в воде, 5%-ным раствором HNO в воде и тетрахлорметаном контактных поверхностей высокопрочной плиты толщиной 13-13,5 мм, состоящей из сплава на основе алюминия, содержащего, мас. %: 3,5-4,5 цинка, 3,5-4,5 магния, 0,6-1,0 меди, 2,0-3,0 никеля, 0,25-0,3 циркония и плакирующих листов толщиной 1-1,1 мм из алюминиевого сплава. Размещают плакирующие листы на поверхностях высокопрочной плиты и осуществляют сварку высокопрочной плиты с плакирующими листами методом горячей прокатки при температуре 400-460°С с обжатием не менее 50% за первый проход и суммарным обжатием 70-80% с последующей холодной прокаткой на 70-80% до получения плакированного материала толщиной 1 мм. Разработанный слоистый материал обеспечивает получение коррозионностойких деталей с относительным удлинением более 300% при высокотемпературной деформации методом сверхпластической формовки, при этом полученные детали имеют высокий срок службы, что позволяет расширить область их применения. 4 пр.

Изобретение относится к области металлургии, преимущественно к термической обработке и обработке металлов давлением, и предназначено для изготовления плакированных сверхпластичных слоистых листов из алюминиевого сплава с повышенной коррозионной стойкостью.

Метод сверхпластической формовки (СПФ) - перспективная технология получения изделий сложных форм. Основным требованием для достижения сверхпластичности и использования сплавов для сверхпластической формовки является формирование стабильной мелкозернистой структуры (И.И. Новиков, В.К. Портной. Сверхпластичность сплавов с ультрамелким зерном. 1981). Сдерживающим фактором использования эффекта сверхпластичности в промышленности является отсутствие сплавов, обладающих одновременно высокими скоростями сверхпластичности и высокими механическим свойствами при комнатной температуре. Известны сплавы и способы изготовления листов высокопрочных алюминиевых сплавов с мелкозернистой структурой (АА 7000 серии), которые описаны в ряде патентов.

Так, в патенте US 4618382 от 21.10.1986 рассмотрен метод получения сверхпластичных листов из сплава Al-Zn-Mg, обеспечивающий удлинение 490% при скорости деформации 10-3 с-1 при 510°С.

В патенте US 4645543A от 28.02.1983 предложен сплав на основе системы Al-Mg-Cu, имеющий удлинение 330-800% в интервале температур 400-600°С и скорости деформации 10-3 с-1.

Однако данные сплавы имеют размер зерна около 10-12 мкм и сверхпластичны только в интервале скоростей 10-5-10-3 с-1.

В патенте РФ 2491365 от 27.08.2013 предложен сплав на основе системы Al-Zn-Mg-Cu, обладающий высокоскоростной сверхпластичностью и высокой прочностью. Недостатком данного сплава является низкая коррозионная стойкость, что ограничивает его применение. Получение плакированного алюминиевого листа, состоящего из коррозионностойкого поверхностного слоя и прочного внутреннего слоя, позволит решить эту проблему.

Однако использование стандартных плакирующих несверхпластичных материалов, таких как чистый Al или Al - 1% Zn, для защиты от коррозии приводит к снижению относительно удлинения примерно в 2 раза, при этом плакирующий слой разрушается в процессе СПФ после небольшой деформации. По этой причине необходимо, во-первых, чтобы плакирующий материал проявлял сверхпластичность в тех же условиях деформации, что и сплав-основа, во-вторых, чтобы он имел хорошую коррозионную стойкость, в-третьих, плакирующий сплав должен иметь достаточную технологическую пластичность для обеспечения процесса сварки слоев методом горячей прокатки.

Среди существующих способов (технологий) в промышленности известны способы получения слоистых листов различных сплавов. Изобретение RU 2388582 от 10.05.2010 описывает изготовление продукта с однослойной или многослойной плакировкой, обладающего высокой прочностью и коррозионной стойкостью, где получают сварной пакет, в котором материал основы и плакирующий материал являются разными сплавами, однако данный материал не обладает сверхпластичностью.

