×
26.08.2017
217.015.e574

Результат интеллектуальной деятельности: Способ измельчения бемита

Вид РИД

Изобретение

Аннотация: Изобретение относится к химической промышленности и предназначено для тонкого измельчения суспензии порошка бемита до нанодисперсного состояния. Способ измельчения бемита заключается в том, что для циркуляции водной суспензии бемита используют рециркуляционный контур, включающий рециркуляционную емкость 8 и кавитационный диспергатор 1, содержащий статор и ротор. При этом посредством регулятора 3 скорости вращения ротора обеспечивают оптимальную частоту кавитационных импульсов при длине рециркуляционного контура в диапазоне от 0,7 до 2 м. Оптимальную частоту кавитационных импульсов выбирают в диапазоне от 50 до 200 кГц. Концентрация суспензии бемита составляет от 100 до 400 г бемита на 1 л воды. Циркуляцию суспензии бемита осуществляют в течение 20-40 мин. Способ позволяет упростить процедуру подбора частоты для разрушения агрегатов частиц бемита в режиме резонансного разрыва. 1 з.п. ф-лы, 3 ил., 5 пр.

Изобретение относится к химической промышленности и предназначено для тонкого измельчения суспензии порошка бемита до нанодисперсного состояния.

В промышленности широко используются методы измельчения с использованием шаровых и вибрационных мельниц [Балкевич В.Л. Техническая керамика: Учеб. пособие для втузов. - 2-е изд., перераб. и доп. - М.: Стройиздат, 1984. - 256 с., ил.]. Оборудование является металлоемким и энергозатратным. Длительное измельчение в течение многих часов даже в жидкой среде не позволяет измельчать материал до среднего размера менее 1-2 мкм.

Известен способ измельчения и дезагрегации порошков с применением ультразвука [Летуновский В.В., Андросов В.Н., Петровский Э.А. Приготовление смеси карбида вольфрама и кобальта с использованием ультразвука // Порошковая металлургия. - 1971. - №3 - С. 93-95]. В работе для получения однородной по размерам частиц смеси была проведена ультразвуковая обработка порошка карбида вольфрама и кобальта с исходным размером частиц 0,5-6 мкм. За 60 мин обработки 96% всех частиц имели максимальный размер менее 2 мкм. Для достижения такого же результата методом мокрого помола в шаровых мельницах потребовалось бы около 100 часов. Метод эффективный, но не позволяет достичь нанодисперсного состояния твердых и прочных частиц.

Известен способ получения наночастиц путем измельчения в специально подобранной жидкой среде с использованием планетарной мельницы. Путем использования определенного соотношения «материал : шары : жидкость» удается за 6 часов получить частицы оксида алюминия со средним размером частиц 100 нм и 5-50 нм для более мягкого и прочного шунгита [Способ получения частиц наноразмеров из минерала шунгит RU 2442657 или А. Балкин Планетарные шаровые мельницы: измельчение до наноразмеров, Наноиндустрия, 2012, №2, с. 32-33.] По сравнению с традиционными шаровыми и вибрационными мельницами планетарные мельницы позволяют для некоторых материалов приблизиться к нанометровому диапазону. Однако способ является энергозатратным и длительным.

Наиболее близким по совокупности существенных признаков является способ измельчения труднообогатимых руд, описанный в патенте RU 2203738. Способ включает дозированную подачу суспензии вода-руда и измельчение ее со вскрытием зерен по полезного ископаемого по естественным дефектам в кавитационном диспергаторе, генерирующем последовательно гидроударные нагрузки и кавитационные импульсы, образованные расширением канала потока и колебаниями резонаторов с частотой собственных колебаний частиц руды. В этом способе суспензию вода-руда многократно прокачивают по рециркуляционному циклу между кавитационным диспергатором и рециркуляционной емкость, из которой полученную смесь изымают после достижения ее нужного состояния. Используемый в RU 2203738 кавитационный диспергатор содержит корпус с ротором и статором со щелями в боковых стенках, и рабочую камеру, а также закрепленные в рабочей камере резонаторы. Подбор частоты осуществляют выбором обоймы резонаторов, настроенных на необходимую частоту, а настройку на необходимую частоту осуществляют регулировкой скорости истечения струи из щели ротора, изменением расстояния между внешним диаметром ротора и резонатором. Недостатком этого способа является сложность регулирования частоты импульсов кавитационного воздействия, сложность конструкции используемого кавитационного диспергатора.

