×
26.08.2017
217.015.e931

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ПРЕССОВАННОГО МЕТАЛЛОСПЛАВНОГО ПАЛЛАДИЙ-БАРИЕВОГО КАТОДА

Вид РИД

Изобретение

Аннотация: Изобретение относится к электронной технике и может быть использовано для изготовления эффективных термо- и вторично-эмиссионных катодов. Путем плавки получают интерметаллид РdВа, размалывают в атмосфере инертного газа или СО с получением порошка, полученный порошок смешивают с порошком палладия и проводят механоактивацию полученной смеси в планетарной или вибромельнице в течение 5-15 минут. Полученный после механоактивации порошок прессуют, а прессовку спекают в атмосфере аргона в пучке быстрых электронов при температуре (700-800)°С в течение 25-40 минут. Обеспечивается повышение на (15-17)% коэффициента вторичной электронной эмиссии прессованных металлосплавных катодов Рd-Ва. 2 табл., 2 пр.

Изобретение относится к электронной технике и может быть использовано для изготовления эффективных термо- и вторично-эмиссионных металлосплавных катодов для мощных приборов СВЧ-электроники (ламп бегущей волны, магнетронов и т.п.).

Среди металлосплавных катодов наибольший интерес представляют катоды на основе сплава палладия с барием, поскольку им присуще уникальное свойство - устойчивость к воздействию ионной и электронной бомбардировки.

Существует способ получения катодных материалов на основе металла платиновой группы и бария методом аргонно-дуговой плавки с нерасходуемым вольфрамовым электродом (см.: Н.П. Есаулов. Методы электроплавки при разработке спецсплавов для радиоэлектроники. Электрометаллургия. 2011, №4. - С. 30-33). Указанный способ состоит в следующем. Для проведения процесса плавки используется дуговая вакуумная печь (ДВП). Печь включает форвакуумный насос ВН-2, вакуумный агрегат ВА-0,5; вакуумную камеру, водоохлаждаемый медный кристаллизатор, нерасходуемый вольфрамовый электрод, баллон аргона марки А. Перед плавкой порошок Pd или Pt компактируют (прессуют), а с поверхности бария удаляют парафин и масло, а также слой оксидов. Очищенный барий помещают непосредственно на дно лунки медного водоохлаждаемого кристаллизатора, а сверху на него загружают металл в компактном виде. Рабочую камеру откачивают, напускают аргон. Подают питание на электрод. Происходит расплавление металлов с образованием сплава.

Полученный сплав является двухфазным и представляет собою матрицу тугоплавкого металла (Pd, Pt) с включениями интерметаллического соединения (Pd5Ba; Pt5Ba).

Основной недостаток настоящего способа - сильно неравномерное распределение фазы интерметаллида в матрице металла платиновой группы. Данный факт приводит к понижению коэффициента вторичной электронной эмиссии (КВЭЭ) сплава, понижению к.п.д. электровакуумных приборов (ЭВП) на его основе и уменьшению процента выхода годных.

Наиболее близким к предлагаемому способу (прототипом) является способ получения катодных материалов на основе металла платиновой группы и бария, позволяющий добиться более равномерного распределения интерметаллида в (см.: Н.П. Есаулов. Методы электроплавки при разработке спецсплавов для радиоэлектроники. Электрометаллургия. 2011, №4. - С. 30-33). Указанный способ состоит в следующем. Описанным выше методом аргонно-дуговой плавки выплавляется интерметаллид палладия и бария - Pd5Ba. Этот сплав размалывают в атмосфере инертных газов или углекислого газа, смешивают с таким количеством благородного металла, которое необходимо для получения сплава с заданным составом, прессуют и спекают.

Недостаток настоящего способа - недостаточная однородность распределения интерметаллида в матрице благородного металла, высокая энергоемкость процесса спекания.

Технический результат настоящего изобретения - повышение КВЭЭ катода, к.п.д. и процента выхода годных приборов с использованием катодов Pd-Ba, понижение энергоемкости процесса спекания.

Указанный технический результат достигается тем, что перед проведением операции компактирования (прессования) смеси порошков, состоящей из порошка палладия и порошка интерметаллида, проводят механоактивацию смеси в течение 5-15 минут. После этого полученную смесь прессуют, после чего проводят спекание в атмосфере аргона в пучке быстрых электронов при температуре на (5-10)% меньше температуры эвтектики интерметаллида.

