×
26.08.2017
217.015.e4a2

Результат интеллектуальной деятельности: Способ получения поликристаллических алмазных материалов

Вид РИД

Изобретение

№ охранного документа
0002625693
Дата охранного документа
18.07.2017
Аннотация: Изобретение относится к производству поликристаллических алмазных материалов (поликристаллов), которые могут быть использованы в качестве режущих инструментов, в буровых долотах, в волоках и др., а также в качестве конструкционных материалов. Способ включает образование металлического покрытия на поверхности частиц алмазного порошка и формирование из алмазного порошка поликристаллического алмазного материала воздействием давления и температуры, при этом в качестве алмазного порошка используют синтетический алмазный порошок, содержащий внутрикристаллические металлические включения, который подвергают термической обработке в защитной атмосфере при температуре перехода металлических включений в жидкую фазу и выделения на поверхности частиц расплава в виде капель с последующим охлаждением при температуре окружающей среды и с образованием на поверхности частиц алмазного порошка прерывистого покрытия. Термообработку проводят при температуре 1200-1600°C в течение 15-30 мин. Технический результат: повышение износостойкости за счет большого объемного содержания алмазных частиц и возможности более плотного их компактирования, термостойкости за счет очень малого содержания металлических включений в материале и прочности. 1 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к производству поликристаллических алмазных материалов (поликристаллов), которые могут быть использованы в качестве режущих инструментов, в буровых долотах, в волоках и др., а также в качестве конструкционных материалов.

Поликристаллические алмазные материалы состоят из связанных между собой алмазных порошков, представляющих алмазные частицы, зерна, образующих хотя бы одну преимущественно непрерывную алмазную матрицу, и расположенных между алмазными зернами межкристаллитных зон, которые могут образовывать поры в материале либо могут быть заполнены металлической матрицей-связкой. Как правило, для изготовления поликристаллических материалов используются синтетические алмазные порошки.

Один из способов получения поликристаллических алмазных материалов заключается в связывании алмазных частиц под воздействием высоких давлений и температур в области термодинамической стабильности алмаза без использования дополнительных связующих материалов (самосвязанные частицы). Связывание алмазных частиц происходит за счет пластической деформации алмазных частиц в точках их контакта, где образуется очень высокое контактное давление, которое намного превышает номинальное давление. Такой поликристалл содержит связанные друг с другом алмазные частицы и межкристаллитные зоны, образующие микропористость материала (US №6860914, кл. B24D 3/00, 2004 г., ЕРВ №0155066, 1984 г.). Полученные поликристаллы имеют высокую износостойкость, благодаря высокому объемному содержанию алмазных частиц, т.к. частицы контактируют друг с другом практически без какой-либо металлической прослойки, и высокую термостойкость, так как практически не содержат металлической фазы, которая генерирует тепло в зоне контакта режущей части инструмента с обрабатываемым материалом, вызывающее появление трещин в материале и тепловое повреждение алмазных частиц. Однако наличие микропор отрицательно сказывается на хрупкости поликристаллического материала. Для уменьшения хрупкости материал, состоящий из самосвязанных алмазных части, может быть дополнительно пропитан связующим материалом (SU №411724, кл. С01В 31/06, 1969 г.), что усложняет технологию получения материала.

В патенте US №3574580, кл. B24D3/02, 1971 г., предлагается вводить небольшое количество металла 1-3 вес. % для упрочнения связи между самосвязанными алмазными частицами. Однако недостаток способа заключается в том, что малое количество металла не позволяет получить гомогенную смесь из алмазных частиц с небольшим количеством металла.