Патенты SU 720890 А1 от 27.11.2004 описывает получение плакированного листа для повышения прочности низкопрочных алюминиевых сплавов, описанная технология также не позволяет достичь сверхпластичного состояния.

Наиболее близким техническим решением к заявляемому способу является свидетельство к патенту RU 2388582 С2 от 27.10.2005, по которому в результате получают слоистую плиту, в сборке пакета основы из алюминиевого сплава и с двухсторонней плакировкой алюминиевыми слоями из более прочного металла. Получают пакет при нагреве и горячей прокатке. В процессе сборки на плакирующий слой накладывают лист из сплава основы, толщина которого составляет 10-30% от толщины пакета, а прокатку ведут с обжатием на первом проходе, равным относительной толщине накладываемого листа.

Однако описываемый материал и технология не обеспечивают получения мелкозернистой структуры, необходимой для сверхпластической формовки (размер зерна менее 10 мкм).

Техническим результатом данного изобретения является получение предназначенного для сверхпластической формовки плакированного листа, состоящего из внешних слоев коррозионностойкого сверхпластичного сплава и внутреннего слоя из высокопрочного алюминиевого сплава с однородной мелкозернистой структурой, формирующейся во время сверхпластической деформации.

Способ получения сверхпластичного плакированного материала на основе алюминия, включающий получение высокопрочной плиты толщиной 13-13,5 мм из сплава на основе алюминия, содержащего, мас. %: 3,5-4,5 цинка, 3,5-4,5 магния, 0,6-1,0 меди, 2,0-3,0 никеля, 0,25-0,3 циркония, и плакирующих листов толщиной 1-1,1 мм из алюминиевого сплава, предварительную химическую обработку контактных поверхностей плиты и плакирующих листов последовательно 40%-ным раствором NaOH воде, 5%-ным раствором HNO3 в воде и тетрахлорметаном, размещение плакирующих листов на поверхностях высокопрочной плиты и сварку высокопрочной плиты с плакирующими листами методом горячей прокатки при температуре 400-460°С с обжатием за первый проход не менее 50% и суммарным обжатием 70-80% и последующей холодной прокатки с обжатием 70-80% до получения плакированного материала толщиной 1 мм.

Для решения поставленной задачи предлагается плакировать высокопрочный сплав, рассмотренный в патенте РФ 2491365 от 27.08.2013, коррозионностойкими сплавами Al-(2,7-3,5)%Mg-(0,25-0,35)%Zr, Al-(8,0-8,5)%Mg-(4-4,5)%Si, Al-(3,6-4,0)%Mg-(2,0-2,4)%Si-(0,25-0,35)%Zr, Al-(4,8-5,3)%Zn-(4,8-5,3)%Ca. Суммарное содержание примесей в сплавах не должно превышать 0,3%.

В сплаве Al-(2,7-3,5)%Mg-(0,25-0,35)%Zr концентрация магния находится в интервале 2,7-3,5%. Введение более 3,5% магния приводит к снижению коррозионной стойкости сплава, а при концентрации менее 2,7% магний не обеспечивает должного упрочнения. Введение циркония более 0,35% может привести к образованию крупных фаз Al3Zr кристаллизационного происхождения. Введение менее 0,25% циркония в сплав не обеспечивает необходимой плотности распределения наноразмерных частиц Al3Zr после термической обработки, что приводит к неоднородности структуры и снижению показателей сверхпластичности.

Листы из сплава Al-(2,7-3,5)%Mg-(0,25-0,35)%Zr получают по следующей технологической схеме: расплав с температуры 800°С заливают в водоохлаждаемую изложницу (скорость охлаждения не менее 15 К/с). Полученные слитки подвергаются двухступенчатому гомогенизационному отжигу при температуре 360°С (4 ч) + 420°С (4 ч) и горячей прокатке с обжатием 60% при температуре 360°С, за которой следует холодная прокатка с обжатием 70% до толщины 1 мм.