Задачей предложенного способа является получение суспензии наночастиц бемита при использовании более простого кавитационного диспергатора и упрощение процедуры подбора частоты.

Задача решается тем, что способ измельчения бемита с использованием рециркуляционного контура, включающего для циркуляции водной суспензии бемита рециркуляционную емкость и кавитационный диспергатор, содержащий статор и ротор, отличается тем, что используют суспензию бемита концентрацией в диапазоне от 100 до 400 г бемита на 1 л воды, обеспечивают оптимальную частоту кавитационных импульсов путем использования регулятора скорости вращения ротора кавитационного диспергатора при длине рециркуляционного контура в диапазоне от 0,7 до 2,0 м, и оптимальную частоту кавитационных импульсов выбирают в диапазоне от 50 до 200 кГц.

При этом циркуляцию суспензии бемита осуществляют в течение 20-40 мин.

Технический результат заключается в возможности использования упрощенной конструкции кавитационного диспергатора и упрощения процедуры подбора частоты для разрушения агрегатов частиц бемита в режиме резонансного разрыва.

Изобретение поясняется фигурами, где на фиг. 1 показана схема устройства, предназначенного для реализации данного способа, на фиг. 2 показано распределение частиц исходного порошка бемита, на фиг. 3 - распределение частиц порошка бемита после обработки заявленным способом в течение 30 мин.

Устройство для реализации заявленного способа содержит кавитационный диспергатор 1, содержащий статор и ротор, снабженные пазами, причем количество пазов в статоре равно количеству пазов в роторе и равно числу N, которое определяет соотношение между частотой кавитационных импульсов и скоростью вращения ротора диспергатора 1. Число N для некоторых существующих кавитационных диспергаторов находится в диапазоне 30-35. Ротор диспергатора 1 вращается электродвигателем 2, скорость вращения которого определяется электронным регулятором 3 скорости вращения ротора. Регулятор 3 соединен с электродвигателем 2 проводом 12.

Кавитационный диспергатор 1 имеет входной патрубок 4, расположенный по оси вращения ротора, и выходной патрубок 5.

Устройство для реализации заявленного способа содержит также рециркуляционную емкость 8, в которую по трубопроводу 13 может подаваться исходная смесь. Выход рециркуляционной емкости 8 через кран 9 трубопроводом 7 соединен с входным патрубком 4 диспергатора 1. Выходной патрубок 5 диспергатора 1 трубопроводом 6 соединен с рециркуляционной емкостью 8. Таким образом, кавитационный диспергатор 1 и рециркуляционная емкость 8 соединены в рециркуляционный контур.

Имеется также трубопровод 10, снабженный краном 11, для отвода готовой суспензии из рециркуляционной емкости 8.

В заявленном способе измельчения бемита использьзуют рециркуляционный контура, включающего для циркуляции водной суспензии бемита рециркуляционную емкость 8 и кавитационный диспергатор 1. При этом длину рециркуляционного контура выбирают в диапазоне от 0,7 до 2,0 м. Это оптимальное значение определено в результате экспериментов.

Сначала по трубопроводу 13 подают в рециркуляционную емкость исходную суспензию бемита с концентрацией в диапазоне от 100 до 400 г бемита на 1 л воды. При концентрации суспензии более 400 г на 1 л воды происходит забивание трубопроводов порошком наноструктурного бемита, при концентрации меньше 100 г на литр происходит падение производительности установки. Затем запускают электродвигатель 2, открывают кран 9, и суспензия по трубопроводу 7 поступает к входному патрубку 4 кавитационного диспергатора 1.

При вращении ротора между пластинами ротора и статора возникают гидроударные и кавитационные импульсы, частота которых в N раз превышает скорость вращения ротора, которая соотносится со скоростью вращения электродвигателя 2, и регулируется с помощью регулятора 3, управляющего через провод 12 скоростью вращения электродвигателя 2 для достижения резонансного режима разрушения частиц бемита. Оптимальная частота кавитационных импульсов для получения суспензии наночастиц была подобрана экспериментально путем анализа состава переработанной суспензии при различных значениях скорости вращения электродвигателя 2. Последняя связана с частотой кавитационных импульсов через число пазов N в роторе (статоре) кавитационного диспергатора 1 и передаточное число между скоростью вращения ротора и скоростью вращения электродвигателя 2. Таким образом, было определено, что оптимальная частота кавитационных импульсов находится в диапазоне 50-200 кГц.

