×
26.08.2017
217.015.e8d6

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике, в частности для определения качества нефтепродуктов, и может быть применено для контроля температурной стойкости и термоокислительной стабильности смазочных материалов. Заявлен способ определения термоокислительной стойкости смазочных материалов, включающий нагревание пробы испытуемого смазочного материала постоянной массы в присутствии воздуха, перемешивание, фотометрирование, определение массы испарившейся пробы при испытании, построение графических зависимостей, по которым определяют параметры процесса окисления. Согласно изобретению испытания проводят в двух циклах изменения температуры. Одну пробу испытывают при ступенчатом увеличении температуры на 10°C от минимального до максимального значения, зависимого от назначения смазочного материала, а другую пробу испытывают при ступенчатом уменьшении температуры на 10°C от принятой максимальной величины до минимальной. Причем через равные промежутки времени испытания для каждой температуры окисленную пробу взвешивают, определяют массу испарившегося смазочного материала и коэффициент испаряемости как отношение массы испарившегося смазочного материала к массе пробы до испытания. Отбирают часть окисленной пробы для определения оптической плотности и по полученным данным определяют показатель термоокислительной стойкости как сумму оптической плотности и коэффициента испаряемости. Строят графические зависимости показателя термоокислительной стойкости, оптической плотности и испаряемости от циклов повышения и понижения температуры испытания, определяют регрессионные уравнения данных зависимостей, которые используют для определения параметров термоокислительной стойкости. По уравнениям зависимостей показателя термоокислительной стойкости определяют температуру начала процессов преобразования в испытуемом смазочном материале в цикле повышения температуры испытания и критическую температуру в цикле понижения температуры испытания, а по координате абсциссы пересечения данных зависимостей определяют предельную температуру работоспособности. При этом значения этих параметров используют в качестве параметров термоокислительной стойкости. Технический результат - повышение информативности контроля качества смазочных материалов за счет определения предельно допустимой температуры работоспособности. 1 з.п. ф-лы, 2 табл., 3 ил.

Изобретение относится к измерительной технике, в частности для определения качества нефтепродуктов, и может быть применено для контроля температурной стойкости и термоокислительной стабильности смазочных материалов.

Известен способ определения термоокислительной стабильности смазочных материалов, включающий нагревание смазочного материала в присутствии воздуха, перемешивание, определение параметров процесса окисления. При этом испытанию подвергают пробу путем нагревания через определенные интервалы времени до определенной температуры с увеличением температуры в начале интервала с выдержкой ее в течение интервала, определяют оптическую плотность в конце каждого интервала времени, строят графическую зависимость оптической плотности от температуры окисления, по точке перегиба которой определяют температуру окисления (Патент РФ №2057326, дата приоритета 04.06.1992, дата публикации 27.03.1996, авторы: Ковальский Б.И. и др., RU).

Наиболее близким по технической сущности и достигаемому результату к заявленному является способ определения термоокислительной стабильности смазочных материалов, заключающийся в том, что смазочный материал постоянной массы нагревают в термостойком стеклянном стакане, как минимум при трех температурах, превышающих температуру начала окисления, и перемешивают стеклянной мешалкой с постоянной скоростью вращения в течение не более 12 часов, причем через равные промежутки времени отбирают пробы для фотометрирования, определяют коэффициент поглощения светового потока окисленным маслом и испаряемость взвешиванием пробы до и после испытания, строят графические зависимости этих параметров от температуры испытания, а термоокислительную стабильность смазочного материала определяют по критической температуре работоспособности, температуре начала окисления и температуре начала испарения (Патент РФ №2274850, дата приоритета 30.08.2004, дата публикации 20.04.2006, авторы: Ковальский Б.И. и др., RU, прототип).

Недостатком известного аналога и прототипа является недостаточная их информативность, так как известные способы не позволяют определить предельно допустимую температуру работоспособности смазочных материалов, позволяющую классифицировать их по группам эксплуатационных свойств.

Задачей изобретения является повышение информативности контроля качества смазочных материалов за счет определения предельно допустимой температуры работоспособности.