Известны способы изготовления алмазных поликристаллов воздействием на смесь алмазных частиц и металлических порошков высоким давлением и температурой в области стабильности алмаза, при этом металл берут в таком количестве, чтобы алмазные частицы находились в окружении металла (US №3141746, кл. B24D 3/08, 1964 г.). По известному способу получают прочный поликристаллический алмазный материал с содержанием алмазного порошка около 50 об. %. Однако из-за невысокого содержания алмазных частиц алмазный материал имеет относительно низкую износостойкость, а большое количество металла существенно снижает его термостойкость. Чтобы повысить износостойкость, из таких поликристаллических материалов полностью или частично удаляют металл-связующее различными известными способами, например электролитическим, травлением кислотами и т.п.

Известно, что для равномерного распределения алмазных частиц в поликристалле металлическое связующее вводят в шихту в виде покрытия на алмазных частицах (ЕР №0570635, кл. B24D 3/00. 1992 г.). Авторы данного изобретения считают, что толщина покрытия должна обеспечивать содержание металла в компакте до 50% по весу. Такое покрытие позволяет получить высокопрочный материал. Однако, как было указано выше, большое количество металлического связующего не позволяет получить материал с высоким содержанием алмазных частиц для того, чтобы получить высокоизносостойкий термостойкий инструмент.

Наиболее близким техническим решением к заявленному способу является способ получения сверхтвердого поликристаллического алмазного материала, заключающемуся в нанесении покрытия на алмазные частицы и спекании покрытых частиц в условиях высоких давлений и температур (GB №2486973, кл. B22F 1/025, 2012 г.). На алмазные частицы предлагается наносить ультратонкое покрытие, толщиной от 0,3 нм до 100 нм, которое покрывает частицу полностью. В соответствии с изобретением такая толщина покрытия позволяет получить поликристаллический алмазный материал с объемным содержанием алмазных частиц, близким к 99%, при этом ультратонкий связующий слой, кроме того, что обеспечивает повышенную износостойкость и термостойкость материала, может улучшить ударную вязкость инструмента. Однако нанесение ультратонкого слоя покрытия на алмазные частицы, особенно на частицы микронного размера, существенно усложняет технологию изготовления поликристаллического материала. Также следует отметить, что объемное содержание алмазных частиц, близкое к 99%, в соответствии с известным патентом получают при использовании алмазных микропорошков и мельче (от 50 нм до 50 мкм), т.к. только в этом случае можно получить достаточно плотную упаковку алмазных частичек при формовании материала.

Техническая задача заключается в создании простого способа получения поликристаллического алмазного материала, обладающего высокой износостойкостью благодаря высокой концентрации алмазного порошка, жаропрочностью благодаря низкому содержанию металлического материала, высокой прочностью благодаря надежному удержанию алмазных зерен в алмазном поликристалле, а также в возможности использования более крупных алмазных порошков.

Технический результат достигается тем, что в способе получения поликристаллического алмазного материала, включающем образование металлического покрытия на поверхности частиц алмазного порошка и формирование из алмазного порошка поликристаллического алмазного материала воздействием давления и температуры, в качестве алмазного порошка используют синтетический алмазный порошок, содержащий внутрикристаллические металлические включения, который подвергают термической обработке в защитной атмосфере при температуре перехода металлических включений в жидкую фазу и выделения на поверхности частиц расплава в виде капель с последующим охлаждением при температуре окружающей среды и с образованием на поверхности частиц алмазного порошка прерывистого покрытия.

Термообработку проводят при температуре 1200-1600°С в течение 15-30 мин. Защитной атмосферой может быть вакуум, аргон, гелий и др.

Сущность способа заключается в следующем.

