×
26.08.2017
217.015.edbb

СПОСОБ ОПРЕДЕЛЕНИЯ УГЛА КОНТАКТА В ШАРИКОВОМ ПОДШИПНИКЕ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к разрушающему контролю и может быть использовано для определения точек контакта шарика с дорожками качения колец шарикоподшипника и последующему вычислению угла контакта шарикоподшипника. Способ включает определение точки касания шарика с контактной поверхностью дорожек качения и вычисление угла контакта шарикоподшипника по результатам измерения. Точки контакта шариков с дорожками качения определяют путем создания осевой нагрузки на подшипник, при которой на дорожках качения остается остаточная деформация от контакта с шариками. Затем замеряют диаметр расположения отпечатков шариков на каждом из колец и вычисляют угол контакта по формуле. Техническим результатом является повышение точности измерения угла контакта. 2 ил., 2 табл.
Реферат Свернуть Развернуть

Изобретение относится к разрушающему контролю и может быть использовано для определения точек контакта шарика с дорожками качения колец шарикоподшипника и последующему вычислению угла контакта шарикоподшипника.

Известен способ определения угла контакта в шариковых подшипниках, заключающийся в том, что закрепляют одно из колец подшипника, а другое последовательно нагружают знакопеременным осевым усилием, регистрируют смещение незакрепленного кольца и по его осевому смещению определяют угол контакта. При этом для определения угла контакта в радиально-упорных подшипниках с неполным профилем колец, первое осевое нагружение выполняют в сторону широкого торца закрепленного кольца, после чего фиксируют положение тел качения (авторское свидетельство SU №322597).

Однако данный способ характеризуется использованием для определения угла контакта косвенных данных, что снижает достоверность и точность измерений.

Известен также способ измерения угла контакта шарикоподшипников, отличающийся от описанного тем, что с целью повышения точности и производительности помимо осевого регистрируют радиальное смещение при радиальной знакопеременной нагрузке (авторское свидетельство SU №1320687).

Недостатком описанного способа также является то, что определение угла контакта в нем является не прямым и основано на косвенных данных.

Также известен способ, позволяющий определять по смещению при осевом и радиальном нагружении не только угол контакта, но и осевой и радиальный зазор (патент RU на изобретение №2232310).

Недостатком этого способа, как и предыдущих, является то, что он основан на косвенных данных.

Наиболее близким по технической сущности и совокупности признаков к заявляемому является способ определения угла контакта шарикоподшипника, включающем определение точки касания шарика с контактной поверхностью дорожек качения и вычисления угла контакта шарикоподшипников по результатам измерения [патент RU на изобретение №2336494]. Контактную поверхность в области расчетной точки его контакта с шариком облучают ультразвуковым пучком, а точку касания определяют по минимальному значению амплитуды отраженного акустического сигнала. Кроме того, определяют точки касания шарика с внешним и внутренним ободом подшипника, а угол контакта определяют по расстоянию между проекциями этих точек на плоскость изображения. Внутреннюю поверхность обода располагают в фокальной плоскости сфокусированного ультразвукового пучка, а определение точки касания осуществляют путем ее поточечного сканирования. Угол контакта шарикоподшипников определяют по одной из следующих формул:

α=arcsin(C/D),

или

или

где α - угол контакта шарикоподшипника; С - расстояние между проекциями точек контакта шарика с внутренним и внешним ободами на плоскость изображения; α0 - расчетный угол контакта шарикоподшипника; Δ - смещение проекции точки контакта шарика с ободом на плоскость изображения; R - радиус шарика; А - расстояние от проекции точки контакта шарика с ободом на плоскость изображения до края обода; А0 - расчетное расстояние от проекции точки контакта шарика с ободом на плоскость изображения до края обода.

Недостатком наиболее близкого аналога является сложность используемой аппаратуры, которая не всегда имеется на промышленных предприятиях и в исследовательских лабораториях, и невысокая точность измерения расстояния между точками контакта шарика с дорожками качения, что снижает точность измерения.

Задачей изобретения является повышение точности измерения угла контакта.

