×
26.08.2017
217.015.ed70

Результат интеллектуальной деятельности: ТЕРМОЭЛЕКТРИЧЕСКИЙ ЭЛЕМЕНТ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области термоэлектричества. Сущность: термоэлектрический элемент (1) включает по меньшей мере две пленки основного материала (2) в виде углеродного материала с sp гибридизацией атомных связей, между которыми нанесена пленка дополнительного материала (3) в виде углеродного материала с sp гибридизацией связей. Толщина d, нм, пленки дополнительного материала (3) и толщина b, нм, пленки основного материала (2) удовлетворяет определенным соотношениям. Электрические контакты (4), (5) нанесены на противолежащие периферийные области поверхности пленки дополнительного материала (3). Термоэлектрический элемент (1) имеет более простую в изготовлении конструкцию и при этом сохраняет высокий коэффициент полезного действия. 2 ил.

Изобретение относится к термоэлектрическому приборостроению, в частности к конструкциям и материалам, используемым в термоэлектрических элементах (ТЭЭ) и термоэлектрических батареях (ТЭБ).

Термоэлектричество является одним из альтернативных способов в технологии получения холода, который не использует химикаты, разрушающие озоновый слой Земли, и дает много дополнительных преимуществ, включая использование только твердотельных устройств, электронный контроль действия, обратимость производства нагревания и охлаждения. Термоэлектрические преобразователи используют в системах, утилизирующих тепло. Однако охлаждение с помощью термоэлектричества не имеет широкого распространения из-за низкой по сравнению с парожидкостным сжатием эффективностью. Термоэлектрическая эффективность (коэффициент преобразования друг в друга тепловой и электрической энергий) зависит от термоэлектрического параметра Z того материала, из которого термоэлектрическое устройство выполнено. Этот параметр определяется квадратом коэффициента термо-ЭДС S, умноженного на коэффициент электропроводности σ и деленного на коэффициент теплопроводности X.

Вследствие развития производства полупроводников появились ТЭЭ и ТЭБ, состоящие из последовательно соединенных в электрическую цепь посредством коммутационных элементов полупроводниковых термоэлементов, каждый из которых образован двумя ветвями, изготовленными из полупроводника соответственно p- и n-типов проводимости.

Так, известен термоэлектрический элемент (см. RU 2475889, МПК H01L 35/08, H01L 35/34, опубликован 20.03.2013), включающий термопары, которые содержат полупроводники n-типа и полупроводники p-типа, соединенные по меньшей мере с одним электропроводным контактным материалом.

Недостатком такой конструкции является громоздкость коммутационных электрических и тепловых контактов и недостаточно высокий коэффициент полезного действия.

Известен термоэлектрический элемент (см. заявка JPH 10173243, МПК H01L 35/22, опубликован 26.06.1998), включающий ветви n-типа проводимости из графита (кристаллического углерода) и p-типа проводимости в виде слоистой структуры из графита и FeC. Одни электроды (медные пластины) присоединены с помощью углеродной пасты к первым конечным поверхностям ветвей n-типа и p-типа, а другой электрод - общая медная пластина - присоединена к другим оконечным поверхностям упомянутых ветвей. Применение таких материалов для ветвей ТЭЭ уменьшает его стоимость и загрязнение окружающей среды.

Недостатком известного термоэлектрического элемента является его невысокая термоэлектрическая эффективность.

Известен термоэлектрический элемент (см. RU 2223573, МПК H01L 35/32), содержащий многослойное тело, состоящее из двух или более ламинарных тел, выполненных из металла, причем ламинарные тела имеют среднюю толщину от 0,3 до 100 нм, а термоэлектрический элемент используют посредством приложения тока в направлении толщины многослойного тела или при наличии разности температур между обоими концами в направлении толщины многослойного тела.