В диспергаторе 1 за счет центробежной силы суспензия через выходной патрубок 5 по трубопроводу 6 поступает обратно в рециркуляционную емкость 8. Суспензия проходит необходимое количество циклов до достижения требуемой степени размола бемита. Циркуляцию суспензии бемита осуществляют в течение 20-40 мин. Пределы времени обработки определяются условиями получения нанодисперсного порошка. Процесс измельчения со временем замедляется и при времени более 40 мин дальнейшая обработка становится нецелесообразной, а при длительности менее 20 мин не обеспечивается получение нанопорошка бемита.

Готовая суспензия через кран 11 по трубопроводу 10 поступает на производство.

Указанные значения длины рециркуляционного контура, частоты кавитационных импульсов и времени циркуляции суспензии бемита являются оптимальными в совокупности и определены экспериментально. При длине замкнутого контура более 2 м и частоте кавитационных импульсов менее 50 кГц процесс измельчения бемита существенно замедляется, и ни при каком времени циркуляции суспензии не обеспечивается получение нанопорошка.

Способ поясняется следующими примерами.

Пример 1. 200 г порошка размешивают вручную в 1 л воды и полученную суспензию заливают в рециркуляционную емкость 8. Кавитационный диспергатор 1 включают на 30 мин, частота кавитационных импульсов 130 кГц, длина рециркуляционного контура 1,6 м. После выключения кавитационного диспергатора открывают кран 11 и сливают суспензию. Суспензию подкисляют азотной кислотой до рН=5, чтобы исключить последующую агрегацию. По данным микроскопического анализа на сканирующем зондовом микроскопе SolverNext средний размер частиц составил 47 нм при среднеквадратичном отклонении 35 нм. Распределения частиц исходного порошка до и после кавитационной обработки представлено на фиг. 2 и фиг. 3.

Пример 2. Последовательность технологических операций и значения технологических параметров как в примере 1, но время обработки 15 мин. Средний размер частиц после обработки 115 нм.

Пример 3. Последовательность технологических операций и значения технологических параметров как в примере 1, но время обработки 50 мин. Средний размер частиц после обработки 45 нм.

Пример 4. Последовательность технологических операций и значения технологических параметров как в примере 1, но частота кавитационных импульсов менее 30 кГц. Средний размер частиц после обработки 130 нм.

Пример 5. Последовательность технологических операций и значения технологических параметров как в примере 1, но длина замкнутого контура 2,5 м. Средний размер частиц после обработки 120 нм.

Для средних значений интервала технологических параметров происходит эффективное разрушение агрегатов бемита с образованием нанопорошка.


Способ измельчения бемита
Способ измельчения бемита
Источник поступления информации: Роспатент

Показаны записи 81-90 из 300.
26.08.2017
№217.015.d846

Лапа культиватора

Изобретение относится к области сельскохозяйственного машиностроения, в частности к рабочим органам почвообрабатывающих машин. Лапа культиватора содержит держатель и два крыла с лезвиями, наплавленными износостойким слоем на ее лобовой части от носка лапы до места крепления к держателю, долото...
Тип: Изобретение
Номер охранного документа: 0002622694
Дата охранного документа: 19.06.2017
26.08.2017
№217.015.d847

Электрический садовый инструмент для уборки плодов

Изобретение относится к устройствам для сбора фруктов с деревьев. Электрический садовый инструмент для уборки плодов содержит рукоятку, закрепленный на рукоятке нож, мини мотор-редуктор с зубчатой передачей и кольцо с эластичным рукавом. Кольцо с эластичным рукавом связано с приемной емкостью....
Тип: Изобретение
Номер охранного документа: 0002622713
Дата охранного документа: 19.06.2017
26.08.2017
№217.015.d85d