Состав сплава Al-(4,8-5,3)%Zn-(4,8-5,3)%Са должен находиться вблизи точки тройной эвтектики в системе Al-Zn-Са. Допустимые концентрационные диапазоны легирующих элементов обусловлены составами, при которых различия в свойствах не превышают величины доверительного интервала. Листы из сплава Al-(4,8-5,3)%Zn-(4,8-5,3)%Са получают по следующей технологической схеме: расплав с температуры 800°С заливают в водоохлаждаемую изложницу (скорость охлаждения не менее 15 К/с). Полученные слитки подвергаются гомогенизационному отжигу при температуре 450°С в течение 4 ч и горячей прокатке с обжатием 70%, за которой следует прокатка с охлаждением с начальной температуры 450°С до 1 мм.

Сплавы Al-(8,0-8,5)%Mg-(4-4,5)%Si и Al-(3,6-4,0)%Mg-(2,0-2,4)%Si-(0,25-0,35)%Zr лежат на квазибинарном разрезе системы Al-Mg-Si, поэтому соотношение концентраций Mg : Si должно составлять 1,65-1,75, во избежание образования крупных выделений кремния, а также фазы Al8Mg5, снижающих коррозионную стойкость.

Листы из сплавов Al-(8,0-8,5)%Mg-(4-4,5)%Si и Al-(3,6-4,0)%Mg-(2,0-2,4)%Si-(0,25-0,35)%Zr получают по следующей технологической схеме: расплав с температуры 800°С заливают в водоохлаждаемую изложницу (скорость охлаждения не менее 15 К/с). Полученные слитки подвергаются гомогенизационному отжигу при температуре 450°С в течение 4 ч и горячей прокатке с обжатием 70%, за которой следует холодная прокатка с обжатием 50% до толщины 1 мм.

Плиту высокопрочного сплава-основы с составом Al-(3,5-4,5)%Mg-(3,5-4,5)% Zn-(0,6-1,0)% Cu-(2-3)% Ni-(0,25-0,30)% Zr получают следующим образом: расплав с температуры 800°С заливают в водоохлаждаемую изложницу (скорость охлаждения не менее 15 К/с). Далее следует двухступенчатый гомогенизационный отжиг (440°С, 3-6 часов и 500°С, 3-4 часа). Горячую прокатку проводят при температуре 430°С до толщины 13 мм.

Листы плакирующего сплава помещают на две наибольшие по площади поверхности плиты высокопрочного сплава-основы таким образом, чтобы поверхности плиты оказались полностью покрыты плакирующими листами. При этом, во избежание образования листе дефектов в области сопряжения слоев, все контактный поверхности должны быть тщательно обработаны химическими реактивами, в том числе: 40% водным раствором NaOH, 5% водным раствором азотной кислоты и раствором CCl4. Листы плакирующего сплава располагают на верхней и нижней поверхностях плиты. Полученный пакет подвергают горячей прокатке при температуре 400-460°С, т.к. в данном температурном интервале полностью проходит сварка контактных поверхностей. При более низких или более высоких температурах у материалов основы и плакировки наблюдается различная технологическая пластичность, вследствие чего деформация между базовым слоем и плакирующими слоями распределяется неравномерно, что приводит к ухудшению качества соединения. Для эффективной сварки, величина обжатия за первый проход должна составлять не менее 50%. При этом суммарная степень деформации в процессе горячей прокатки должна составлять 70-80%. Финальной операцией является холодная прокатка со степенью деформации 70-80% до общей толщины 1 мм. Более низкие или более высокие степени деформации приводят к изменению температуры начала рекристаллизации материала, что негативно сказывается на показателях сверхпластичности.

