×
20.11.2017
217.015.ef85

Результат интеллектуальной деятельности: СПОСОБ СЕЛЕКТИВНОЙ ЗАПАЙКИ ВНЕШНИХ ОБОЛОЧЕК ФОТОННО-КРИСТАЛЛИЧЕСКИХ ВОЛНОВОДОВ С ПОЛОЙ СЕРДЦЕВИНОЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области микро- и нанотехнологий и может быть использовано для получения образцов фотонно-кристаллических волноводов с полой сердцевиной (ФКВ с ПС). Способ запайки торцевой поверхности образца включает нагрев образца узконаправленным источником теплового воздействия. При этом в качестве образца выбирают фотонно-кристаллический волновод с полой сердцевиной, осуществляют вращение узконаправленного источника теплового воздействия вокруг оси волновода с угловой скоростью от 1 до 500 об, образец нагревают до температуры, не более чем на 80°С превышающей температуру начала размягчения материала образца, нагрев осуществляют в течение не более 4 секунд, после чего образец охлаждают направленным газовым потоком. Технический результат - повышение процента выхода ФКВ с ПС с однородно селективно запаянными внешними оболочками, а также обеспечение максимальной однородности свойств и устойчивость полученных образцов при их дальнейшей эксплуатации. 1 ил.

Изобретение относится к области микро- и нанотехнологий и может быть использовано для получения фотонно-кристаллических волноводов с полой сердцевиной (ФКВ с ПС), с селективно запаянными внешними оболочками, для использования в различных целях, например для изготовления конструктивных элементов сенсоров, с целью последующей модификации поверхностей последних различными материалами, например полимерами, белками, нано- и микрочастицами.

Известен способ селективной запайки внешних оболочек ФКВ с ПС при помощи разогрева небольшого участка ФКВ с ПС с помощью источника тепла и приложения высокого давления воздуха либо иного газа непосредственно в область полой сердцевины образца ФКВ с ПС (Cordeiro C.M.B., dos Santos E.M., Brito Cruz C.H., de Matos C.J.S., Ferreir D.S. Lateral access to the holes of photonic crystal fibers – selective filling and sensing applications // Optics Express. 2006. Vol. 14, Issue 18. Р. 8403-8412).

При использовании данного способа происходит разогрев небольшого участка образца ФКВ с ПС, вследствие чего внешние обкладки образца запаиваются, а при приложении избыточного давления газа к полой сердцевине происходит образование газового пузырька, что приводит к полной изоляции зоны полой сердцевины образца от его внешних оболочек. При этом возможен вариант метода, в котором приложение избыточного давления газа не производится, а процесс нагрева заканчивается незначительным механическим растяжением нагретого участка образца ФКВ с ПС. При этом образования газового пузырька не происходит, но происходит запайка внешних оболочек образца. Решение, предлагаемое в данном способе, обладает рядом существенных недостатков, которые приводят к усложнению работ и снижению оптического качества получаемых образцов ФКВ с ПС. Во-первых, предлагаемый способ при любом методе его осуществления требует дальнейшего разрезания полученного образца на две части, при этом плоскость разрезания образца проходит непосредственно через зону температурной обработки, и механическое разрезание образца не может обеспечить идентичность свойств двух полученных образцов ФКВ с ПС с селективно запаянными внешними оболочками. Во-вторых, описанное в данном способе приложение избыточного давления в область полой сердцевины само по себе является очень трудоемкой и сложно выполнимой задачей и требует, как минимум, приваривания микрокапилляра диаметром соответствующего диаметру полой сердцевины образца ФКВ с ПС. При этом самые незначительные изменения в диаметре полой сердцевины образца ФКВ с ПС требуют нового подбора соответствующего микрокапилляра, а сам процесс сварки повышает процент возможного брака.