Сущность изобретения состоит в следующем. Механоактивация смеси порошков металла платиновой группы и интерметаллида приводит к уменьшению среднего размера частиц более чем в 2 раза после 5 мин активации и в 10 раз после 15 мин активации, уменьшению в несколько раз среднемассового размера и повышению в несколько раз удельной поверхности частиц порошка. Кроме этого процесс механоактивации приводит к увеличению дефектности и энергонасыщенности активируемых материалов за счет пластического деформирования и дробления.

Совместная механоактивация основных составляющих катодного материала (порошка матрицы и порошка интерметаллида) уже до стадии прессования позволяет получить равномерное распределение интерметаллида в матрице и повысить активность взаимодействующих порошков в процессе спекания.

Значительно меньшие размеры частиц порошка металла платиновой группы и интерметаллида после процесса механоактивации, высокие значения удельной поверхности частиц, а также его повышенная активность еще и за счет выделения в технологическом процессе запасенной энергии позволяют добиться более равномерного распределения интерметаллида Pd5Ba в матрице Pd и за счет этого повысить КВЭЭ катода, к.п.д. и процента выхода годных приборов на основе данного катода.

Замена обычного термического спекания на радиационно-термическое (РТС) в пучке быстрых электронов обусловлено существенно низшей энергоемкостью последнего и более высоким качеством спекания (см.: 1).

При РТС кроме фактора температуры действует также такой существенный фактор, как радиационно-стимулированная диффузия. За счет этого спекание происходит и при более низких температурах, и за более короткое время.

Пример 1. Методом аргонно-дуговой плавки получали стехиометрический сплав Pd5Ba (20,51% мас. содержания Ва). Полученный сплав дробили в чугунной ступке для достижения среднего размера частиц 500-600 мкм.

После этой процедуры 6,5 г полученного порошка сплава Pd5Ba смешивали на смесителе с 29,63 г порошка Pd марки ППд1 ПдАП-1 СТО 00195200 - 040-2008 (для получения в итоге соединения Pd-Ba с содержанием 4,5% мас. содержания Ва).

Полученную смесь порошков прессовали в штабик под давлением 5,0 т/см2. Далее прессовку смеси (Pd-Pd5Ba) помещали в печку. Производили откачку рабочей камеры установки дуговой плавки до давления 10-2 Па. После чего напускали аргон до давления 1,5 атм. Далее печку нагревали до температуры 800°С и проводили спекание прессовки при данной температуре в течение 2,5 час.

Из образовавшегося материала Pd-Ba вырезали образцы толщиной h=500-1000 мкм. Из разных частей полученного образца было изготовлено пять катодов для магнетронов. Так были приготовлены образцы в соответствии с прототипом. Для каждого катода измеряли КВЭЭ. Полученные результаты усредняли и таким образом получали значение КВЭЭ образца, приготовленного в соответствии с прототипом.

Далее готовили образцы в соответствии с предлагаемым способом. Методом аргонно-дуговой плавки получали стехиометрический сплав Pd5Ba (20,51% мас. содержания Ва). Полученный сплав дробили в чугунной ступке для достижения среднего размера частиц 500-600 мкм.

После этой процедуры 6,5 г полученного порошка сплава Pd5Ba смешивали на смесителе с 29,63 г порошка Pd марки ППд1 ПдАП-1 СТО 00195200 - 040-2008 (для получения в итоге соединения Pd-Ba с содержанием 4,5% мас. содержания Ва). Полученную смесь порошков загружали в планетарную мельницу АГО-2С и проводили механоактивацию в течение 8 минут. Процесс механоактивации проводился с использованием стальных шаров и стального барабана.

После механоактивации полученную смесь прессовали в штабик под давлением 5,0 т/см2. Полученную прессовку порошков (Pd-Pd5Ba) помещали в специально сконструированную ячейку для РТС, соединенную с выходным окном ускорителя электронов. Из ячейки откачивали воздух до давления 10-2 Па, после чего напускали аргон до давления 1,5 атм. Далее включали электронный ускоритель ИЛУ-6 (энергия пучка Е=2,5 МэВ) и следили за температурой образца. Температура образцов в процессе радиационной обработки контролировалась термопарой Pt-Pt/Rh. С целью устранения в термопаре наводок от пучка электронов использовался третий платиновый электрод, один конец которого был приварен к рабочему спаю, а противоположный заземлялся. В течение 20 минут работы ускорителя была достигнута температура 800°С. Такая температура образца выдерживалась за счет работы ускорителя в течение 30 минут. После этого ускоритель выключался, и образец естественно охлаждался до комнатной температуры.