Поставленная задача решается тем, что в способе определения угла контакта шарикоподшипника, включающем определение точки касания шарика с контактной поверхностью дорожек качения и вычисления угла контакта шарикоподшипников по результатам измерения, точки контакта шариков с дорожками качения определяют путем создания осевой нагрузки на подшипник, при которой на дорожках качения остается остаточная деформация от контакта с шариками, затем замеряют диаметр расположения отпечатков шариков на каждом из колец и вычисляют угол контакта по формуле

,

где β - угол контакта в подшипнике, рад; Dv и Dn - диаметр расположения остаточной деформации от шариков на дорожке качения соответственно внутреннего и наружного колец шарикоподшипника, мм; ds - диаметр шариков в шарикоподшипнике, мм.

Техническим результатом является обеспечение возможности определения угла контакта в шариковом подшипнике по отпечаткам шариков на дорожках качения, создаваемыми простыми техническими средствами.

Так как точки контакта шариков с дорожками качения определяют простым нагружением шарикоподшипника, то для осуществления предлагаемого способа достаточно использовать простой механический, пневматический или гидравлический пресс, который имеется в большинстве исследовательских лабораториях и тем более на промышленных предприятиях, что существенно расширяет область применения способа. Измерения диаметра расположения отпечатков шариков на дорожках качения несложно осуществить, например, на простом оптическом микроскопе с обеспечением высокой точности измерения, что повышает точность определения угла контакта в шариковом подшипнике.

Сущность изобретения поясняется рисунками, где на Фиг. 1 приведена схема определения угла контакта в упорно-радиальном шарикоподшипнике, а на Фиг. 2 приведена фотография отпечатков шариков на дорожке качения.

На Фиг. 1 используются следующие обозначения:

1 - верхнее кольцо подшипника;

2 - нижнее кольцо подшипника;

3 - шарики;

4 - сепаратор.

Способ определения угла контакта в шарикоподшипнике осуществляется следующим образом. Между верхним 1 и нижним 2 кольцами подшипника в сепараторе 4 установлено четное число шариков 3. Число шариков может быть равным четырем, шести или восьми. Чем меньше число установленных в подшипник шариков, тем меньше требуется усилие нагружения подшипника. Чем больше число шариков, тем точнее определяется диаметр расположения отпечатков на дорожке качения, тем выше точность определения угла контакта.

К верхнему кольцу 1 подшипника прикладывается осевая нагрузка Р, при которой на поверхности дорожек качения колец 1 и 2 в местах контакта с шариками 3 остаются следы остаточной деформации в виде отпечатков шариков. С помощью оптического микроскопа замеряется расстояние Dv и Dn между противоположными отпечатками на наружном и внутреннем кольцах и вычисляется среднее и среднеквадратическое отклонение замеренных значений

,

где Dvi и Dni - расстояние между i-ми противоположными отпечатками шариков соответственно на верхнем и нижнем кольцах, мм; z - число шариков 3, устанавливаемых между верхним 1 и нижнем 2 кольцами; Dvo и Dno - среднее расстояние между противоположными отпечатками шариков соответственно на верхнем и нижнем кольцах, мм; σv и σn - среднее квадратическое отклонение расстояние между противоположными отпечатками шариков соответственно на верхнем и нижнем кольцах, мм.

По результатам измерений определяется угол контакта в шарикоподшипнике

где β0 - среднее значение угла контакта в шарикоподшипнике, рад; ds - диаметр шариков в шарикоподшипнике, мм.

Таким образом, предлагаемый способ определения угла контакта в шариковом подшипнике прост в осуществлении, доступен большинству исследовательских лабораторий и промышленным предприятиям, что расширяет область его применения. Кроме того, способ решает задачу повышения точности определения угла контакта, так как позволяет с высокой точностью определять расстояние между противоположными отпечатками шариков на дорожках качения.

Пример. В соответствии с заявляемым способом определяли пределы колебания угла контакта в партии упорно-радиального шарикового подшипника 1118-2902840 по результатам контроля выборки, состоящей из трех подшипников. Его габаритные размеры: внутренний диаметр d=62 мм, наружный диаметр D=81 мм, высота Н=12 мм. Диаметр шариков ds=5 мм. Число шариков в подшипнике z=48. Заданный угол контакта в подшипнике β=75°±4°. Статическая грузоподъемность подшипника 9000 Н.