Наиболее близким к предлагаемому решению является способ селективной изоляции внешних оболочек ФКВ с ПС и устройство для его осуществления, описанные в (Xiao L., Jin W., Demokan M.S., Ho H.L., Hoo Y.L., Zha C. Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer // Optics Express. 2005. Vol. 13, Issue 22. Р. 9014-9022), который принят за прототип. В данном способе селективная изоляция внешних оболочек ФКВ с ПС достигается с применением сварочного аппарата для оптических волноводов. При воздействии тепла сварочного аппарата на вращающийся образец происходит оплавление торцевой поверхности образца ФКВ с ПС. При этом внешние оболочки ФКВ с ПС как наиболее тонкие оплавляются и запаиваются ранее, чем происходит оплавление и запайка полой сердцевины образца ФКВ с ПС. Однако применение в прототипе обычного сварочного аппарата с достаточно широкой зоной теплового воздействия приводит к значительному уменьшению диаметра полой сердцевины, а также к необходимости прецизионного позиционирования образца ФКВ с ПС по отношению к зоне нагрева сварочного аппарата и высокоточного контроля силы тока.

Задачей изобретения является разработка способа селективной запайки внешних полых оболочек образцов ФКВ с ПС неограниченной длины с возможностью быстрого прекращения теплового воздействия на ФКВ с ПС и возможностью быстрого контролируемого охлаждения торцевой поверхности образца с целью формирования высококачественной, равномерной по своим свойствам зоны запайки, без значительного снижения прочностных характеристик образца ФКВ с ПС и сохранения диаметра полой сердцевины образца ФКВ с ПС на уровне 90-95% от исходной величины.

Технический результат изобретения заключается в повышении процента выхода ФКВ с ПС с однородно селективно запаянными внешними оболочками, простотой и дешевизной процесса и обеспечивает максимальную однородность свойств и устойчивость полученных образцов при их дальнейшей эксплуатации.

Указанный технический результат достигается тем, что способ запайки торцевой поверхности образца включает нагрев образца узконаправленным источником теплового воздействия, согласно решению в качестве образца выбирают фотонно-кристаллический волновод с полой сердцевиной, осуществляют вращение узконаправленного источника теплового воздействия вокруг оси волновода с угловой скоростью от 1 до 500 об-1, образец нагревают до температуры, не более чем на 80°С превышающей температуру начала размягчения материала образца, нагрев осуществляют в течение не более 4 секунд, после чего образец охлаждают направленным газовым потоком.

Предлагаемый способ поясняется чертежом, где представлен поперечный разрез ФКВ с ПС. Диаметры ампул капиллярных слоев по направлению от внешней оболочки к центру составляют 48, 29, 23, 11 мкм, диаметр полой сердцевины – 250 мкм.

Структуру ФКФ с ПС можно представить в виде ампулы микрообъема с изолированными друг от друга отдельными микроампулами круглого или любого другого сечения. При разработке на основе ФКВ с ПС конструктивных элементов сенсоров, в которых внутренняя поверхность ФКВ с ПС может быть покрыта различными активными группами, а также любыми органическими и неорганическими веществами для ковалентного и нековалентного связывания биомолекул, важной является задача селективной изоляции части микроампул, из которых состоят внешние оболочки ФКВ с ПС.

Для получения образца ФКВ с ПС неограниченной длинны с селективно запаянными внешними оболочками используют газовую горелку или иной узконаправленный источник тепла достаточной мощности. Образец ФКВ с ПС, изготовленный из кварцевого, оптического либо иного другого стекла или органического оптически прозрачного материала, произвольной длины, подвергают следующей обработке.

1. Введение образца ФКВ с ПС, в зону температурного воздействия пламени газовой горелки или иного узконаправленного источника тепла достаточной мощности в устройстве, закрепленного в любом фиксирующем устройстве, любым способом, позволяющим осуществить его присоединение к электрическому либо любому иному приводу с необходимой прочностью и точностью для совершения осевого вращения узконаправленного источника тепла относительно образца ФКВ с ПС в вертикальной либо горизонтальной плоскости, в любом направлении с автоматическим или ручным контролем и регулированием температуры источника тепла, скорости вращения узконаправленного источника тепла и времени нахождения образца ФКВ с ПС в зоне воздействия узконаправленного источника тепла.

2. Нагрев образца, при этом температура обработки образца не должна превышать температуру начала размягчения материала образца более чем на 80°С, время обработки образца не должно превышать 4 секунд.

3. Охлаждение образца, причем процесс осуществляют направленным газовым потоком с расходом газа-охладителя от 1 до 100 по отношению к массе образца ФКВ с ПС.