Способ возделывания топинамбура в кормовом севообороте

Изобретение относится к области сельского хозяйства. Способ заключается в осенней предпосадочной обработке почвы, внесении органических и минеральных удобрений, нарезке гряд с технологическими промежутками между ними, посадке семенных клубней осенью или весной, весенне-летней междурядной...
Тип: Изобретение
Номер охранного документа: 0002622687
Дата охранного документа: 19.06.2017
26.08.2017
№217.015.d86c

Электрический плодосъемник

Изобретение относится к устройствам для сбора фруктов с деревьев. Электрический плодосъемник содержит рукоятку, закрепленный на рукоятке нож, мини мотор-редуктор и блок питания. Блок питания размещен в корпусе ножа. Нож выполнен в виде двух соосно размещенных цилиндрических лезвий. Лезвия имеют...
Тип: Изобретение
Номер охранного документа: 0002622714
Дата охранного документа: 19.06.2017
26.08.2017
№217.015.d880

Рабочий орган для безотвальной обработки почвы

Изобретение относится к сельскохозяйственному машиностроению. Рабочий орган для безотвальной обработки почвы содержит наплавленное твердосплавное покрытие, нанесенное в виде валиков с толщиной слоя 2-4 мм. Первые валики расположены на лицевой поверхности в носовой части рабочего органа и...
Тип: Изобретение
Номер охранного документа: 0002622691
Дата охранного документа: 19.06.2017
26.08.2017
№217.015.d889

Универсальная лапа культиватора

Изобретение относится к области сельскохозяйственного машиностроения, в частности к рабочим органам почвообрабатывающих машин. Универсальная лапа культиватора содержит держатель и два крыла с лезвиями, наплавленными износостойким слоем на ее лобовой части от носка лапы до места крепления к...
Тип: Изобретение
Номер охранного документа: 0002622688
Дата охранного документа: 19.06.2017
26.08.2017
№217.015.d88e

Контейнерная система сбора картофеля для безбункерного комбайна

Изобретение относится к сельскому хозяйству. Контейнерная система содержит безбункерный прицепной картофелекопатель, раму, колесную ось, средний транспортер, два боковых загрузочных транспортера, вильчатый манипулятор, установленный на раме с возможностью поворота вил в горизонтальной плоскости...
Тип: Изобретение
Номер охранного документа: 0002622692
Дата охранного документа: 19.06.2017
26.08.2017
№217.015.d8aa

Способ эксплуатационного контроля технического состояния и прогнозирования ресурса подшипников электродвигателей

Изобретение относится к измерительной технике и может быть использовано при эксплуатации электродвигателей и другой техники с подшипниковыми узлами для определения текущего состояния подшипников и прогнозирования ресурса по завершении определенного времени с начала эксплуатации. Способ...
Тип: Изобретение
Номер охранного документа: 0002622493
Дата охранного документа: 15.06.2017
26.08.2017
№217.015.dc03

Способ и устройство технологически и экономически оптимальной сверхвысокочастотной сушки сыпучих кормов для животноводства и птицеводства

Группа изобретений относится к сельскому хозяйству, в частности к сушке сыпучих кормов. Устройство содержит датчик скорости движения (1) поступающих на сушку сыпучих кормов в рабочих органах транспортеров, выход которого соединен с входом измерителя расхода (2) поступающих на сушку сыпучих...
Тип: Изобретение
Номер охранного документа: 0002624199
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.dc32

Устройство для высева семян

Изобретение относится к сельскохозяйственному машиностроению, в частности к пневматическим высевающим аппаратам, которые могут быть использованы в сеялках, преимущественно для однозернового высева семян различных культур. Устройство для высева семян состоит из семенного бункера, вертикально...
Тип: Изобретение
Номер охранного документа: 0002624200
Дата охранного документа: 03.07.2017
Показаны записи 81-90 из 120.
26.08.2017
№217.015.d889

Универсальная лапа культиватора

Изобретение относится к области сельскохозяйственного машиностроения, в частности к рабочим органам почвообрабатывающих машин. Универсальная лапа культиватора содержит держатель и два крыла с лезвиями, наплавленными износостойким слоем на ее лобовой части от носка лапы до места крепления к...
Тип: Изобретение
Номер охранного документа: 0002622688
Дата охранного документа: 19.06.2017
26.08.2017
№217.015.d88e