Для определения угла контакта брали 3 подшипника в сборе. Определение угла контакта осуществляли по 6 пар отпечатков шариков на дорожках качения колец подшипников. Для этого в сепаратор можно было бы заложить по 12 шариков. Но так как имеющийся гидравлический пресс развивает усилие до 100000 Н, значительно превосходящее статическую грузоподъемность подшипника, то исследование осуществляем с полным комплектом шариков.

Поочередно помещали подшипники под гидравлический пресс и давали первоначальную нагрузку 9000 Н. Разбирали подшипник и подтверждали отсутствие следов остаточной деформации на дорожках качения. Снова собирали подшипник и давали нагрузку 10000 Н. Разбирали подшипник и регистрировали на дорожках качения следы остаточной деформации. В качестве примера на Фиг. 2 приведена фотография дорожки качения со следами отпечатков от шариков.

На оптическом микроскопе с угловым шагом 60 градусов замеряли расстояния между центрами противоположных отпечатков на дорожках качения. Обработка результатов измерений осуществляли по формулам (1). Результаты измерения и расчета приведены в Таблице 1.

По формуле (2) при каждом угле поворота колец определяем угол контакта в 1-м, 2-м и 3-м подшипниках. В Таблице 2 приведены результаты расчета угла контакта и погрешности определения угла контакта в каждом из подшипников.

Как видно, предлагаемый способ позволяет определять угол контакта в подшипнике с погрешностью менее ±0,4°. Погрешность определялась по методике Стьюдента с доверительной вероятностью 0,95. Если бы погрешность расчета превышала заданную, то следовало бы взять не 6, а большее число пар точек контакта шариков с дорожками качения.

Среднее значение угла контакта и СКО угла контакта данной выборки из 3 подшипников составляет

βср=(76,6+75,5+77,7)/3=76,6° (1,336 рад.);

σср=0,0225pad (1,29°).

По методике Стьюдента с доверительной вероятностью 0,95 определяем возможное отклонение угла контакта в партии подшипников, из которых была сделана выборка. Оно составляет ±1,6°. Следовательно, с доверительной вероятностью 0,95 углы контакта в партии подшипника находятся в пределах 76,6°±1,6°. По результатам расчета приходим к выводу, что партия удовлетворяет заданным требованиям по углу контакта в подшипниках.

Таким образом, предложенный способ позволяет с использованием простых средств и стандартных методик с высокой точностью определять угол контакта в шариковых подшипниках.


СПОСОБ ОПРЕДЕЛЕНИЯ УГЛА КОНТАКТА В ШАРИКОВОМ ПОДШИПНИКЕ
СПОСОБ ОПРЕДЕЛЕНИЯ УГЛА КОНТАКТА В ШАРИКОВОМ ПОДШИПНИКЕ
СПОСОБ ОПРЕДЕЛЕНИЯ УГЛА КОНТАКТА В ШАРИКОВОМ ПОДШИПНИКЕ
Источник поступления информации: Роспатент

Показаны записи 71-80 из 181.
20.01.2018
№218.016.11a6

Способ термической переработки высокосернистых горючих сланцев

Изобретение относится к области термической переработки высокозольных и низкокалорийных твердых топлив. Способ термической переработки высокосернистых горючих сланцев включает сушку измельченных сланцев, их термическое разложение с образованием коксозольного остатка и парогазовой смеси,...
Тип: Изобретение
Номер охранного документа: 0002634018
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.12c0

Способ определения толщины пленки с помощью интерферометрии белого света

Изобретение относится к области метрологии тонких пленок. Способ определения толщины пленки с помощью интерферометрии белого света, при котором подложку, содержащую измеряемую пленку, подвергают в интерферометре воздействию белого света с ограниченной когерентностью и измеряют коррелограммы,...
Тип: Изобретение
Номер охранного документа: 0002634328
Дата охранного документа: 25.10.2017
13.02.2018
№218.016.1eaa

Способ изготовления мультиэлектродного газоаналитического чипа на основе мембраны нанотрубок диоксида титана

Изобретение относится к области сенсорной техники и нанотехнологий, в частности к способам изготовления устройств распознавания и детектирования компонентов газовых смесей. Способ изготовления мультиэлектродного газоаналитического чипа на основе мембраны нанотрубок диоксида титана включает...
Тип: Изобретение
Номер охранного документа: 0002641017
Дата охранного документа: 15.01.2018
13.02.2018
№218.016.20b0