Разработанный для известного термоэлемента термоэлектрический материал имеет более высокий коэффициент Зеебека, чем в традиционных полупроводниках, и соответственно больший коэффициент преобразования мощности, а также высокую ударопрочность, сопротивление температурной деформации и способность к формоизменению. Однако величина термоэлектрической эффективности Z известного термоэлемента является недостаточной для многих технических применений. Известно (см. Koga Т., Rabin О., Dresselhaus M.S. - Thermoelectric figure of merit of Bi/Pb1-xEUxTe superlattices. - Physical Review B, 2000, v. 62, p. 16703), что для однородных материалов наибольшее значение термоэлектрического параметра - Z≈0,003 K-1 - при комнатной температуре (300 K) имеет сплав Bi2Te3. Такой сплав обладает рекордным для однородного материала термоэлектрическим параметром вследствие того, что в электропроводящих материалах наряду с обычным диффузионным механизмом перераспределения электронов между горячими и холодными областями возможен гораздо более эффективный механизм увлечения электронов тепловым потоком (фононами), известный как эффект Гуревича (см. Гуревич Л.Э. Термоэлектрические свойства проводников. Журнал экспериментальной и теоретической физики. Т. 16, вып. 3, с. 193-227, 1946). Поток фононов увлекает электроны в сторону горячего конца образца и это дает вклад в коэффициент термоЭДС. В легированном висмуте (Bi2Te3) этот эффект определяет общий коэффициент термо-ЭДС, который создает упомянутый выше рекордный термоэлектрический параметр.

Известен термоэлектрический элемент (см. US 6670539, МПК H01L 35/18, H01L 35/34, H01L 35/12, опубликован 30.12.2003), содержащий дополнительный материал висмут, сплав с висмутом, висмут в других металлах и смеси вышеперечисленных материалов (возможно, включающих дополнительные добавки), помещенный в протяженные параллельно расположенные поры основного пористого материала с размерами пор 5-15 нм. Основной материал берется в виде неокисленного пористого алюминия, пористого стекла или пористого силикагеля. Основной материал использован в форме объемного материала. Электрические контакты присоединены к торцовым поверхностям дополнительного материала в порах основного.

Достигнутое в известном термоэлектрическом элементе рекордное в то время значение параметра Z=0,08 K-1 (при температуре 77 К) в настоящее время уже недостаточно для многих применений; к тому же термоэлектрический элемент имеет относительно невысокий коэффициент полезного действия.

Известен термоэлектрический элемент (см. патент RU 2376681, МПК H01L 35/12, H01L 35/32, опубликован 20.12.2009), совпадающий с настоящим техническим решением по наибольшему числу существенных признаков и принятый за прототип. Термоэлектрический элемент-прототип состоит из основного материала, имеющего протяженные параллельные углубления, и расположенного в них дополнительного материала, имеющих различные электропроводности и теплопроводности, и электрических контактов к дополнительному материалу. В качестве основного материала термоэлектрического элемента взят углеродный материал с sp3 гибридизацией атомных связей, а в качестве дополнительного материала - углеродный материал с sp2 гибридизацией связей. Углубления выполнены в виде канавок, у которых глубина, ширина и расстояние между осями ближайших канавок удовлетворяют определенным соотношениям:

2 нм≤d≤10 нм,

1≤I/b≤100,

где d - глубина канавки, нм;

b - ширина канавки, нм;

I - расстояние между осями ближайших канавок, нм,

а электрические контакты расположены вдоль дна канавок и на противоположной поверхности дополнительного материала.

Термоэлектрический элемент-прототип имеет повышенный коэффициент полезного действия за счет высокой термоэлектрической эффективности, а также обеспечивает миниатюризацию устройства, так как нанометрические размеры канавок и менее чем микрометрические размеры расстояния между канавками позволяют создавать из таких термоэлементов минитермоэлектрические батареи, удовлетворяющие требованиям пользователей.

Недостатками термоэлектрического элемента-прототипа являются технологическая трудность создания канавок необходимых размеров и трудность размещения в них дополнительного материала и электрических контактов к дополнительному материалу.

Задачей настоящего технического решения являлась разработка такого термоэлектрического элемента, который бы имел более простую в изготовлении конструкцию и при этом сохранял высокий коэффициент полезного действия.

Поставленная задача решается тем, что термоэлектрический элемент включает основной материал в виде углеродного материала с sp3 гибридизацией атомных связей и дополнительный материал в виде углеродного материала с sp2 гибридизацией связей. Новым является выполнение основного материала в виде по меньшей мере двух пленок, между которыми расположена пленка дополнительного материала, при этом толщина d, нм, пленки дополнительного материала и толщина b, нм, пленки основного материала удовлетворяет соотношениям:

а электрические контакты нанесены на противолежащие периферийные области поверхности пленки дополнительного материала.