По общепринятой технологии алмазные порошки после синтеза подвергают обработке (очистке) различными кислотами для удаления металлических включений в виде металлов или сплавов катализаторов-растворителей (Сверхтвердые материалы. 1989 г., №2, с. 30-31). Однако после очистки кислотами порошки представляют собой синтетические алмазные частицы, содержащие внутрикристаллические металлические включения в количестве до 1,5% вес. Количество металлических включений определяет марку алмазных порошков. В качестве внутрикристаллических включений синтетические алмазные порошки содержат металлы или сплавы катализаторов-растворителей, которые использовались при синтезе алмаза. В основном для промышленных целей в качестве катализаторов-растворителей используются такие металлы, как железо, кобальт никель, хром, марганец или их сплавы. При нагреве до температуры, при которой металлические включения приобретают жидкотекучее состояние, они выступают на поверхности частиц в виде капель. При охлаждении при температуре окружающей среды капли металла или сплава застывают, образуя прерывистое покрытие на поверхности алмазной частицы в виде бугорков. При изготовлении поликристаллического материала при воздействии давления и температуры алмазные частицы сближаются друг с другом, металлические бугорки расплющиваются, расплавляются и растекаются по поверхности алмазных частиц, образуя в зависимости от количества выплавленного металла сверхтонкое сплошное или прерывистое покрытие. В результате алмазные частицы контактируют друг с другом через сверхтонкий металлический слой, позволяющий получить высокую концентрацию алмазных частиц в поликристаллическом материале. При выплавлении металлических включений часть металла можно оставить в микротрещинах приповерхностного слоя частиц, который будет способствовать более надежной связи покрытия с поверхностью алмазной частицы и, соответственно, более прочному удержанию алмазных частиц в поликристаллическом материале, повышая его прочность.

Известна термохимическая очистка алмазных порошков, при которой алмазные порошки подвергают термообработке при температуре перехода металлов или сплавов катализаторов-растворителей в жидкую фазу, при которой металлические включения диффундируют к поверхности кристалла. После термообработки порошки подвергают химической очистке для удаления выделившихся металлических включений с поверхности зерен (Сверхтвердые материалы. №3, 1982 г., с. 29-30). В известном решении термообработка проводится для выделения металлических включений из внутрикристаллической решетки алмаза на его поверхность, которые удаляются затем химической обработкой.

Отличие заявленного способа обработки от известного состоит в том, что после выступания капель на поверхности алмазных частиц металлов или сплавов растворителей-катализаторов их не удаляют с поверхности частиц, а используют в качестве связующего материала при изготовлении алмазных поликристаллов.

На фотографии показана прошедшая термообработку алмазная частица - кристалл алмаза, на грани которого белые пятна относятся к каплям застывшего металла или сплава металлов катализаторов-растворителей.

Способ изготовления алмазного инструмента осуществляется следующим образом.

Алмазные порошки, содержащие внутрикристаллические металлические включения, предварительно подвергают очистке химическими растворителями для удаления поверхностных загрязнений. Очищенные порошки помещают в термостойкий контейнер, который устанавливают в печь с защитной атмосферой: вакуум, аргон и др. Порошки нагревают до соответствующей температуры и выдерживают в течение 15-30 мин. После выдержки порошки вынимают из печи и охлаждают при температуре окружающей среды. Термообработку алмазных порошков можно проводить в стандартных печах, например, типа СВШЛ 0,6/25 с вольфрамовым нагревателем, в которых создают вакуум не ниже 10-2 мм рт.ст. Можно использовать любые другие печи, обеспечивающие необходимую температуру, защитную атмосферу для исключения деградации алмазных зерен.

Температура термообработки составляет 1200-1600°С. При этой температуре приобретают жидкую фазу большинство металлов или сплавов металлов, используемых при синтезе алмазных порошков в качестве катализаторов-растворителей. Наличие металла на поверхности алмазных зерен можно увидеть визуально (см. фото). При температуре до 1200°С наблюдается незначительное выделение металлических включений из алмазных зерен, нагрев до температуры выше 1600°С приводит к чрезмерной деградации алмазных зерен. Время выдержки 15-30 мин, так же как и температура, зависит от используемых металлов или сплавов металлов катализаторов-растворителей, а также от марки алмазного порошка. В течение этого времени можно получить более полное выплавление металлических включений на поверхность алмаза. Так как внутрикристаллические металлические включения содержатся в алмазных частицах в малых количествах (до 1,5% вес.), то количество металла, выделившегося на поверхности частицы, также будет незначительным и будет образовывать либо сплошное, либо прерывистое тонкое покрытие, а оставшаяся в приповерхностных микротрещинах алмазного зерна часть металла будет более надежно удерживать покрытие на поверхности алмазного зерна.