Способ электроплазменного напыления биосовместимых покрытий на основе магнийсодержащего трикальцийфосфата

Изобретение относится к области медицины, в частности, к стоматологии, и раскрывает способ нанесения керамических биосовместимых покрытий. Способ характеризуется тем, что включает предварительную подготовку поверхности имплантата воздушно-абразивной обработкой и ультразвуковым обезжириванием,...
Тип: Изобретение
Номер охранного документа: 0002641597
Дата охранного документа: 18.01.2018
13.02.2018
№218.016.20d8

Способ измерения толщины тонкой пленки и картирования топографии ее поверхности с помощью интерферометра белого света

Изобретение относится к области метрологии тонких пленок, а именно к способу измерения толщины тонких прозрачных пленок бесконтактным способом с помощью интерферометра. При реализации способа измерения толщины тонкой пленки и картирования топографии ее поверхности с помощью интерферометра...
Тип: Изобретение
Номер охранного документа: 0002641639
Дата охранного документа: 18.01.2018
13.02.2018
№218.016.23f5

Способ устройства подземных резервуаров

Изобретение относится к строительству, а именно к устройству подземных резервуаров, преимущественно для хранения сжиженных газов. Способ устройства подземных резервуаров заключается в рытье котлована под резервуар, установке фундамента, установке резервуара в котлован и креплении его к...
Тип: Изобретение
Номер охранного документа: 0002642587
Дата охранного документа: 25.01.2018
17.02.2018
№218.016.2e13

Способ работы воздушно-аккумулирующей газотурбинной электростанции с абсорбционной бромисто-литиевой холодильной машиной (абхм)

Изобретение относится к энергетике. В способе работы воздушно-аккумулирующей газотурбинной электростанции (ВАГТЭ) с абсорбционной бромисто-литиевой холодильной машиной (АБХМ) в период спада электрической нагрузки сжатый, предварительно охлажденный в промежуточном охладителе воздух добавочно...
Тип: Изобретение
Номер охранного документа: 0002643878
Дата охранного документа: 06.02.2018
10.05.2018
№218.016.392d

Способ формирования оксидных покрытий на изделиях из циркониевых сплавов

Изобретение относится к области машино- и приборостроения, а именно к технологии формирования оксидных покрытий на циркониевых изделиях технического или медицинского назначения, например элементах пар трения, датчиках, тепловыделяющих элементах и внутрикостных имплантируемых конструкциях....
Тип: Изобретение
Номер охранного документа: 0002647048
Дата охранного документа: 13.03.2018
10.05.2018
№218.016.3966

Способ работы воздушно-аккумулирующей газотурбинной электростанции

Изобретение относится к теплоэнергетике. Способ работы воздушно-аккумулирующей газотурбинной электростанции характеризуется тем, что уходящие газы после газовой турбины поступают в котел-утилизатор, который входит в состав дополнительно установленного утилизационного контура. Одну часть...
Тип: Изобретение
Номер охранного документа: 0002647013
Дата охранного документа: 13.03.2018
10.05.2018
№218.016.3a42

Способ определения относительного размера синхронного кластера в сети по ее макропараметрам

Изобретение относится к области цифровой обработки и анализа данных. Технический результат заключается в расширении арсенала технических средств определения относительных размеров отдельных синхронных кластеров сложной сети. Способ определения относительных размеров синхронных кластеров сетей...
Тип: Изобретение
Номер охранного документа: 0002647677
Дата охранного документа: 16.03.2018
Показаны записи 71-80 из 83.
20.01.2018
№218.016.1137

Пресс-форма для изготовления бетонных и железобетонных конструкций

Изобретение относится к области производства сборного железобетона методом гидропрессования и может быть использовано в частности: при изготовлении блоков и тюбингов круговой обделки тоннелей, шахт и других специальных сооружений из железобетона. Пресс-форма содержит силовую раму с...
Тип: Изобретение
Номер охранного документа: 0002633932
Дата охранного документа: 19.10.2017
20.01.2018
№218.016.11a6

Способ термической переработки высокосернистых горючих сланцев

Изобретение относится к области термической переработки высокозольных и низкокалорийных твердых топлив. Способ термической переработки высокосернистых горючих сланцев включает сушку измельченных сланцев, их термическое разложение с образованием коксозольного остатка и парогазовой смеси,...
Тип: Изобретение
Номер охранного документа: 0002634018
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.12c0