Предлагаемое техническое решение поясняется чертежом, где

на фиг. 1 показан настоящий ТЭЭ в вертикальном сечении;

на фиг. 2 изображена ТЭБ, состоящая из многих отдельных ТЭЭ, в вертикальном сечении.

Настоящий термоэлектрический элемент 1 включает (см. фиг. 1) две пленки основного материала 2 в виде углеродного материала с sp3 гибридизацией атомных связей, между которыми расположена пленка дополнительного материала 3 в виде углеродного материала с sp2 гибридизацией связей. На противолежащие периферийные области поверхности пленки дополнительного материала 2 нанесены электрические контакты 4, 5. Один из контактов 3 или 4 является горячим, а другой холодным. Толщина d, нм, пленки дополнительного материала 3 и толщина b, нм, пленки основного материала 2 удовлетворяет приведенным выше соотношениям (1), (2).

Изображенная на фиг. 2 термоэлектрическая батарея включает подложку 6 в виде пластины из материалов, выбираемых из требований технологии изготовления, на которой расположены стопкой термоэлектрические элементы 1.

Настоящий ТЭЭ изготовляют путем нанесения методом химического осаждения в вакууме - методом CVD - сначала пленку основного материала 2 в виде углеродного материала с sp3 гибридизацией атомных связей. Затем на пленку основного материала 2 тем же методом наносят пленку дополнительного материала 3 в виде углеродного материала с sp2 гибридизацией связей. Контакты 4, 5 из материалов, выбираемых из требований технологии изготовления и обеспечивающие электрическую связь с дополнительным материалом 3, наносят на периферийные области поверхности дополнительного материала 3. Контакты 4, 5 могут иметь вертикальный размер, выбираемый из требований технологии изготовления, и должны обеспечивать возможность дальнейшего вывода на шины выводов контактов 4, 5. Порядок нанесения контактов 4, 5 выбирают из требований технологии изготовления. Затем наносят пленку основного материала 2, покрывающий дополнительный материал 3 и контакты 4, 5.

Для создания ТЭБ сначала изготавливают на подложке 6 ТЭЭ 1. Затем на пленку основного материала 2, покрывающую пленку дополнительного материала 3 и контакты в уже созданном ТЭЭ 1, наносят следующую пленку дополнительного материала 3. Затем на пленку, нанесенную, как указано выше, дополнительного материала 3 наносят контакты 4, 5 и затем поверх пленку основного материала 2. Этот процесс повторяют столько раз, сколько нужно для создания требуемой термоэлектрической батареи.

Настоящий ТЭЭ 1 начинает работать при приложении разности температур между контактами 4 и 5. Если охлаждается контакт 5 и/или прилегающая к нему область дополнительного материала 3, а нагревается контакт 4 и/или прилегающая к нему область дополнительного материала 3, то во внешней цепи между контактами 4-5 будет протекать электрический ток. ТЭЭ 1 при этом работает в режиме термоэлектрического генератора. Если по внешней цепи пропускать электрический ток, направленный от контакта 4 к контакту 5, то контакт 5 и прилегающая к нему область дополнительного материала 3 станут холоднее, чем они были до пропускания тока. ТЭЭ 1 при этом работает в режиме термоэлектрического холодильника.

Примеры конкретного исполнения

Пример 1. Был создан ТЭЭ согласно формуле изобретения. На подложку (пластину из кремния) наносили методом CVD пленку основного материала - углеродного материала с sp3 гибридизацией атомных связей (алмазоподобную пленку) толщиной b=80 нм. Затем на основной материал наносили методом CVD пленку дополнительного материала - углеродного материала с sp2 гибридизацией связей (графитоподобную пленку) толщиной d=40 нм. Пленки лежат в параллельных плоскостях. На пленку из дополнительного материала методом CVD нанесли вторую пленку основного материала толщиной b=80 нм. На одну периферийную область поверхности пленки дополнительного материала наносили один контакт, на противолежащую периферийную область поверхности пленки дополнительного материала наносили второй контакт. При этом были выдержаны соотношения d=40 нм и b/d=2. Контакты обеспечивали электрическую связь с дополнительным материалом за счет того, что они состояли из подслоя хрома толщиной 1 нм и слоя золота толщиной 30 нм поверх него. Далее контакты были выведены на шины. В результате была достигнута эффективность термоэлектрического преобразования Z=0,1 K-1 (при Т=77 K), что по оценке авторов всего в 2 раза меньше, чем в прототипе, при значительном упрощении изготовления. Упрощение состоит в том, что не требовалось изготовления канавок. Технология изготовления канавок требует сложного литографического оборудования. Еще одно упрощение состояло в том, что не требовалось размещения контакта на дне канавки. В настоящее время не существует стандартного оборудования и технологии, обеспечивающих выполнение такой операции.