Из образовавшегося спеченного материала Pd-Ba вырезали образцы толщиной h=500-1000 мкм. Из разных частей полученного образца было изготовлено восемь катодов для магнетронов. Для каждого катода измеряли КВЭЭ. Полученные результаты сравнивали с результатами испытаний катодов и магнетронов, полученных по технологии прототипа. Результаты представлены в табл. 1.

Пример 2. Методом аргонно-дуговой плавки получали стехиометрический сплав Pd5Ba (20,51% мас. содержания Ва). Полученный сплав дробили в чугунной ступке для достижения среднего размера частиц 500-600 мкм.

После этой процедуры 3,0 г полученного порошка сплава Pd5Ba смешивали на смесителе с 29,37 г порошка Pd марки ППд1 ПдАП-1 СТО 00195200 - 040-2008 (для получения в итоге соединения Pd-Ba с содержанием 1,9% мас. содержания Ва). Полученную смесь порошков загружали в планетарную мельницу АГО-2С и проводили механоактивацию в течение 12 минут. Процесс механоактивации проводился с использованием стальных шаров и стального барабана.

После механоактивации полученную смесь прессовали в штабик под давлением 5,0 т/см2. Полученную прессовку порошков (Pd-Pd5Ba) помещали в специально сконструированную ячейку для РТС, соединенную с выходным окном ускорителя электронов. Из ячейки откачивали воздух до давления 10-2 Па, после чего напускали аргон до давления 1,5 атм. Далее включали электронный ускоритель ИЛУ-6 (энергия пучка Е=2,5 МэВ) и следили за температурой образца. Температура образцов в процессе радиационной обработки контролировалась термопарой Pt-Pt/Rh. С целью устранения в термопаре наводок от пучка электронов использовался третий платиновый электрод, один конец которого был приварен к рабочему спаю, а противоположный заземлялся. В течение 25 минут работы ускорителя была достигнута температура 850°С. Такая температура образца выдерживалась за счет работы ускорителя в течение 37 минут. По истечение 37 минут ускоритель выключался и образец естественно охлаждался до комнатной температуры.

Из образовавшегося спеченного материала Pd-Ba вырезали образцы толщиной h=500-1000 мкм. Из разных частей полученного образца было изготовлено восемь катодов для магнетронов. Для каждого катода измеряли КВЭЭ. Полученные результаты сравнивали с результатами испытаний катодов и магнетронов, полученных по технологии прототипа. Результаты представлены в табл. 2.

Как видно из табл. 1 и табл. 2, операция механоактивации смеси порошков палладия и интерметаллида на его основе и бария существенно влияет на характеристики катодов на их основе. КВЭЭ прессованных металлосплавных катодов, полученных с использованием предлагаемого способа, - на 15-17% выше КВЭЭ катодов, полученных по технологии прототипа.

Ограничения по количеству времени механоактивации выбраны исходя из следующих соображений. При механоактивации порошка исходной навески меньше 5 мин эффект от омеханоактивации не дает заметного результата. В то же время, когда время механоактивации больше 15 мин, дальнейшего качественного роста свойств катодного сплава не наблюдается, но начинает сказываться появление в катоде материала намола (материала барабана и мелющих тел).

Ограничения по времени РТС выбраны из следующих соображений. При длительности РТС прессовки меньше 25 минут эффект увеличения КВЭЭ полученного сплава - незначителен. Длительность РТС больше 40 минут приводит к падению КВЭЭ.

Ограничения по температуре радиационно-термического спекания выбраны из следующих соображений. При температуре РТС меньше 700°С получаемый эффект является не достаточным. В то же время, проведение РТС при температуре больше 800°С приводит к уменьшению эффекта за счет испарения части бария из прессовки.

Источники

1). Суржиков А.П., Притулов A.M. Радиационно-термическое спекание ферритовой керамики. - Москва: Энергоатомиздат, 1998. - 217 с.

2). Костишин В.Г., Коровушкин В.В., Панина Л.В. и др. Магнитная структура и свойства MnZn-ферритов, полученных методом радиационно-термического спекания. Неорганические материалы. 2014, т. 50, №12. - С. 1352-1356.

3). Костишин В.Г., Андреев В.Г., Коровушкин В.В. и др. Получение радиационно-термической керамики марки 2000НН методом радиационно-термического спекания по полной и короткой технологическим схемам. Неорганические материалы. 2014, т. 50, №12. - С. 1387-1392.