Пример 1

Плиту высокопрочного сплава-основы с составом Al-(3,5-4,5)% Mg-(3,5-4,5)% Zn-(0,6-1,0)% Cu-(2-3)% Ni-(0,25-0,30)% Zr получают следующим образом: расплав с температуры 800°С заливают в водоохлаждаемую изложницу (скорость охлаждения не менее 15 К/с). Далее следует двухступенчатый гомогенизационный отжиг (440°С, 3-6 часов и 500°С, 3-4 часа). Горячую прокатку проводят при температуре 430°С до толщины 13 мм.

Коррозионностойкий плакирующий сплав состава Al-(2,7-3,5)%Mg-(0,25-0,35)%Zr получен по следующей технологии.

Первой операцией является изготовление слитков методом наполнительного литья в медную водоохлаждаемую изложницу. Температура расплава перед разливкой должна составлять не менее 830°С (скорость охлаждения не менее 15 К/с). Полученные слитки подвергаются двухступенчатому гомогенизационному отжигу при температуре 360°С (4 ч) + 420°С (4 ч) и горячей прокатке с обжатием 60% при температуре 360°С, за которой следует холодная прокатка с обжатием 70% до толщины 1,1 мм.

Перед сваркой все контактные поверхности тщательно обрабатываются химическими реактивами, в том числе: 40% водным раствором NaOH, 5% водным раствором азотной кислоты и раствором CCl4. Листы плакирующего сплава располагают на верхней и нижней поверхностях плиты. Полученный пакет подвергают горячей прокатке при температуре 410±10°С с суммарным обжатием 80% и последующей холодной прокаткой с обжатием 70% до толщины 1 мм.

В листе, плакированном данным сплавом, после нагрева до температуры СПД наблюдается нерекристаллизованная структура во всей толщине структура, что позволяет осуществлять сверхпластическую формовку листов. Полученный плакированный сверхпластичный алюминиевый лист имеет δ 340±10% при температуре 440°С и скорости деформации 10-2 с-1. Механические свойства практически не снижаются после испытания на общую коррозию и составляют σт=470±10 МПа и σв=530±10 МПа.

Пример 2

Плиту высокопрочного сплава-основы с составом Al-(3,5-4,5)% Mg-(3,5-4,5)% Zn-(0,6-1,0)% Cu-(2-3)% Ni-(0,25-0,30)% Zr получают следующим образом: расплав с температуры 800°С заливают в водоохлаждаемую изложницу (скорость охлаждения не менее 15 К/с). Далее следует двухступенчатый гомогенизационный отжиг (440°С, 3-6 часов и 500°С, 3-4 часа). Горячую прокатку проводят при температуре 430°С до толщины 13,5 мм.

Коррозионностойкий плакирующий сплав состава Al-(8,0-8,5)%Mg-(4-4,5)%Si получен по следующей технологии.

Первой операцией является изготовление слитков методом наполнительного литья в медную водоохлаждаемую изложницу. Температура расплава перед разливкой должна составлять не менее 750°С (скорость охлаждения не менее 15 К/с). Полученные слитки подвергаются гомогенизационному отжигу при температуре 450°С в течение 4 ч и горячей прокатке с обжатием 70%, за которой следует холодная прокатка с обжатием 50% до толщины 1 мм.

Перед сваркой все контактные поверхности тщательно обрабатываются химическими реактивами, в том числе: 40% водным раствором NaOH, 5% водным раствором азотной кислоты и раствором CCl4. Листы плакирующего сплава располагают на верхней и нижней поверхностях плиты. Полученный пакет подвергают горячей прокатке при температуре 450±10°С с суммарным обжатием 80% и последующей холодной прокаткой с обжатием 70% до толщины 1 мм.

