×
29.12.2017
217.015.f20e

Результат интеллектуальной деятельности: СПОСОБ ЗАЩИТЫ КОРПУСА ЯДЕРНОГО РЕАКТОРА ПРИ ТЯЖЕЛОЙ АВАРИИ ОТ ТЕПЛОВОЙ НАГРУЗКИ РАСПЛАВА АКТИВНОЙ ЗОНЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002636746
Дата охранного документа
28.11.2017
Аннотация: Изобретение относится к способу защиты корпуса ядерного реактора при тяжелой аварии от тепловой нагрузки расплава активной зоны. В заявленном известном способе защиты корпуса ядерного реактора при тяжелой аварии от тепловой нагрузки расплава активной зоны, расположенного в нижней части корпуса реактора и имеющего стратифицированную структуру с верхним слоем металлического расплава и нижним тепловыделяющим оксидным слоем, помещают элементы с коэффициентами теплопроводности выше коэффициентов теплопроводности оксидных компонентов расплава, с плотностями, большими плотностей оксидных компонентов расплава, до образования ванны расплава, внутрь корпуса реактора. При этом предусмотрено обеспечение целостности стенки корпуса ядерного реактора и удержания высокотемпературных материалов расплавленной активной зоны внутри корпуса реактора. Техническим результатом заявляемого решения является уменьшение интенсивности тепловой нагрузки (уменьшения эффекта «фокусировки» тепловой нагрузки) на стенку корпуса реактора в области его контакта с верхним металлическим слоем расплава при формировании стратифицированной ванны расплава в нижней части корпуса реактора при аварии. 2 н. п. ф-лы, 2 ил., 1 табл.

Изобретение относится к ядерной энергетике и может быть использовано для уменьшения последствий тяжелых аварий с расплавлением активной зоны (АЗ) в ядерных реакторах корпусного типа.

Известны системы ограничения последствий аварий на атомной электростанции, содержащие в подреакторном помещении улавливающие емкости с охлаждающей жидкостью (Патент РФ №2030801, опубл. 10.03.2005 г.).

Недостатком известных устройств является то, что системы защиты срабатывают после того, как произойдет разрушение корпуса реактора и кориум попадает в подреакторное пространство, что увеличивает риск выхода радиоактивных материалов в окружающую среду. Возможность охлаждения кориума внутри корпуса реактора является основной задачей внутриреакторного удержания расплава внутри корпуса (т.н. стратегия «IVR - In-Vessel retention») в общей стратегии управления тяжелыми авариями (ТА).

Возможность внешнего охлаждения стенки корпуса реактора при ТА ограничивается величиной критического теплового потока (КТП). При тепловой нагрузке со стороны расплава АЗ на корпус реактора, превышающей КТП, происходит сквозное проплавление корпуса и его разрушение, сопровождающееся выходом расплавленного кориума за его пределы и контактом с водой. При контакте расплавленного кориума с водой происходит генерация водорода, а также увеличивается вероятность парового взрыва.

Кроме этого, при формировании ванны расплава в нижней части корпуса реактора при ТА происходит его расслоение (стратификация расплава) вследствие различных плотностей жидких компонентов расплава. При этом, наименее плотным (по сравнению с плотностью оксидной фазы расплава ~9÷13 т/м3) оказывается расплав металлических компонентов (стальные конструктивные элементы АЗ, внутрикорпусные конструкции, цирконий и др., имеющие плотность не более ~8 т/м3), который накапливается в верхней, над оксидной фазой, части ванны расплава. Такой металлический слой состоит преимущественно из расплавов стали, циркония, хрома, никеля, и обладает существенно более высокой теплопроводностью по сравнению с теплопроводностью оксидных компонентов ванны расплава (оксиды циркония и урана)

Наиболее близким по технической сущности является способ защиты корпуса ядерного реактора при тяжелой аварии от тепловой нагрузки расплава активной зоны, расположенного в нижней части корпуса реактора и имеющего стратифицированную структуру с верхним слоем металлического расплава и нижним тепловыделяющим оксидным слоем, заключающийся в том, что до образования расплава активной зоны внутрь корпуса реактора помещают тугоплавкие элементы с теплопроводностью меньше теплопроводности расплавленной стали и плотностью, сопоставимой с плотностью прослойки расплавленной стали в верхней части кориума (патент РФ №2543056, опубл. 27.02.2015 г.).