4). Киселев Б.Г., Костишин В.Г., Комлев А.С. Обоснование экономических преимуществ технологии радиационно-термического спекания ферритовой керамики. Цветные металлы. 2015, №4. - С. 7-11.

Способ получения прессованного металлосплавного палладий-бариевого катода, включающий получение методом плавки интерметаллида PdBa, его размол в атмосфере инертных газов или CO, смешивание с заданным количеством порошка палладия для получения материала Pd-Ba с заданной концентрацией бария, прессование и спекание в атмосфере инертного газа, отличающийся тем, что перед операцией прессования и спекания проводят механоактивацию полученной смеси порошка в течение 5-15 минут, а спекание осуществляют в пучке быстрых электронов в течение 25-40 минут при температуре 700-800°C.
Источник поступления информации: Роспатент

Показаны записи 111-117 из 117.
09.02.2020
№220.018.015e

Устройство снижения фазовых шумов свч сигнала

Использование: для уменьшения фазовых шумов СВЧ источника. Сущность изобретения заключатся в том, что устройство снижения фазовых шумов СВЧ сигнала содержит аналоговый СВЧ фазовращатель, резонаторы и усилитель, выход фазовращателя подключен к делителю, один выход которого является выходом...
Тип: Изобретение
Номер охранного документа: 0002713718
Дата охранного документа: 06.02.2020
06.07.2020
№220.018.2f80

Способ изготовления окна вывода энергии свч

Изобретение относится к электронной технике, в частности к способам изготовления волноводных узлов устройств СВЧ диапазона. Техническим результатом предлагаемого изобретения является повышение надежности и упрощение процесса изготовления окна вывода энергии СВЧ. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002725698
Дата охранного документа: 03.07.2020
14.05.2023
№223.018.562a

Способ варки стекла в тигле

Изобретение относится к способу варки в тигле. Техническим результатом является упрощение процесса варки стекла в тигле, улучшение качества получаемого стекла. Способ варки стекла в тигле включает приготовление тонкоизмельченной шихты, засыпку шихты в тигель, помещение тигля с шихтой в печь,...
Тип: Изобретение
Номер охранного документа: 0002730273
Дата охранного документа: 21.08.2020
16.05.2023
№223.018.5ed8

Способ изготовления омических контактов мощных электронных приборов

Способ изготовления омических контактов мощных электронных приборов на полупроводниковой гетероструктуре на основе нитрида галлия, включающий формирование заданной топологии омических контактов на заданном наружном слое упомянутой полупроводниковой гетероструктуры, нанесение материала омических...
Тип: Изобретение
Номер охранного документа: 0002756579
Дата охранного документа: 01.10.2021
23.05.2023
№223.018.6bfe

Интегральная схема свч

Изобретение относится к электронной технике, в частности, для использования в радиолокационных станциях с фазированными антенными решетками. Интегральная схема СВЧ, содержащая диэлектрическую подложку из пластины алмаза толщиной более 100 мкм, на лицевой и обратной стороне которой выполнено...
Тип: Изобретение
Номер охранного документа: 0002737342
Дата охранного документа: 27.11.2020
30.05.2023
№223.018.72e7

Окно вывода энергии свч

Изобретение относится к электронной и ускорительной технике, а именно к вакуумноплотным волноводным окнам вывода энергии СВЧ, и может быть использовано при создании сверхмощных клистронов. Технический результат - устранение дополнительных неоднородностей в выходном волноводе, обеспечение...
Тип: Изобретение
Номер охранного документа: 0002739214
Дата охранного документа: 22.12.2020
30.05.2023
№223.018.741d

Способ измерения комплексных диэлектрической и магнитной проницаемостей поглощающих материалов

Изобретение относится к области радиоизмерений параметров поглощающих материалов на СВЧ. Способ измерения комплексных диэлектрической и магнитной проницаемостей поглощающих материалов включает заполнение волноводной секции исследуемым материалом, зондирование электромагнитной волной, измерение...
Тип: Изобретение
Номер охранного документа: 0002744158
Дата охранного документа: 03.03.2021
Показаны записи 111-120 из 125.
19.01.2019
№219.016.b20e

Способ получения интерметаллических покрытий с использованием механохимического синтеза и последующей лазерной обработки