Известны алмазные порошки с прерывистым покрытием (RU №2274541, кл. B24D 3/00, 2004 г.). Металл покрытия находится во впадинах рельефной поверхности алмазных частиц и не препятствует возможности получения поликристаллического алмазного материала с высоким содержанием алмазных зерен. Однако технология получения такого покрытия имеет определенные сложности, т.к. для получения прерывистого покрытия необходима дополнительная механическая обработка алмазных частиц, предварительно полностью покрытых металлом.

Алмазные порошки с прерывистым покрытием помещают в устройство для изготовления поликристаллического алмазного материала и подвергают спеканию под воздействием давления.

Спекание осуществляют при давлении, например, от 10 кбар и до 40 кбар. Диапазон температуры спекания от 1400°С и выше. Время спекания от нескольких секунд до нескольких мин.

Известно, что термическая обработка алмазного порошка при температуре выше 1000°С снижает прочностные характеристики алмазных порошков, что связано со структурными изменениями алмазных зерен порошка при нагреве из-за удаления из внутрикристаллической решетки алмаза металлических включений («Физико-химические свойства алмазов». Труды «ВНИИАЛМАЗа», №3, М., 1974 г., с. 27-31). Под действием давления термообработанные алмазные зерна, прочность которых существенно уменьшилась, разрушаются, создавая условия более плотного их компактирования (RU №2493135, С04В 35/5831, 2008 г.).

Разрушение термообработанных алмазных зерен позволяет получать алмазные поликристаллические материалы из более крупных алмазные порошков, которые являются по сравнению с микропорошками более технологичны при изготовлении алмазных материалов.

Изготавливали поликристаллический алмазный материал из термообработанных алмазных порошков марки АС50 зернистостью 100/80, содержащих металлические включения в количестве до 1,5% вес. Алмазные порошки термообрабатывали при температуре 1300°С в течение 15 мин. Поликристаллический материал спекали при давлении 20 кбар и температуре 1400°С. Из материала были изготовлены резцы для точения меди.

В таблице приведены результаты испытаний заявленного материала и широко используемых в промышленности композиционных алмазных материалов.

Износостойкость кромки резцов определялась при точении меди с режимами резания: V = 200 м/мин, S прод. = 0,04 мм/об, S поп. = 0,3 мм/ход.

Таким образом, благодаря формированию с помощью термообработки на частицах алмазного порошка сверхтонкого покрытия можно получить алмазный композиционный материал, обладающий повышенной износостойкостью за счет большого объемного содержания алмазных частиц и возможности более плотного их компактирования, высокой термостойкостью за счет очень малого содержания металлических включений в материале и высокой прочностью.


Способ получения поликристаллических алмазных материалов
Источник поступления информации: Роспатент

Показаны записи 11-19 из 19.
10.08.2015
№216.013.6a2d

Масса для изготовления алмазного инструмента

Изобретение относится к области инструментального производства, в частности к алмазным инструментам, содержащим алмазные зерна, связанные органическим связующим. Масса для изготовления алмазного инструмента содержит алмаз, органическое связующее и углеродный наполнитель, в качестве которого она...
Тип: Изобретение
Номер охранного документа: 0002558734
Дата охранного документа: 10.08.2015
10.12.2015
№216.013.9631

Способ получения графена

Изобретение может быть использовано при изготовлении электронных и оптоэлектронных устройств, а также солнечных батарей. Исходный графит диспергируют иглофрезерованием с получением продукта диспергирования, содержащего графен и графитовые элементы. Затем из полученного продукта диспергирования...
Тип: Изобретение
Номер охранного документа: 0002570069
Дата охранного документа: 10.12.2015
20.01.2016
№216.013.a12d