Для решения поставленной задачи в способе определения термоокислительной стойкости смазочных материалов, включающем нагревание пробы испытуемого смазочного материала постоянной массы в присутствии воздуха, перемешивание, фотометрирование, определение массы испарившейся пробы при испытании, построение графических зависимостей, по которым определяют параметры процесса окисления, согласно изобретению, испытания проводят в двух циклах изменения температуры, одну пробу испытывают при ступенчатом увеличении температуры на 10°C от минимального до максимального значения, зависимого от назначения смазочного материала, а другую пробу испытывают при ступенчатом уменьшении температуры на 10°C от принятой максимальной величины до минимальной, причем через равные промежутки времени испытания для каждой температуры окисленную пробу взвешивают, определяют массу испарившегося смазочного материала и коэффициент испаряемости, как отношение массы испарившегося смазочного материала к массе пробы до испытания, отбирают часть окисленной пробы для определения оптической плотности, по полученным данным определяют показатель термоокислительной стойкости как сумму оптической плотности и коэффициента испаряемости, строят графические зависимости показателя термоокислительной стойкости, оптической плотности и испаряемости от циклов повышения и понижения температуры испытания, определяют регрессионные уравнения данных зависимостей, которые используют для определения параметров термоокислительной стойкости, причем по уравнениям зависимостей показателя термоокислительной стойкости определяют температуру начала процессов преобразования в испытуемом смазочном материале, в цикле повышения температуры испытания, и критическую температуру, в цикле понижения температуры испытания, а по координате абсциссы пересечения данных зависимостей определяют предельную температуру работоспособности, при этом значения этих параметров используют в качестве параметров термоокислительной стойкости.

Согласно изобретению, по уравнениям зависимостей оптической плотности и испаряемости в циклах повышения температуры испытания смазочного материала определяют температуры начала процессов окисления и испарения, а в циклах понижения температуры испытания определяют критическую температуру окисления и испарения, а по координате абсцисс пересечения этих зависимостей определяют предельно допустимые температуры окисления и испарения испытуемого смазочного материала, которые дополнительно используют в качестве параметров термоокислительной стойкости.

Сущность способа поясняется графически.

На фиг. 1 (а, б, в) представлены зависимости оптической плотности (D), испаряемости (G) и показателя термоокислительной стойкости (Птос) в циклах повышения и понижения температуры испытания частично синтетического моторного масла Castrol Magnatec 10W-40 Sl/CF в температурном интервале от 150 до 180°C (кривая 1) и от 180 доя 150°C (кривая 2); на фиг. 2 (а, б, в) - зависимости оптической плотности, испаряемости и показателя термоокислительной стойкости в циклах повышения и понижения температуры испытания частично синтетического моторного масла Лукойл Люкс 5W-40 SL/CF соответственно в температурном интервале от 150 до 180°C (кривая 1) и от 180 до 150°C (кривая 2); фиг. 3 (а, б, в) - зависимости оптической плотности, испаряемости и показателя термоокислительной стойкости в циклах повышения и понижения температуры испытания минерального моторного масла Zic HIFLO 10W-40 SL в температурном интервале от 150 до 180°C (кривая 1) и от 180 до 150°C (кривая 2).

Способ определения термоокислительной стойкости смазочных материалов осуществляется следующим образом. Пробу исследуемого смазочного материала постоянной массы (100±0,1 г) помещают в прибор для термостатирования и термостатируют последовательно при температурах, например для моторных масел 150, 160, 170, 180°C в течение постоянного времени, например, 8 часов для каждой температуры. При термостатировании проба смазочного материала перемешивается с помощью мешалки с постоянной частотой вращения, температура испытания поддерживается автоматически с точностью ±1°C. После каждой температуры проба взвешивается, определяется масса испарившегося смазочного материала и коэффициент испаряемости KG:

KG=m/М,

где m - масса испарившегося смазочного материала, г; М - масса пробы до испытания, г.

Отбирается часть пробы окисленного масла для фотометрирования и определения оптической плотности D:

где Ф - световой поток, падающий на слой смазочного материала; Ф0 - световой поток, прошедший через слой окисленного смазочного материала.

Определяется показатель термоокислительной стойкости (Птос), как сумма оптической плотности и коэффициента испаряемости:

Птос=D+KG

Аналогичная технология термостатирования применяется для других температур. Испытания смазочного материала при увеличении температуры осуществляются в цикле повышения температуры.

Новая проба исследуемого смазочного материала постоянной массы (100±0,1 г) испытывается в цикле понижения температуры испытания от 180 до 150°C с понижением на 10°C по той же технологии. По полученным экспериментальным данным строятся графические зависимости показателя термоокислительной стойкости Птос, оптической плотности D и испаряемости G в циклах повышения и понижения температуры испытания, определяются регрессионные уравнения этих зависимостей от температуры испытания в циклах повышения и понижения температуры, которые описываются полиномом второго порядка:

Птос=аТ2+bT+с;

D=аТ2+bT+с;

G=аТ2+bT+с.