В листе, плакированном данным сплавом, после нагрева до температуры СПД, наблюдается нерекристаллизованная структура в базовом слое и мелкозернистая структура в плакирующем слое (5-6 мкм) после нагрева до температуры СПД, что позволяет осуществлять сверхпластическую формовку листов. Полученный плакированный сверхпластичный алюминиевый лист имеет δ более 370±10% при температуре 440°С и скорости деформации 10-2 с-1. Механические свойства практически не снижаются после испытания на общую коррозию и составляют σт=475±10 МПа и σв=530±10 МПа.

Пример 3

Плиту высокопрочного сплава-основы с составом Al-(3,5-4,5)%Mg-(3,5-4,5)%Zn-(0,6-1,0)%Cu-(2-3)%Ni-(0,25-0,30)%Zr получают следующим образом: расплав с температуры 800°С заливают в водоохлаждаемую изложницу (скорость охлаждения не менее 15 К/с). Далее следует двухступенчатый гомогенизационный отжиг (440°С, 3-6 часов и 500°С, 3-4 часа). Горячую прокатку проводят при температуре 430°С до толщины 13 мм.

Коррозионностойкий плакирующий сплав состава Al-(3,6-4,0)%Mg-(2,0-2,4)%Si-(0,25-0,35)%Zr получен по следующей технологии.

Первой операцией является изготовление слитков методом наполнительного литья в медную водоохлаждаемую изложницу. Температура расплава перед разливкой должна составлять не менее 750°С (скорость охлаждения не менее 15 К/с). Полученные слитки подвергаются гомогенизационному отжигу при температуре 450°С в течение 4 ч и горячей прокатке с обжатием 70%, за которой следует холодная прокатка с обжатием 50% до толщины 1 мм.

Перед сваркой все контактные поверхности тщательно обрабатываются химическими реактивами, в том числе: 40% водным раствором NaOH, 5% водным раствором азотной кислоты и раствором CCl4. Листы плакирующего сплава располагают на верхней и нижней поверхностях плиты. Полученный пакет подвергают горячей прокатке при температуре 450±10°С с суммарным обжатием 70% и последующей холодной прокаткой с обжатием 80% до толщины 1 мм.

В листе, плакированном данным сплавом, после нагрева до температуры СПД, наблюдается нерекристаллизованная структура в базовом слое и ультрамелкозернистая структура в плакирующем слое (6-7 мкм) после нагрева до температуры СПД, что позволяет осуществлять сверхпластическую формовку листов. Полученный плакированный сверхпластичный алюминиевый лист имеет относительное удлинение 390±10% при температуре 440°С и скорости деформации 10-2 с-1. Механические свойства практически не снижаются после испытания на общую коррозию и составляют σт=485±10 МПа и σв=540±10 МПа.

Пример 4

Плиту высокопрочного сплава-основы с составом Al-(3,5-4,5)%Mg-(3,5-4,5)%Zn-(0,6-1,0)%Cu-(2-3)%Ni-(0,25-0,30)%Zr получают следующим образом: расплав с температуры 800°С заливают в водоохлаждаемую изложницу (скорость охлаждения не менее 15 К/с). Далее следует двухступенчатый гомогенизационный отжиг (440°С, 3-6 часов и 500°С, 3-4 часа). Горячую прокатку проводят при температуре 430°С до толщины 13 мм.

Коррозионностойкий плакирующий сплав состава Al-(4,8-5,3)%Zn-(4,8-5,3)%Са получен по следующей технологии.

Первой операцией является изготовление слитков методом наполнительного литья в медную водоохлаждаемую изложницу. Температура расплава перед разливкой должна составлять не менее 750°С (скорость охлаждения не менее 15 К/с). По лученные слитки подвергаются гомогенизационному отжигу при температуре 450°С в течение 4 ч и горячей прокатке с обжатием 70%, за которой следует прокатка с охлаждением с начальной температуры 450°С до 1 мм.