Контейнерная система сбора картофеля для безбункерного комбайна

Изобретение относится к сельскому хозяйству. Контейнерная система содержит безбункерный прицепной картофелекопатель, раму, колесную ось, средний транспортер, два боковых загрузочных транспортера, вильчатый манипулятор, установленный на раме с возможностью поворота вил в горизонтальной плоскости...
Тип: Изобретение
Номер охранного документа: 0002622692
Дата охранного документа: 19.06.2017
26.08.2017
№217.015.d8aa

Способ эксплуатационного контроля технического состояния и прогнозирования ресурса подшипников электродвигателей

Изобретение относится к измерительной технике и может быть использовано при эксплуатации электродвигателей и другой техники с подшипниковыми узлами для определения текущего состояния подшипников и прогнозирования ресурса по завершении определенного времени с начала эксплуатации. Способ...
Тип: Изобретение
Номер охранного документа: 0002622493
Дата охранного документа: 15.06.2017
26.08.2017
№217.015.dc03

Способ и устройство технологически и экономически оптимальной сверхвысокочастотной сушки сыпучих кормов для животноводства и птицеводства

Группа изобретений относится к сельскому хозяйству, в частности к сушке сыпучих кормов. Устройство содержит датчик скорости движения (1) поступающих на сушку сыпучих кормов в рабочих органах транспортеров, выход которого соединен с входом измерителя расхода (2) поступающих на сушку сыпучих...
Тип: Изобретение
Номер охранного документа: 0002624199
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.dc32

Устройство для высева семян

Изобретение относится к сельскохозяйственному машиностроению, в частности к пневматическим высевающим аппаратам, которые могут быть использованы в сеялках, преимущественно для однозернового высева семян различных культур. Устройство для высева семян состоит из семенного бункера, вертикально...
Тип: Изобретение
Номер охранного документа: 0002624200
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.df93

Способ и устройство дифференцированного дозирования жидких органических удобрений

Изобретение относится к области механизации сельскохозяйственного производства, а именно к внесению жидких органических удобрений. Способ заключается в том, что определяют дозу внесения удобрений, производят подачу жидких органических удобрений из емкости 1 агрегата центробежным насосом 2 по...
Тип: Изобретение
Номер охранного документа: 0002625177
Дата охранного документа: 12.07.2017
26.08.2017
№217.015.dfc9

Способ обрезки плодовых деревьев

Изобретение относится к сельскохозяйственным технологическим процессам, а именно к обрезке плодовых деревьев в промышленных насаждениях. Способ заключается в том, что проводят операции среза ветвей с помощью инструмента, обеззараживание режущей части инструмента и места среза, защиту места...
Тип: Изобретение
Номер охранного документа: 0002625183
Дата охранного документа: 12.07.2017
26.08.2017
№217.015.e136

Способ оценки качества работы гидроподжимных муфт при переключении зубчатых передач гидрофицированных коробок передач самоходных машин

Изобретение относится к техническому диагностированию гидрофицированных силовых передач самоходных машин. Способ оценки качества работы гидроподжимных муфт при переключении зубчатых передач гидрофицированных коробок передач осуществляется без разрыва потока мощности в передачах во время их...
Тип: Изобретение
Номер охранного документа: 0002625507
Дата охранного документа: 14.07.2017
26.08.2017
№217.015.e33f

Алюмооксидный носитель катализатора

Изобретение относится к технике получения термостойких носителей катализаторов и может найти применение в машиностроении, химической и других отраслях промышленности. Заявлена шихта носителя катализатора, включающая тальк и каолин, дополнительно содержащая белую сажу и моногидрат оксида...
Тип: Изобретение
Номер охранного документа: 0002626001
Дата охранного документа: 21.07.2017
26.08.2017
№217.015.e3c0

Способ оптимизации метрологии оптического излучения и устройство для его реализации - универсальный фотометр-эксергометр

Изобретение относится к области оптических измерений и касается способа оптимизации метрологии оптического излучения. Способ заключается в том, что выделяют часть энергии оптического излучения, которая потенциально пригодна в фотоэлектрическом, фотосинтезном, световом, эритемном и квантовом...
Тип: Изобретение
Номер охранного документа: 0002626219
Дата охранного документа: 24.07.2017
+ добавить свой РИД