Основным недостатком известного способа защиты корпуса ядерного реактора от тепловой нагрузки расплавленной АЗ является то, что эффект снижения величины тепловой нагрузки на корпус реактора достигается за счет изменения теплофизических характеристик (уменьшение величины осредненного коэффициента теплопроводности) только верхнего металлического слоя расплава, что не во всех случаях ТА позволяет снизить в достаточной степени величину тепловой нагрузки на корпус реактора до значений, когда они не превышают соответствующие значения КТП.

Например, в случае ТА при максимальных значениях тепловой нагрузки на корпус реактора не менее ~1.8 МВт/м2, снижение максимальной величины тепловой нагрузки на 25% не позволит обеспечить бескризисный режим теплосъема с внешней стенки корпуса реактора в силу того, что значения КТП (~1.2 МВт/м2 - на вертикальной стенке при кипении в большом объеме) в данном случае будут значительно ниже соответствующих максимальных значений тепловой нагрузки, действующей на корпус реактора.

Основным недостатком известного устройства защиты корпуса ядерного реактора от тепловой нагрузки расплавленной АЗ является трудоемкость крепления металлических контейнеров на внутренней поверхности стенки корпуса реактора.

Технической задачей, на решение которой направлено заявляемое решение, является обеспечение целостности стенки корпуса ядерного реактора и удержания высокотемпературных материалов расплавленной АЗ внутри корпуса реактора в течение ТА.

Техническим результатом заявляемого решения является уменьшение интенсивности тепловой нагрузки (уменьшения эффекта «фокусировки» тепловой нагрузки) на стенку корпуса реактора в области его контакта с верхним металлическим слоем расплава при формировании стратифицированной ванны расплава в нижней части корпуса реактора при ТА.

Указанный технический результат достигается тем, что в известном способе защиты корпуса ядерного реактора при тяжелой аварии от тепловой нагрузки расплава активной зоны, расположенного в нижней части корпуса реактора и имеющего стратифицированную структуру с верхним слоем металлического расплава и нижним тепловыделяющим оксидным слоем, согласно изобретению до образования ванны расплава внутрь корпуса реактора помещают элементы с коэффициентами теплопроводности выше коэффициентов теплопроводности оксидных компонентов расплава и с плотностями, большими плотностей оксидных компонентов расплава.

Указанный технический результат в части устройства достигается тем, что устройство защиты корпуса ядерного реактора при тяжелой аварии от тепловой нагрузки расплава активной зоны, расположенного в нижней части корпуса реактора и имеющего стратифицированную структуру с верхним слоем металлического расплава и нижним тепловыделяющим оксидным слоем, согласно изобретению выполнено в виде чаши, установленной до образования ванны расплава внутри корпуса реактора в его нижней части и изготовленной из композиционного материала, состоящего из плавящейся матрицы с наполняющими ее элементами, имеющими коэффициенты теплопроводности выше коэффициентов теплопроводности оксидных компонентов расплава и плотности выше плотностей оксидных компонентов расплава.

На фиг. 1 схематично представлен корпус реактора и составные его элементы, на фиг. 2 представлена структура ванны расплава после аварии.

Предлагаемое устройство защиты и предотвращения расплавления корпуса ядерного реактора содержит следующие элементы. В исходном состоянии, до начала тяжелой аварии, в нижней части корпуса ядерного реактора 1 устанавливается устройство защиты и предотвращения расплавления корпуса ядерного реактора 2, представляющее собой конструкцию чашеобразной формы, расположенную ниже активной зоны 3 (фиг. 1).