Изобретение относится к способу создания интерметаллических покрытий на основе соединений NiAl и Ni3Al. Осуществляют механоактивационную обработку в шаровой мельнице в течение 30-60 минут совместно с металлическим изделием, на которое наносится покрытие. Затем проводят лазерную обработку...
Тип: Изобретение
Номер охранного документа: 0002677575
Дата охранного документа: 17.01.2019
20.02.2019
№219.016.c09b

Диск из алмазосодержащего материала для обработки материалов электронной техники и изделий из них

Изобретение относится к электронной технике, а именно к механической обработке материалов электронной техники и изделий из них, в том числе полупроводниковых и ферритовых материалов. Технический результат изобретения - повышение выхода годных путем повышения качества обработки, а именно...
Тип: Изобретение
Номер охранного документа: 0002308118
Дата охранного документа: 10.10.2007
20.03.2019
№219.016.e588

Композитный наполнитель в виде порошка и способ его получения

Изобретение относится к композитному наполнителю в виде порошка и способу его получения для эластомерных материалов, предназначенных для изготовления изделий, работающих в условиях сухого трения или повышенного износа и применяемых в двигателе-, компрессоро-, насосостроении и других отраслях...
Тип: Изобретение
Номер охранного документа: 0002319718
Дата охранного документа: 20.03.2008
20.03.2019
№219.016.e7bd

Способ изготовления изделий из ферритового материала для интегральных устройств свч

Изобретение относится к области электротехники, в частности к способу изготовления изделий из ферритового материала на основе параметрического ряда литиевой феррошпинели для интегральных устройств СВЧ. Способ включает приготовление шихты на основе оксидов упомянутого ферритового материала и...
Тип: Изобретение
Номер охранного документа: 0002420821
Дата охранного документа: 10.06.2011
29.03.2019
№219.016.f785

Безэховая камера

Изобретение относится к области радиотехники и звукотехники и может использоваться при строительстве и оборудовании безэховых камер (помещений с радио- и звукоизоляцией), которым предъявляются повышенные требования, и которые могут найти применение при проверке и сертификации...
Тип: Изобретение
Номер охранного документа: 0002447551
Дата охранного документа: 10.04.2012
19.04.2019
№219.017.32dc

Полимерный нанокомпозиционный материал

Изобретение относится к полимерным нанокомпозиционным антифрикционным материалам, которые могут быть использованы в системах, работающих при высоких деформирующих нагрузках и в узлах трения. Материал получен совместной механоактивацией смеси порошкообразного сверхвысокомолекулярного полиэтилена...
Тип: Изобретение
Номер охранного документа: 0002432370
Дата охранного документа: 27.10.2011
29.04.2019
№219.017.445a

Способ получения радиопоглощающего магний-цинкового феррита

Изобретение относится к технологии получения радиопоглощающего магний-цинкового феррита, который может найти широкое применение в производстве безэховых камер, обеспечивающих исключение отражения радиоволн от стен камеры. Техническим результатом изобретения является получение дешевого...
Тип: Изобретение
Номер охранного документа: 0002454747
Дата охранного документа: 27.06.2012
18.05.2019
№219.017.595d

Нанокомпозиционный антифрикционный полимерный материал

Изобретение относится к антифрикционным материалам, применяемым в узлах трения, в подшипниках скольжения, а также в составе конструкционных материалов вращающихся валов турбин, нефтяных буровых системах. Нанокомпозиционный антифрикционный полимерный материал - в виде композиции, включающей...
Тип: Изобретение
Номер охранного документа: 0002414487
Дата охранного документа: 20.03.2011
19.06.2019
№219.017.84e2

Ферритовый материал

Изобретение относится к области металлургии, а именно к ферритовым материалам, используемым в технике СВЧ. Техническим результатом изобретения является снижение значений температурного коэффициента намагниченности насыщения - TKJ, повышение выхода годных невзаимных развязывающих СВЧ устройств...
Тип: Изобретение
Номер охранного документа: 0002291509
Дата охранного документа: 10.01.2007
19.06.2019
№219.017.89a3

Сверхширокодиапазонный поглотитель электромагнитных волн для безэховых камер и экранированных помещений

Изобретение относится к радиофизике, антенной технике и может найти применение при создании поглотителей электромагнитных волн, используемых для оснащения сверхширокодиапазонных многофункциональных безэховых камер (БЭК) и экранированных помещений, обеспечивающих проведение радиотехнических...
Тип: Изобретение
Номер охранного документа: 0002453953
Дата охранного документа: 20.06.2012
+ добавить свой РИД