Способ определения толщины пленки с помощью интерферометрии белого света

Изобретение относится к области метрологии тонких пленок. Способ определения толщины пленки с помощью интерферометрии белого света, при котором подложку, содержащую измеряемую пленку, подвергают в интерферометре воздействию белого света с ограниченной когерентностью и измеряют коррелограммы,...
Тип: Изобретение
Номер охранного документа: 0002634328
Дата охранного документа: 25.10.2017
20.01.2018
№218.016.15d7

Способы получения кремнийзамещенного гидроксиапатита и биоактивного покрытия на его основе

Изобретение относится к медицине. Описан способ получения кремнийзамещенного гидроксиапатита, включающий синтез кремнийзамещенного гидроксиапатита методом осаждения из водного раствора реагентов, содержащих ортофосфорную кислоту, гидроксид кальция и тетраэтилортосиликат, отстаивание, выделение...
Тип: Изобретение
Номер охранного документа: 0002635189
Дата охранного документа: 09.11.2017
13.02.2018
№218.016.1eaa

Способ изготовления мультиэлектродного газоаналитического чипа на основе мембраны нанотрубок диоксида титана

Изобретение относится к области сенсорной техники и нанотехнологий, в частности к способам изготовления устройств распознавания и детектирования компонентов газовых смесей. Способ изготовления мультиэлектродного газоаналитического чипа на основе мембраны нанотрубок диоксида титана включает...
Тип: Изобретение
Номер охранного документа: 0002641017
Дата охранного документа: 15.01.2018
13.02.2018
№218.016.20b0

Способ электроплазменного напыления биосовместимых покрытий на основе магнийсодержащего трикальцийфосфата

Изобретение относится к области медицины, в частности, к стоматологии, и раскрывает способ нанесения керамических биосовместимых покрытий. Способ характеризуется тем, что включает предварительную подготовку поверхности имплантата воздушно-абразивной обработкой и ультразвуковым обезжириванием,...
Тип: Изобретение
Номер охранного документа: 0002641597
Дата охранного документа: 18.01.2018
13.02.2018
№218.016.20d8

Способ измерения толщины тонкой пленки и картирования топографии ее поверхности с помощью интерферометра белого света

Изобретение относится к области метрологии тонких пленок, а именно к способу измерения толщины тонких прозрачных пленок бесконтактным способом с помощью интерферометра. При реализации способа измерения толщины тонкой пленки и картирования топографии ее поверхности с помощью интерферометра...
Тип: Изобретение
Номер охранного документа: 0002641639
Дата охранного документа: 18.01.2018
13.02.2018
№218.016.23f5

Способ устройства подземных резервуаров

Изобретение относится к строительству, а именно к устройству подземных резервуаров, преимущественно для хранения сжиженных газов. Способ устройства подземных резервуаров заключается в рытье котлована под резервуар, установке фундамента, установке резервуара в котлован и креплении его к...
Тип: Изобретение
Номер охранного документа: 0002642587
Дата охранного документа: 25.01.2018
17.02.2018
№218.016.2e13

Способ работы воздушно-аккумулирующей газотурбинной электростанции с абсорбционной бромисто-литиевой холодильной машиной (абхм)

Изобретение относится к энергетике. В способе работы воздушно-аккумулирующей газотурбинной электростанции (ВАГТЭ) с абсорбционной бромисто-литиевой холодильной машиной (АБХМ) в период спада электрической нагрузки сжатый, предварительно охлажденный в промежуточном охладителе воздух добавочно...
Тип: Изобретение
Номер охранного документа: 0002643878
Дата охранного документа: 06.02.2018
10.05.2018
№218.016.4635

Способ релаксации остаточных напряжений

Изобретение относится к релаксации остаточных напряжений. Осуществляют обкатку детали вокруг ее оси и деформирование ее роликами. Деформирование детали осуществляют с начальной деформацией : u где l - длина детали, мм; W - момент сопротивления изгибу, мм; Е - модуль упругости материала...
Тип: Изобретение
Номер охранного документа: 0002650383
Дата охранного документа: 11.04.2018
+ добавить свой РИД