Пример осуществления способа

В известном сварочном аппарате, содержащем узел фиксации образцов ФКВ с ПС, механизм зажима, узконаправленный нагревательный элемент с механизмом его горизонтального перемещения, данный нагревательный элемент оборудуют приводом его вращения, образец ФКВ с ПС располагают в вертикальной или горизонтальной плоскости и производят контролируемое вращение узконаправленного источника тепла и подачу газа-охладителя.

При этом для каждого типа ФКВ с ПС выбираются индивидуальные режимы обработки, имеющие общие рамочные ограничения: температура обработки образца не должна превышать температуру начала размягчения материала образца более чем на 80°С, время обработки образца не должно превышать 4 секунд, а угол между осью ФКВ с ПС, которой является его полая сердцевина, и направлением зоны максимальной температуры узконаправленного источника тепла составляет от 8 до 172 градусов. Селективная запайка внешних оболочек образца ФКВ с ПС достигается за счет накопления микрообъема размягченного материала на внешней зоне торца образца ФКВ с ПС и скомпенсированного воздействия узконаправленного вращающегося источника тепла и потока газа-охладителя на данный микрообъем, не допуская при этом проникновения размягченного материала в центральный канал ФКВ с ПС и его запайки. Время нагрева образца определяется в зависимости от геометрических размеров и материала изготовления ФКВ с ПС, при этом ввод и вывод источника теплового воздействия осуществляется в ручном или автоматическом режиме при помощи соответствующих исполнительных устройств, представляющих из себя устройства с контроллерами времени нахождения образца в пламени горелки, устройства с контроллерами температуры образца, устройства с контроллерами геометрических параметров запайки образца. Использование направленного потока газа-охладителя с расходом от 1 до 100 по отношению к массе образца ФКВ с ПС позволяет, с одной стороны, немедленно зафиксировать нужную степень запайки образца и, с другой стороны, обеспечить необходимый тепловой режим обработки образца для формирования зоны запайки с равномерными свойствами и избежания ее растрескивания, что необходимо в случае дальнейшей химической модификации образца.

Пример 1

Для получения образца ФКВ с ПС, изготовленного из стекла с температурой начала размягчения 750°С, с селективно запаянными внешними оболочками, образец ФКВ с ПС вводят посредством устройства с механическим приводом в зону теплового воздействия вращающейся газовой горелки, при этом образец вводится в горизонтальной плоскости. Температурный режим обработки 520°С в первую секунду обработки, 775°С во вторую и третью секунды обработки. Скорость вращения горелки 300 об-1. По окончании процесса запайки внешних полых оболочек ФКВ с ПС образец выводится из пламени горелки и остывает до комнатной температуры.

Пример 2

Для получения ФКВ с ПС, изготовленного из стекла с температурой начала размягчения 680°С, с селективно запаянными внешними оболочками, образец ФКВ с ПС вводят посредством устройства с пневматическим приводом коаксиально в пламя вращающейся газовой горелки с подачей газовых микроразмерных факелов по окружности к вводимому образцу. Температурный режим обработки 540°С в 1 секунду обработки, 710°С во 2 секунду обработки. Скорость вращения 250-560 об-1. По окончании процесса запайки внешних полых оболочек ФКВ С ПС образец выводится из пламени горелки и остывает до комнатной температуры на протяжении 15 секунд.

Пример 3

Для получения ФКВ с ПС, изготовленного из стекла с температурой начала размягчения 810°С, с селективно запаянными внешними оболочками, образец ФКВ с ПС вводят посредством устройства с электрическим приводом в пламя вращающегося электрического нагревательного элемента. Температурный режим обработки 700°С в 1 секунду обработки, 880°С во 2 секунду, 630°С в 3 секунду обработки. Скорость вращения 90 об-1. По окончании процесса запайки внешних полых оболочек образец выводится из зоны температурного воздействия устройством с электрическим приводом, при этом на образец поступает поток азота комнатной температуры в течение 15 секунд для создания инертной среды и равномерного охлаждения образца.