Пример 2. Во втором варианте исполнения размеры структуры термоэлемента составляли d=20 нм, а соотношение b/d=10. Все остальные параметры оставались те же, что в примере 1. Полученная величина Z=0,044 K-1, что несколько меньше, чем в прототипе, при сильном упрощении изготовления.

Использование настоящей конструкции позволяет преодолеть недостатки ТЭЭ-прототипа, которыми являются технологическая трудность создания канавок необходимых размеров и трудность размещения в них дополнительного материала и электрических контактов к дополнительному материалу. Решена задача разработки такого ТЭЭ, который бы имел более простую в изготовлении конструкцию и при этом сохранял высокий коэффициент полезного действия, а также обеспечивает миниатюризацию устройства, т.к. нанометровые толщины пленок дополнительного материала и менее чем микрометрические расстояния между слоями дополнительного материала позволяют создавать из таких ТЭЭ мини-ТЭБ, удовлетворяющие требованиям пользователей.


ТЕРМОЭЛЕКТРИЧЕСКИЙ ЭЛЕМЕНТ
ТЕРМОЭЛЕКТРИЧЕСКИЙ ЭЛЕМЕНТ
Источник поступления информации: Роспатент

Показаны записи 111-115 из 115.
03.06.2023
№223.018.7627

Способ изготовления наноструктурированного порошка литий-цинк-марганцевого феррита

Изобретение относится к получению наноструктурированного порошка литий-цинк-марганцевого феррита. Способ включает смешивание исходных реагентов, содержащих железо Fe, марганец Mn, цинк Zn, литий Li с деионизованной водой с образованием раствора. Получение из него наноструктурированного порошка...
Тип: Изобретение
Номер охранного документа: 0002768724
Дата охранного документа: 24.03.2022
16.06.2023
№223.018.7c2a

Люминесцирующее стекло

Люминесцирующее стекло относится к материалам квантовой электроники, оптики и может быть использовано в устройствах для отображения информации, электронно-лучевых приборах, индикаторной технике, светодиодах белого свечения, сцинтилляторах, катодо- и рентгенолюминофорах, визуализаторов альфа и...
Тип: Изобретение
Номер охранного документа: 0002744539
Дата охранного документа: 11.03.2021
16.06.2023
№223.018.7c95

Способ изготовления фотоэлектрического концентраторного модуля

Способ изготовления фотоэлектрического концентраторного модуля включает формирование множества солнечных элементов, формирование вторичных концентраторов солнечного излучения, расположенных соосно над солнечными элементами, формирование панели первичных концентраторов, расположенных соосно над...
Тип: Изобретение
Номер охранного документа: 0002740862
Дата охранного документа: 21.01.2021
17.06.2023
№223.018.80eb

Термоядерная мишень непрямого инициирования

Изобретение относится к термоядерной мишени непрямого инициирования. Мишень содержит капсулу с горючим и оболочку, удерживающую рентгеновское излучение, создаваемое при облучении ее внутренней поверхности внешним лазерным излучением. Капсула с горючим зафиксирована в начальном положении...
Тип: Изобретение
Номер охранного документа: 0002765486
Дата охранного документа: 31.01.2022
17.06.2023
№223.018.8105

Солнечный фотоэлектрический модуль

Солнечный фотоэлектрический модуль включает, по меньшей мере, два субмодуля (1), каждый субмодуль (1) содержит зеркальный параболический концентратор (5) солнечного излучения и солнечный элемент (6), расположенный в фокусе зеркального параболического концентратора (5). Зеркальный параболический...
Тип: Изобретение
Номер охранного документа: 0002763386
Дата охранного документа: 28.12.2021
Показаны записи 61-69 из 69.
26.08.2017
№217.015.ed00