Приравнивая параметры Птос, D, G к нулю и решая эти уравнения для циклов повышения температуры испытания, определяют температуры начала процессов окисления, испарения и температурных преобразований, учитывающих совместно температуры окисления и испарения, а решая уравнения зависимостей показателей в цикле понижения температуры испытания, определяют критические температуры окисления, испарения и температурных преобразований. Предельную температуру работоспособности исследуемого смазочного материала определяют по координате абсциссы пересечения графических зависимостей Птос=ƒ(T), D=ƒ(T) и G=ƒ(T) в циклах повышения и понижения температуры испытания. Более точное определение предельной температуры работоспособности исследуемого смазочного материала производят путем приравнивания уравнений Птос=ƒ(T), D=ƒ(T) и G=ƒ(Т) в циклах повышения и понижения температуры испытания к нулю и определения корней уравнений.

Результаты испытания частично синтетических моторных масел Castrol Magnatec 10W-40 Sl/CF, Лукойл Люкс 5W-40 SL/CF и минерального Zic HIFLO 10W-40 SL сведены в таблицу 1.

Сводные данные температурных показателей исследованных масел сведены в таблицу 2.

Исследованные масла относятся к одной группе эксплуатационных свойств SL для бензиновых двигателей, что подтверждено результатами исследования по предельным температурам работоспособности, по оптической плотности D, испаряемости G и показателю термоокислительной стойкости Птос.

Для сравнения смазочных масел одного назначения необходимо их исследовать в одинаковых температурных диапазонах, например, для моторных масел использовать температурный диапазон от 150 до 180°C в цикле повышения температуры на 10°C, кроме того, время испытания должно быть постоянным. Для трансмиссионных масел этот диапазон температур должен составлять от 120 до 150°C.

Предлагаемое техническое решение позволяет получить расширенную информацию по термоокислительной стойкости смазочных масел по таким показателям, как температуры начала процессов окисления, испарения и их совместного проявления; критические температуры процессов окисления, испарения и их совместного проявления и предельные температуры работоспособности, определяемые по оптической плотности, испаряемости и показателю термоокислительной стойкости, а также промышленно применимо при назначении и контроле группы эксплуатационных свойств.


СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
Источник поступления информации: Роспатент

Показаны записи 221-230 из 335.
14.08.2019
№219.017.bf71

Анодный блок алюминиевого электролизера

Изобретение относится к анодному блоку алюминиевых электролизеров. Анодный блок алюминиевого электролизера выполнен с расположенными на его нижней рабочей поверхности каналами, для этого в подошве анода размещены изготовленные из алюминиевого прутка алюминиевые решетки, расположенные под...
Тип: Изобретение
Номер охранного документа: 0002697149
Дата охранного документа: 12.08.2019
14.08.2019
№219.017.bf72

Способ полунепрерывного литья слитков из алюминиевых сплавов

Изобретение относится к полунепрерывному литью слитков из алюминиевых сплавов. Расплавленный металл подают в водоохлаждаемый кристаллизатор (1) скольжения и частично погружают в расплавленный металл в кристаллизаторе инертное по отношению к расплавленному металлу теплоотводящее устройство (4)...
Тип: Изобретение
Номер охранного документа: 0002697144
Дата охранного документа: 12.08.2019
14.08.2019
№219.017.bf7b

Сплав белого цвета на основе золота 585 пробы

Изобретение относится к области металлургии сплавов на основе золота, предназначенных для изготовления ювелирных изделий и имеющих белый цвет. Сплав белого цвета на основе золота 585 пробы содержит компоненты в следующем соотношении, мас.%: золото - 58,5-59,0; палладий - 7,5-10,0; медь -...
Тип: Изобретение
Номер охранного документа: 0002697142
Дата охранного документа: 12.08.2019
14.08.2019
№219.017.bf87

Способ окисления углерода, содержащегося в электролите алюминиевого электролизера

Изобретение относится к способу окисления углерода электролита алюминиевого электролизера. Способ включает подачу воздуха в электролит, при этом подают отработанный сжатый осушенный воздух от пневмоцилиндра привода штока загрузочного устройства дозирования сырья алюминиевого электролизера в...
Тип: Изобретение
Номер охранного документа: 0002697141
Дата охранного документа: 12.08.2019
15.08.2019
№219.017.bff3

Устройство для пофазной компенсации реактивной мощности

Изобретение относится к области электротехники и может быть использовано для снижения потерь электрической энергии в трехфазных четырехпроводных сетях низкого напряжения с неравномерной и/или несимметричной нагрузкой и увеличения пропускной способности данных сетей. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002697259
Дата охранного документа: 13.08.2019
23.08.2019
№219.017.c2d9