Материал, из которого изготавливается устройство защиты 2, представляет собой композиционный материал, состоящий из элементов 4 и плавящейся при ТА матрицы 5 (Фиг. 1). Причем элементы 4 имеют значения коэффициентов теплопроводности выше коэффициентов теплопроводности оксидных компонентов расплава и плотности выше плотностей оксидных компонентов 6 расплава (Фиг. 1). Свойства и температура плавления композиционного материала и его компонентов, из которого изготавливается устройства защиты 2 (Фиг. 1), выбираются такими, чтобы обеспечивался требуемый режим эксплуатации ядерного реактора в нормальных (при отсутствии аварии) условиях.

Способ предотвращения расплавления корпуса ядерного реактора и его защиты от тепловой нагрузки расплава АЗ реализуется следующим образом.

При ТА ядерное топливо, а также расплав элементов конструкции активной зоны 3 (Фиг. 1) и элементов внутриреакторных конструкций реактора перемещаются в нижнюю часть корпуса реактора под действием силы тяжести и накапливаются в устройстве защиты и предотвращения расплавления корпуса ядерного реактора 2. Вследствие значительного остаточного энерговыделения во фрагментах топлива (диоксид урана) происходит дальнейшее плавление переместившихся в нижнюю часть корпуса элементов конструкций, а также плавление материала конструкции устройства защиты 2, при этом происходит освобождение из матрицы 5 элементов 4, имеющих коэффициенты теплопроводности выше коэффициентов теплопроводности оксидных компонентов расплава и плотности выше плотностей оксидных компонентов расплава.

В результате плавления материалов АЗ, внутрикорпусных конструкций реактора и устройства защиты 2 происходит формирование бассейна расплава и его дальнейшая стратификация вследствие различной плотности металлических (железо, никель, хром, цирконий и их соединения) и оксидных (оксиды урана, циркония и др.) составляющих расплава (Фиг. 2) и материала устройства защиты 2.

При этом наиболее плотные оксидные компоненты расплава (оксиды урана и циркония) 6 опускаются вниз, а менее плотные (расплав металлических компонентов) поднимаются вверх и образуют слой 7 (Фиг. 2) с более высокой теплопроводностью, чем у оксидных составляющих расплава. Этот слой поглощает тепло, выделяемое в нижней, оксидной, части бассейна расплава, и отводит его к боковым стенкам корпуса реактора. Происходит эффект «фокусировки» (или «тепловой линзы»), при котором тепловой поток, действующий на внутреннюю стенку корпуса, приводит к нагреву стенки корпуса и его оплавлению в зоне верхнего металлического слоя 7.

В случае если плотность теплового потока на стенку корпуса реактора превысит значение КТП на внешней охлаждаемой стенке корпуса реактора, возможно сквозное проплавление стенки корпуса и его разрушение. Именно на снижение плотности теплового потока (максимальных значений тепловой нагрузки), действующего на внутреннюю стенку корпуса реактора со стороны верхнего металлического («стального») слоя 7 расплава, и направлено предлагаемое техническое решение.

После расплавления матрицы 5 и вследствие того, что элементы-наполнители 4 имеют значения плотности выше плотности оксидных компонентов расплава 6, происходит перемещение элементов 4 в нижнюю часть ванны расплава под действием силы тяжести. В силу того, что элементы 4 имеют более высокую плотность по сравнению с плотностями оксидных компонентов расплава, они образуют дополнительный слой 8 под оксидным тепловыделяющим слоем 6 расплава. При этом слой 8 может иметь гомогенную структуру (если материал из которого изготовлены элементы 4 плавится при имеющейся температуре оксидной фазы расплава 6), или может представлять собой гетерогенный слой - в случае использования более тугоплавких материалов для изготовления наполняющих элементов 4. В этих двух случаях нижний слой 8 ванны расплава будет представлять собой смесь расплава оксидов и нерасплавленных, или частично расплавленных, элементов 4, распределенных в расплаве оксидов.