Перед сваркой все контактные поверхности тщательно обрабатываются химическими реактивами, в том числе: 40% водным раствором NaOH, 5% водным раствором азотной кислоты и раствором CCl4. Листы плакирующего сплава располагают на верхней и нижней поверхностях плиты. Полученный пакет подвергают горячей прокатке при температуре 450±10°С с суммарным обжатием 80% и последующей холодной прокаткой с обжатием 70% до толщины 1 мм.

В полученном слоистом листе наблюдается нерекристаллизованная структура в базовом слое и мелкозернистая структура в плакирующем слое (5-8 мкм) после нагрева до температуры СПД, что позволяет осуществлять сверхпластическую формовку листов. Полученный плакированный сверхпластичный алюминиевый лист имеет относительное удлинение 390±10% при температуре 440°С и скорости деформации 10-2 с-1. Механические свойства практически не снижаются после испытания на общую коррозию и составляют σт=500±10 МПа и σв=550±10 МПа.

Способ получения сверхпластичного плакированного материала на основе алюминия, включающий получение высокопрочной плиты толщиной 13-13,5 мм, состоящей из сплава на основе алюминия, содержащего, мас.%: 3,5-4,5 цинка, 3,5-4,5 магния, 0,6-1,0 меди, 2,0-3,0 никеля, 0,25-0,3 циркония и плакирующих листов толщиной 1-1,1 мм из алюминиевого сплава, предварительную химическую обработку контактных поверхностей последовательно 40%-ным раствором NaOH в воде, 5%-ным раствором HNO в воде и тетрахлорметаном, размещение плакирующих листов на поверхностях высокопрочной плиты, сварку высокопрочной плиты с плакирующими листами методом горячей прокатки при температуре 400-460°С с обжатием не менее 50% за первый проход и суммарным обжатием 70-80% с последующей холодной прокаткой на 70-80% до получения плакированного материала толщиной 1 мм.
Источник поступления информации: Роспатент

Показаны записи 311-320 из 323.
23.04.2023
№223.018.51ab

Способ получения модифицированных наночастиц магнетита, легированных гадолинием

Изобретение относится к области неорганической химии, а именно к способу получения модифицированных наночастиц магнетита, легированных гадолинием. Данные наночастиц могут быть использованы, например, в качестве двойных контрастных агентов для МРТ-диагностики. Способ получения модифицированных...
Тип: Изобретение
Номер охранного документа: 0002738118
Дата охранного документа: 08.12.2020
23.04.2023
№223.018.51e8

Способ получения композиционного электроконтактного материала cu-sic

Изобретение относится к порошковой металлургии, в частности к получению электротехнического композиционного материала на основе меди, содержащего частицы карбида кремния. Может использоваться в производстве силовых разрывных электрических контактах, в переключателях мощных электрических сетей и...
Тип: Изобретение
Номер охранного документа: 0002739493
Дата охранного документа: 24.12.2020
23.04.2023
№223.018.5219

Способ комбинаторного получения новых композиций материалов в многокомпонентной системе

Изобретение относится к области металлургии, в частности к способу комбинаторного получения композиций материалов в многокомпонентной системе. Может использоваться для построения фазовых диаграмм и поиска новых интерметаллических соединений в многокомпонентных системах. Из тугоплавкого...
Тип: Изобретение
Номер охранного документа: 0002745223
Дата охранного документа: 22.03.2021
24.04.2023
№223.018.5294

Способ получения монооксида углерода из лигнина гидролизного под действием co

Изобретение относится к способу получения монооксида углерода из гидролизного лигнина, включающему контактирование при температуре 500-800°С лигнина с диоксидом углерода, при объемной скорости подачи СО в реактор 900 ч, в присутствии железного или кобальтового катализатора, представляющего...
Тип: Изобретение
Номер охранного документа: 0002741006
Дата охранного документа: 22.01.2021
14.05.2023
№223.018.5654