Драга

Изобретение относится к горной технике, а именно к устройству для разработки россыпных месторождений полезных ископаемых дражным способом. Технический результат заключается в предотвращении разубоживания золотоносных песков. Драга включает дражную бочку, галечный лоток, расположенный под...
Тип: Изобретение
Номер охранного документа: 0002697983
Дата охранного документа: 21.08.2019
02.10.2019
№219.017.cb8e

Вакуумный ковш для выливки жидкого металла

Изобретение относится к области металлургии и может быть использовано при выливке алюминия из электролизеров, транспортировки в литейное отделение и заливки его в миксер. Вакуумный ковш содержит металлический корпус (4), футерованный огнеупорным материалом, грузоподъемную траверсу (3), съемную...
Тип: Изобретение
Номер охранного документа: 0002701613
Дата охранного документа: 30.09.2019
02.10.2019
№219.017.cec1

Лабораторная установка для исследований анодных процессов алюминиевого электролизера

Изобретение относится к лабораторной установке для исследований анодных процессов алюминиевого электролизера. Установка содержит шахтную электропечь, две электролизные ячейки с исследуемым электролитом, помещенные в стальную реторту с графитовым порошком, представляющие собой графитовые тигли с...
Тип: Изобретение
Номер охранного документа: 0002700904
Дата охранного документа: 23.09.2019
03.10.2019
№219.017.d198

Тренажер глазомерного определения пространственного положения забуриваемых шпуров

Изобретение относится к горному делу и предназначено для определения пространственного положения взрывных шпуров. Тренажер глазомерного определения пространственного положения забуриваемых шпуров содержит имитатор буровой машины, включающий буровой молоток с буровой штангой. Штанга выполнена...
Тип: Изобретение
Номер охранного документа: 0002701763
Дата охранного документа: 01.10.2019
04.10.2019
№219.017.d1fc

Устройство для очистки сточных вод асимметричным током

Изобретение может быть использовано в металлургической и машиностроительной областях промышленности при электрохимической очистке сточных вод. Устройство для очистки сточных вод асимметричным током содержит электролизер (3), управляемый источник питания электролизера (1), формирующий прямой и...
Тип: Изобретение
Номер охранного документа: 0002701938
Дата охранного документа: 02.10.2019
Показаны записи 131-135 из 135.
03.08.2019
№219.017.bc3f

Способ определения влияния температуры испытания на свойства продуктов окисления смазочных материалов

Изобретение относится к технологии испытания смазочных материалов и может использоваться для определения изменения состава продуктов окисления. Сущность: пробу смазочного материала постоянной массы термостатируют минимум при трех температурах, при атмосферном давлении с перемешиванием. Через...
Тип: Изобретение
Номер охранного документа: 0002696357
Дата охранного документа: 01.08.2019
15.11.2019
№219.017.e246

Способ определения предельно допустимых показателей работоспособности смазочных материалов

Изобретение относится к технологии определения качества нефтепродуктов и может применяться для контроля термоокислительной стабильности и температурной области работоспособности смазочных материалов. Предложен способ определения предельно допустимых показателей работоспособности смазочных...
Тип: Изобретение
Номер охранного документа: 0002705942
Дата охранного документа: 12.11.2019
09.02.2020
№220.018.015f

Способ определения состояния работающих моторных масел и технического состояния двигателей внутреннего сгорания

Изобретение относится к технологии оценки качества работающих моторных масел и технического состояния двигателей внутреннего сгорания. Предложен способ определения состояния работающих моторных масел и технического состояния двигателей внутреннего сгорания путем фотометрирования проб работающих...
Тип: Изобретение
Номер охранного документа: 0002713810
Дата охранного документа: 07.02.2020
13.02.2020
№220.018.0229

Способ определения работоспособности смазочных масел

Изобретение относится к технологии оценки качества работающих моторных масел, технического состояния двигателей внутреннего сгорания и системы фильтрации. Предложен способ определения работоспособности смазочного масла, заключающийся в том, что отбирают пробы работающего масла из двигателя...
Тип: Изобретение
Номер охранного документа: 0002713920
Дата охранного документа: 11.02.2020
29.05.2020
№220.018.21ad

Способ определения температуры начала изменения показателей термоокислительной стабильности и предельной температуры работоспособности смазочных материалов

Изобретение относится к технологии определения показателей термоокислительной стабильности смазочных материалов. Предложен способ, при котором пробы смазочного материала термостатируют минимум при трех выбранных температурах в присутствии воздуха с перемешиванием постоянной массы в течение...
Тип: Изобретение
Номер охранного документа: 0002722119
Дата охранного документа: 26.05.2020
+ добавить свой РИД