Такой нижний сформированный слой 8 будет иметь более высокие осредненные значения теплопроводности и плотности по сравнению с аналогичными параметрами расплава оксидов 6, что приведет к тому, что часть суммарного остаточного тепла, имеющаяся в расплаве оксидов 6, будет распределяться между верхним слоем расплава 7 и нижним сформированным слоем 8, приводя к существенному (на десятки и более процентов) уменьшению максимальных значений плотности теплового потока, действующего на стенку корпуса реактора в области ее контакта с верхним металлическим расплавленным слоем 7.

Такая «тепловая разгрузка» в области верхнего металлического слоя 7 приведет к снижению эффекта «фокусировки» тепла на стенку корпуса реактора до тех значений, когда будет возможно обеспечить устойчивый отвод тепла на внешней поверхности стенки корпуса реактора за счет использования внешнего охлаждения корпуса и снизить температуру корпуса реактора до значений, позволяющих сохранить его целостность при ТА.

Таким образом, формирование при ТА под оксидным слоем 6 в ванне расплава материалов АЗ дополнительного нижнего слоя 8 гетерогенной или гомогенной структуры, имеющего более высокие значения теплопроводности и плотности по сравнению с аналогичными характеристиками оксидных компонентов расплава, приводит к существенному снижению интенсивности тепловой нагрузки, действующей со стороны верхнего металлического слоя расплава 7 на корпус реактора, уменьшению эффекта «фокусировки» теплового потока на стенку корпуса реактора и сохранению целостности корпуса реактора при ТА.

Результаты численного моделирования теплового состояния ванны расплава для случая двухслойной структуры расплава (Вариант №1 - без наличия нижнего металлического слоя 8) и в случае формирования дополнительного нижнего теплопроводного слоя 8 в ванне расплава при ТА (Вариант №2) показали, что формирование нижнего слоя 8, находящегося под оксидной фазой 6 ванны расплава и имеющего более высокие по сравнению с расплавом оксидов 6 (Фиг. 2) значения коэффициентов теплопроводности, приводит к существенному (свыше 50%) снижению тепловой нагрузки, действующей на корпус реактора в наиболее критической области - в зоне контакта стенки корпуса с верхним металлическим слоем 7 ванны расплава.

Ниже, в таблице, в качестве примера представлены значения плотности теплового потока, действующих в области контакта стенки корпуса с верхним металлическим слоем 7 расплава, полученные в результате численного моделирования для вышеуказанных вариантов №1 и №2.


СПОСОБ ЗАЩИТЫ КОРПУСА ЯДЕРНОГО РЕАКТОРА ПРИ ТЯЖЕЛОЙ АВАРИИ ОТ ТЕПЛОВОЙ НАГРУЗКИ РАСПЛАВА АКТИВНОЙ ЗОНЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ЗАЩИТЫ КОРПУСА ЯДЕРНОГО РЕАКТОРА ПРИ ТЯЖЕЛОЙ АВАРИИ ОТ ТЕПЛОВОЙ НАГРУЗКИ РАСПЛАВА АКТИВНОЙ ЗОНЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 141-150 из 212.
04.07.2019
№219.017.a4d8

Бестопливная тригенерационная установка

Изобретение относится к детандер-генераторным агрегатам для производства электроэнергии и устройствам для производства тепла и холода за счет разделения газового потока. Между газопроводом высокого давления и газопроводом низкого давления, разделенными дросселем, установлена линия подачи газа...
Тип: Изобретение
Номер охранного документа: 0002693352
Дата охранного документа: 02.07.2019
04.07.2019
№219.017.a514

Инвертная пылегазовая призматическая топка

Изобретение относится к области тепловой энергетики и может быть использовано на паровых котлах ТЭС. Пылегазовая призматическая топка содержит экранированные вертикальные стены, верхнее торцевое ограждение и скаты холодной воронки, пылеугольные горелки, а также воздушные сопла, установленные на...
Тип: Изобретение
Номер охранного документа: 0002693281
Дата охранного документа: 02.07.2019
05.07.2019
№219.017.a650

Способ повышения точности геометрических измерений, проводимых с помощью стереоскопического устройства на основе призменно-линзовой оптической системы