-1
СПОСОБ СЕЛЕКТИВНОЙ ЗАПАЙКИ ВНЕШНИХ ОБОЛОЧЕК ФОТОННО-КРИСТАЛЛИЧЕСКИХ ВОЛНОВОДОВ С ПОЛОЙ СЕРДЦЕВИНОЙ
СПОСОБ СЕЛЕКТИВНОЙ ЗАПАЙКИ ВНЕШНИХ ОБОЛОЧЕК ФОТОННО-КРИСТАЛЛИЧЕСКИХ ВОЛНОВОДОВ С ПОЛОЙ СЕРДЦЕВИНОЙ
Источник поступления информации: Роспатент

Показаны записи 71-80 из 103.
02.09.2019
№219.017.c5f5

Способ фотохимиотерапии витилиго

Изобретение относится к медицине, а именно к дерматологии, и может быть использовано для фотохимиотерапии витилиго. Для этого осуществляют аппликацию на поверхность кожи фотосенсибилизирующего средства выбирают средство на основе субмикронных пористых частиц карбоната кальция размером менее 1.5...
Тип: Изобретение
Номер охранного документа: 0002698871
Дата охранного документа: 30.08.2019
08.09.2019
№219.017.c8f9

Способ упрочнения стальной поверхности

Изобретение относится к упрочнению стали и может быть использовано в сельскохозяйственном машиностроении для повышения износостойкости лезвий почвообрабатывающих орудий. Способ упрочнения стальной поверхности включает нагрев поверхности электрической дугой обратной полярности с использованием...
Тип: Изобретение
Номер охранного документа: 0002699599
Дата охранного документа: 06.09.2019
11.09.2019
№219.017.c9da

Флуоресцирующая клеточная линия глиомы и способ её получения

Изобретение относится к биотехнологии и представляет собой флуоресцирующую клеточную линию C6-TagRFP-TurboFP635, которая экспрессирует красные флуоресцирующие белки и используется для исследования глиомы мозга in vitro и in vivo, и содержит при этом векторы pTagRFP-C и pTurboFP635-C....
Тип: Изобретение
Номер охранного документа: 0002699754
Дата охранного документа: 09.09.2019
18.10.2019
№219.017.d774

Способ визуализации глимфатической системы мозга методом оптической когерентной томографии in vivo

Изобретение относится к медицине, а именно к экспериментальной медицине и к средствам оптической диагностики, и может быть использовано для исследования функционального состояния глимфатической системы in vivo. Способ осуществляют методом оптической когерентной томографии. Способ заключается во...
Тип: Изобретение
Номер охранного документа: 0002703393
Дата охранного документа: 16.10.2019
19.10.2019
№219.017.d847

Устройство регистрации цифровых голографических и спектральных изображений микрообъектов

Изобретение может использоваться при неинвазивной оценке функционального состояния поверхностных сосудов и уровня оксигенации участка биологической ткани. Устройство содержит коллиматор, светоделительный элемент, референтный канал с первым зеркалом, объектный канал, имеющий микрообъектив и...
Тип: Изобретение
Номер охранного документа: 0002703495
Дата охранного документа: 17.10.2019
06.12.2019
№219.017.ea00

Гидрогелевый материал на основе соли хитозансодержащего вещества и способ его получения

Группа изобретений относится к области медицины, биотехнологии, косметологии и фармацевтической промышленности, а именно к получению лечебно-профилактического гидрогелевого материала на основе соли гидрохлорида хитозана и/или хитозана, обладающего антибактериальным, противовоспалительным и...
Тип: Изобретение
Номер охранного документа: 0002707973
Дата охранного документа: 03.12.2019
06.12.2019
№219.017.ea17

4-(2,4-диметоксифенил)-2-(2-гидроксифенил)-5,6-дигидро-4н-бензо[h]хромен-3-карбоновая кислота, обладающая цитотоксической активностью

Настоящее изобретение относится к 4-(2,4-диметоксифенил)-2-(2-гидроксифенил)-5,6-дигидро-4Н-бензо[h]хромен-3-карбоновой кислоте указанной формулы, обладающей цитотоксической активностью. 1 табл., 3 ил., 1 пр.
Тип: Изобретение
Номер охранного документа: 0002707972
Дата охранного документа: 03.12.2019
21.12.2019
№219.017.f00a

Способ неразрушающего контроля распределения намагниченности по толщине ферритовой плёнки