Способ переработки минерального сырья, содержащего сульфиды металлов

Изобретение относится к гидрометаллургическому извлечению цветных, редких и благородных металлов из минерального сырья, содержащего сульфиды металлов, преимущественно из концентратов и промпродуктов обогащения, богатых руд, а именно к выщелачиванию металлов из сульфидного минерального сырья....
Тип: Изобретение
Номер охранного документа: 0002739492
Дата охранного документа: 24.12.2020
15.05.2023
№223.018.5739

Способ синтеза нанокомпозитов nicocu/c на основе полиакрилонитрила

Изобретение относится к области химии и нанотехнологиям синтеза наночастиц металла (сплава), а именно к способу синтеза нанокомпозита NiCoCu/C. Способ включает приготовление совместного раствора полиакрилонитрила, Со(СНСОО)⋅4HO, Ni(CHCOO)⋅4HO, (CHCOO)Cu⋅HO в диметилформамиде при температуре...
Тип: Изобретение
Номер охранного документа: 0002770599
Дата охранного документа: 18.04.2022
15.05.2023
№223.018.5806

Способ получения термостойкой проволоки из алюминиево-кальциевого сплава

Изобретение относится к области металлургии легких сплавов, в частности к сплавам на основе алюминия, и может быть использовано при получении проволоки из алюминиево-кальциевого сплава, в том числе диаметром менее 0,3 мм. Способ получения проволоки из алюминиево-кальциевого сплава включает...
Тип: Изобретение
Номер охранного документа: 0002767091
Дата охранного документа: 16.03.2022
15.05.2023
№223.018.5822

Способ растворения сульфидов металлов с использованием озона и пероксида водорода

Изобретение относится к гидрометаллургическому извлечению цветных, редких и благородных металлов из минерального сырья, содержащего сульфиды металлов, преимущественно из концентратов и продуктов обогащения, богатых руд. Способ растворения сульфидов металлов с использованием озона и пероксида...
Тип: Изобретение
Номер охранного документа: 0002768928
Дата охранного документа: 25.03.2022
16.05.2023
№223.018.5e79

Способ получения поликристаллических алмазных пленок

Изобретение относится к области материаловедения и может быть использовано при изготовлении теплоотводов, детекторов ионизирующего излучения, инфракрасных окон, упрочняющих и износостойких покрытий на деталях и режущем инструменте. Сначала готовят суспензию, содержащую наноалмазные порошки, и...
Тип: Изобретение
Номер охранного документа: 0002750234
Дата охранного документа: 24.06.2021
16.05.2023
№223.018.602d

Лазер с устройствами юстировки

Изобретение относится к области квантовой электроники и лазерной техники, в частности к твердотельным ВКР-лазерам, и может быть применено в нелинейной оптике, аналитической спектроскопии, оптическом приборостроении, медицине, экологии, фотодинамической терапии. Лазер с источником накачки,...
Тип: Изобретение
Номер охранного документа: 0002749046
Дата охранного документа: 03.06.2021
Показаны записи 181-182 из 182.
07.09.2019
№219.017.c8b9

Латунь для сверхпластической формовки деталей с малой остаточной пористостью

Изобретение относится к области цветной металлургии, а именно к составам латуни, и предназначено для изготовления сверхпластичных листов из сплава системы Cu-Zn-Al. Лист из двухфазной латуни для сверхпластической формовки изделий с пониженной остаточной пористостью, не превышающей 1,5%,...
Тип: Изобретение
Номер охранного документа: 0002699423
Дата охранного документа: 05.09.2019
16.05.2023
№223.018.63f2

Сплав системы al-mg с гетерогенной структурой для высокоскоростной сверхпластической формовки

Изобретение относится к области алюминиевых сплавов с микрозеренной структурой, в частности к сплавам системы Al-Mg, которые могут быть использованы для изготовления методом сверхпластической формовки полуфабрикатов и изделий в различных отраслях промышленности. Сплав с гетерогенной структурой...
Тип: Изобретение
Номер охранного документа: 0002772479
Дата охранного документа: 20.05.2022
+ добавить свой РИД