Изобретение относится к технологиям визуально-измерительного контроля. Способ повышения точности геометрических измерений, проводимых с помощью стереоскопического устройства на основе призменно-линзовой оптической системы, включает предварительную калибровку устройства на основе совместной...
Тип: Изобретение
Номер охранного документа: 0002693532
Дата охранного документа: 03.07.2019
10.07.2019
№219.017.a988

Цифровой обнаружитель фазоманипулированных сигналов

Изобретение относится к области радиотехники и может быть использовано в радиотехнических устройствах, использующих фазоманипулированные (ФМ) сигналы. Технический результат - снижение максимального уровня проникновения сигнальной компоненты в канал оценки интенсивности помехи при включении и...
Тип: Изобретение
Номер охранного документа: 0002693930
Дата охранного документа: 08.07.2019
10.07.2019
№219.017.a9a1

Способ контроля устройства релейной защиты электроустановки

Использование: в области электроэнергетики, в системах релейной защиты электроустановки. Технический результат - исключение случаев неправильной работы устройства путем своевременного выявления сверхнормативных отклонений его напряжений срабатывания и возврата, количества электричества импульса...
Тип: Изобретение
Номер охранного документа: 0002693931
Дата охранного документа: 08.07.2019
23.07.2019
№219.017.b7ed

Способ охлаждения корпуса ядерного реактора при тяжелой аварии и устройство для его осуществления

Изобретение относится к средствам отвода остаточного тепла от конструкций ядерно-энергетических установок при тяжелых авариях (ТА), подвергающихся высокоинтенсивному тепловому воздействию от расплавленных материалов активной зоны. Изобретение может быть использовано в системах аварийного отвода...
Тип: Изобретение
Номер охранного документа: 0002695128
Дата охранного документа: 22.07.2019
23.07.2019
№219.017.b7f5

Способ охлаждения корпуса ядерного реактора при тяжелой аварии и устройство для его осуществления

Группа изобретений относится к ядерной энергетике. Способ охлаждения корпуса ядерного реактора при тяжелой аварии (ТА) заключается в том, что систему охлаждения корпуса ядерного реактора оснащают группой распыливающих устройств, которая при возникновении аварийной ситуации подает путем...
Тип: Изобретение
Номер охранного документа: 0002695129
Дата охранного документа: 22.07.2019
23.07.2019
№219.017.b81e

Устройство изготовления непрерывных базальтовых волокон

Изобретение относится к устройству для получения непрерывных базальтовых волокон. Устройство содержит фидерную печь, бункер с дозатором и загрузчиком базальта, теплообменник, при этом печь и фидер перекрыты сводом с установленными горелками, в фидере установлены фильерные питатели, под которыми...
Тип: Изобретение
Номер охранного документа: 0002695188
Дата охранного документа: 22.07.2019
23.08.2019
№219.017.c2b4

Устройство определения электропроводимости магнитных отложений на поверхности труб вихретоковым методом

Использование: для неразрушающего контроля. Техническая целесообразность изобретения заключается в том, что устройство вихретокового контроля удельной электрической проводимости магнитных отложения на поверхности труб содержит генератор прямоугольных периодических импульсов тока с периодом Тв,...
Тип: Изобретение
Номер охранного документа: 0002697936
Дата охранного документа: 21.08.2019
23.08.2019
№219.017.c2ec

Способ генерации механических импульсов и устройство для его осуществления

Изобретение относится к электротехнике. Технический результат - повышение надежности генерации механических импульсов. В способе генерации механических импульсов осуществляют формирование на множестве точек фазовой плоскости генератора непустого подмножества статически неустойчивых точек и...
Тип: Изобретение
Номер охранного документа: 0002698103
Дата охранного документа: 22.08.2019
Показаны записи 61-69 из 69.
17.02.2018
№218.016.2ab1

Развитая теплообменная поверхность

Изобретение относится к области теплотехники, может быть использовано при создании теплообменных устройств и направлено на повышение удельных тепловых потоков, снимаемых с развитой поверхности теплообмена. Развитая теплообменная поверхность содержит поверхность теплообмена 1, по меньшей мере на...
Тип: Изобретение
Номер охранного документа: 0002642936
Дата охранного документа: 29.01.2018
17.02.2018
№218.016.2d5c