Изобретение относится к микро- и нанотехнологии. Способ неразрушающего контроля намагниченности эпитаксиальной ферритовой пленки на немагнитной подложке включает одновременное воздействие на пленку постоянного магнитного поля и СВЧ магнитного поля, измерение СВЧ сигналов на выходе пленки и...
Тип: Изобретение
Номер охранного документа: 0002709440
Дата охранного документа: 17.12.2019
27.01.2020
№220.017.facf

Добавка для культивирования эпителиальных клеток

Изобретение относится к добавке для ускорения пролиферации клеточных культур на основе хитозана, отличающейся тем, что она представляет собой хитозан в солевой форме, полученной при взаимодействии хитозана с органической кислотой, выбранной из аскорбиновой, или аспарагиновой, или...
Тип: Изобретение
Номер охранного документа: 0002711920
Дата охранного документа: 24.01.2020
05.02.2020
№220.017.fdd2

Способ получения наночастиц аспарагината хитозана

Изобретение относится к области химии полимеров и может быть использовано для получения полимерных наночастиц из аспарагината хитозана. Способ получения производных хитозана предусматривает смешивание хитозана с кислотой и получение целевого продукта. При этом используют порошок...
Тип: Изобретение
Номер охранного документа: 0002713138
Дата охранного документа: 03.02.2020
Показаны записи 41-47 из 47.
20.01.2018
№218.016.1236

Многофункциональное отладочное устройство для микропроцессорных систем

Изобретение относится к области электроники и микропроцессорной техники и может найти обширное применение при отладке, ремонте и эксплуатации широкого спектра микропроцессорных систем и устройств, как уже существующих, так и вновь разрабатываемых, а также при изучении и исследовании принципов...
Тип: Изобретение
Номер охранного документа: 0002634197
Дата охранного документа: 24.10.2017
04.04.2018
№218.016.307e

Способ изготовления биосенсорной структуры

Изобретение относится к технологии изготовления сенсорных структур на основе твердотельного полупроводника и функционального органического покрытия и может быть использовано при создании ферментных биосенсоров на основе полевых транзисторов или структур «электролит-диэлектрик-полупроводник»....
Тип: Изобретение
Номер охранного документа: 0002644979
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.36ce

Суперконденсаторная ячейка

Изобретение относится к области суперконденсаторов и может быть использовано в энергетических системах, функционирующих за счет запасаемой электрической энергии, в особенности солнечной энергетике, в качестве накопителей и автономных источников питания с управляемыми характеристиками заряда и...
Тип: Изобретение
Номер охранного документа: 0002646531
Дата охранного документа: 05.03.2018
13.02.2019
№219.016.b951

Способ закрытия капилляров фотонно-кристаллических волноводов с полой сердцевиной

Изобретение относится к фотонно-кристаллическим волноводам с большим периодом решётки с селективно закрытыми капиллярами внешних оболочек и открытой полой сердцевиной. Способ закрытия капилляров фотонно-кристаллического волновода с полой сердцевиной заключаюется в заполнении капилляров на...
Тип: Изобретение
Номер охранного документа: 0002679460
Дата охранного документа: 11.02.2019
01.09.2019
№219.017.c529

Устройство для определения абсолютного квантового выхода люминесценции

Использование: для определения абсолютного квантового выхода люминесценции. Сущность изобретения заключается в том, что устройство для определения абсолютного квантового выхода люминесценции исследуемого вещества содержит расположенные на одной оптической оси источник света, фотометрический...
Тип: Изобретение
Номер охранного документа: 0002698548
Дата охранного документа: 28.08.2019
20.04.2023
№223.018.4d95

Способ изготовления зонных пластин

Способ изготовления зонных пластин, в котором формируют блок из стеклянных пластин двух сортов, имеющих различную плотность и диэлектрическую проницаемость, но одинаковую площадь и объем, располагая пластины первого и второго сорта поочередно. С обеих сторон блока находятся пакеты пластин из...
Тип: Изобретение
Номер охранного документа: 0002793078
Дата охранного документа: 28.03.2023
02.06.2023
№223.018.7593

Способ получения молекулярно-импринтированного полимера

Изобретение относится к области аналитической химии и молекулярной биологии и может быть использовано для получения полимера, содержащего отпечатки (импринтинг) молекул, с последующим его применением для анализа и разделения молекулярного материала. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002753850
Дата охранного документа: 24.08.2021
+ добавить свой РИД