Способ изготовления термоэлектрического генератора

Изобретение относится к термоэлектрическим генераторам на основе полупроводниковых структур. Сущность: способ изготовления термоэлектрического генератора включает выкалывание из слитка сульфида самария SmS плоскопараллельной пластины (3), нанесение самария (2) на поверхность первого плоского...
Тип: Изобретение
Номер охранного документа: 0002628677
Дата охранного документа: 21.08.2017
26.08.2017
№217.015.ed5c

Способ получения кристаллических алмазных частиц

Изобретение относится к нанотехнологии алмазных частиц, необходимых для финишной шлифовки и полировки различных изделий и для создания биометок. Способ получения кристаллических алмазных частиц включает добавление к порошку наноалмазов, полученных детонационным синтезом, циклоалкана...
Тип: Изобретение
Номер охранного документа: 0002628617
Дата охранного документа: 21.08.2017
20.01.2018
№218.016.0ffc

Способ получения наночастиц и устройство для его осуществления

Группа изобретений относится к получению металлических наночастиц. Способ включает формирование потока ускоряемых металлических микрочастиц, плавление металлических микрочастиц, подачу потока образовавшихся жидких микрокапель в область цилиндрического осесимметричного электростатического поля,...
Тип: Изобретение
Номер охранного документа: 0002633689
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.11a2

Спектрометр электронного парамагнитного резонанса

Использование: для исследованиях конденсированных материалов и наноструктур методом электронного парамагнитного резонанса (ЭПР) в различных областях науки. Сущность изобретения заключается в том, что спектрометр ЭПР содержит генератор (1) фиксированной частоты, генератор (2), первый делитель...
Тип: Изобретение
Номер охранного документа: 0002634076
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.11a4

Спектрометр электронного парамагнитного резонанса

Использование: для регистрации сигналов электронного парамагнитного резонанса. Сущность изобретения заключается в том, что спектрометр ЭПР содержит генератор фиксированной частоты, генератор переменной частоты, первый делитель мощности, второй делитель мощности, переключатель каналов, первый...
Тип: Изобретение
Номер охранного документа: 0002634075
Дата охранного документа: 23.10.2017
13.02.2018
№218.016.20f8

Солнечный фотоэлектрический концентраторный модуль

Солнечный фотоэлектрический концентраторный модуль содержит первичный оптический концентратор (3) в виде линзы Френеля, с линейным размером D, оптическая ось (4) которой проходит через центр (5) фотоактивной области фотоэлемента (1), выполненной в виде круга диаметром d, и соосный с ним...
Тип: Изобретение
Номер охранного документа: 0002641627
Дата охранного документа: 18.01.2018
13.02.2018
№218.016.249d

Устройство для генерации второй гармоники оптического излучения

Изобретение относится к квантовой электронике, а именно к устройствам удвоения частоты оптического излучения. Устройство для генерации второй гармоники оптического излучения содержит активный элемент на основе нитрида алюминия. Активный элемент выполнен в виде волновода с воздушными обкладками,...
Тип: Изобретение
Номер охранного документа: 0002642472
Дата охранного документа: 25.01.2018
04.04.2018
№218.016.36a8

Способ подстройки коэффициента деления волноводного разветвителя на подложке ниобата лития

Изобретение относится к области интегральной оптики. Способ подстройки коэффициента деления волноводного разветвителя на подложке ниобата лития заключается в том, что подают на входной волновод разветвителя рабочее оптическое излучение, выбирают для подстройки один из выходных волноводов, затем...
Тип: Изобретение
Номер охранного документа: 0002646546
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.36e8

Фотопреобразователь лазерного излучения

Изобретение относится к полупроводниковой электронике. Фотопреобразователь лазерного излучения включает подложку (1) из n-GaAs, на которую последовательно нанесены слой (2) тыльного барьера из n-AlGaAs, базовый слой (3) из n-GaAs, эмиттерный слой (4) из p-GaAs, слой (5) широкозонного окна из...
Тип: Изобретение
Номер охранного документа: 0002646547
Дата охранного документа: 05.03.2018
+ добавить свой РИД