Способ измерения рельефа поверхности земли

Изобретение относится к радиотехнике и может быть использовано в радиолокаторе с синтезируемой апертурой антенны (РСА). Достигаемый технический результат – измерение рельефа поверхности Земли и формирование цифровой модели рельефа с помощью РСА, установленного на борту носителя РСА. Сущность...
Тип: Изобретение
Номер охранного документа: 0002643790
Дата охранного документа: 06.02.2018
04.04.2018
№218.016.365c

Устройство для управления высокотемпературной печью сопротивления

Изобретение относится к средствам управления высокотемпературными печами сопротивления. Технический результат – повышение надежности работы печи. Устройство содержит нагревательный элемент, подключенный к выходу источника питания со входом задания напряжения источника питания, подключенным к...
Тип: Изобретение
Номер охранного документа: 0002646516
Дата охранного документа: 05.03.2018
14.05.2019
№219.017.5184

Лимитер

Изобретение относится к оборудованию для оснащения термоядерных реакторов типа токамак. Лимитер содержит емкость 1, заполненную литием 2 и имеющую тепловой контакт с оммическим или СВЧ-нагревателями 3, кольцо 4, зафиксированное вращающимися опорами 5, неподвижно закрепленными на корпусе...
Тип: Изобретение
Номер охранного документа: 0002687292
Дата охранного документа: 13.05.2019
23.07.2019
№219.017.b7ed

Способ охлаждения корпуса ядерного реактора при тяжелой аварии и устройство для его осуществления

Изобретение относится к средствам отвода остаточного тепла от конструкций ядерно-энергетических установок при тяжелых авариях (ТА), подвергающихся высокоинтенсивному тепловому воздействию от расплавленных материалов активной зоны. Изобретение может быть использовано в системах аварийного отвода...
Тип: Изобретение
Номер охранного документа: 0002695128
Дата охранного документа: 22.07.2019
23.07.2019
№219.017.b7f5

Способ охлаждения корпуса ядерного реактора при тяжелой аварии и устройство для его осуществления

Группа изобретений относится к ядерной энергетике. Способ охлаждения корпуса ядерного реактора при тяжелой аварии (ТА) заключается в том, что систему охлаждения корпуса ядерного реактора оснащают группой распыливающих устройств, которая при возникновении аварийной ситуации подает путем...
Тип: Изобретение
Номер охранного документа: 0002695129
Дата охранного документа: 22.07.2019
06.09.2019
№219.017.c806

Термоядерный реактор

Изобретение относится к термоядерному реактору. Реактор содержит вакуумную камеру, каналы подачи газообразных реагентов в камеру, входной и выходной коллекторы охлаждающего камеру теплоносителя. Камера выполнена в виде полого цилиндра, внутренняя поверхность которого покрыта пористым...
Тип: Изобретение
Номер охранного документа: 0002699243
Дата охранного документа: 04.09.2019
03.07.2020
№220.018.2db1

Охлаждаемая стенка токамака

Изобретение относится к охлаждаемой стенке токамака. Стенка содержит поверхность приема теплового потока [1] и прилегающую к ней теплопроводящую зону [2], совместно с кожухом [3] образующую полость сбора пара, игольчатые теплопроводящие элементы [4], расположенные перпендикулярно...
Тип: Изобретение
Номер охранного документа: 0002725161
Дата охранного документа: 30.06.2020
31.07.2020
№220.018.3989

Охлаждаемая стенка реактора высокотемпературных процессов

Изобретение относится к охлаждаемой стенке реактора высокотемпературных процессов, к области металлургии, ракетному двигателестроению, системам аварийного охлаждения атомных реакторов и, в частности, диверторам, лимитерам и бланкетам термоядерных реакторов типа токамак. Охлаждаемая стенка...
Тип: Изобретение
Номер охранного документа: 0002728279
Дата охранного документа: 29.07.2020
+ добавить свой РИД