Способ изготовления высокоизносостойкого алмазного инструмента

Изобретение относится к области машиностроения, в частности, для получения инструментов на металлических связках, содержащих в качестве режущих зерен алмазные порошки. Способ включает формирование брикета из алмазосодержащей шихты и пропитку брикета пропиточным материалом, при этом в состав...
Тип: Изобретение
Номер охранного документа: 0002572903
Дата охранного документа: 20.01.2016
25.08.2017
№217.015.a959

Способ изготовления алмазного инструмента

Изобретение относится к производству алмазного инструмента, который эффективно осуществляет обработку деталей в режиме самозатачивания. Способ включает термическую обработку синтетических алмазных порошков и формование из обработанных алмазных порошков алмазного инструмента, при этом в качестве...
Тип: Изобретение
Номер охранного документа: 0002611633
Дата охранного документа: 28.02.2017
26.08.2017
№217.015.d828

Способ обработки алмазных кристаллов и алмазных материалов

Изобретение относится к технологии обработки алмазных кристаллов и алмазных материалов. Техническим результатом является понижение уровня опасности при использовании в технологическом процессе газообразного водорода. Способ обработки алмазных кристаллов и алмазных материалов путем...
Тип: Изобретение
Номер охранного документа: 0002622568
Дата охранного документа: 16.06.2017
17.02.2018
№218.016.2bfc

Масса с полимерным связующим для изготовления алмазного инструмента для работы с наложением электрического тока и в обычном режиме

Изобретение относится к производству алмазных инструментов, в частности к производству алмазных кругов на полимерных связках для обработки труднообрабатываемых материалов с наложением электрического тока и в обычном режиме. Масса содержит, об. %: алмаз 12,5-37,5; медь 15,5-35,5; олово 7,5-15,0;...
Тип: Изобретение
Номер охранного документа: 0002643400
Дата охранного документа: 01.02.2018
19.12.2018
№218.016.a82e

Способ получения графена, пленок и покрытий из графена

Изобретение относится к нанотехнологии и может быть использовано при изготовлении композитов, электрохимических и электрофизических устройств. В электролите, содержащем источник углерода, размещают электроды. В качестве анода используют электропроводные материалы, такие как железо, алюминий,...
Тип: Изобретение
Номер охранного документа: 0002675146
Дата охранного документа: 17.12.2018
01.03.2019
№219.016.ce54

Способ изготовления режущих элементов на основе порошков сверхтвердых материалов

Изобретение относится к изготовлениию режущих элементов, включающих связку и порошки сверхтвердых материалов. Используют порошки сверхтвердых материалов, по меньшей мере, двух зернистостей, при этом из порошков сверхтвердых материалов большей зернистости формируют пористую основу элемента....
Тип: Изобретение
Номер охранного документа: 0002425162
Дата охранного документа: 27.07.2011
15.11.2019
№219.017.e1f0

Первичный химический источник тока на основе графена

Изобретение относится к области электротехники. Первичный химический источник тока представляет собой новый класс энергонасыщенных не перезаряжаемых химических источников тока на основе графена в электрохимической системе металл-окисленный углерод, где в качестве токообразующего компонента...
Тип: Изобретение
Номер охранного документа: 0002706015
Дата охранного документа: 13.11.2019
Показаны записи 21-25 из 25.
27.04.2019
№219.017.3e04

Способ получения композиционного материала на основе порошков алмаза и/или кубического нитрида бора

Изобретение относится к области машиностроения, в частности к получению композиционных материалов, с высоким объемным содержанием порошков алмаза и/или кубического нитрида бора. Может использоваться в качестве режущих элементов, для изготовления детали машин и приборов. Порошки алмаза и/или...
Тип: Изобретение
Номер охранного документа: 0002385356
Дата охранного документа: 27.03.2010
19.06.2019
№219.017.88ed

Алмазное трубчатое сверло

Сверло содержит трубчатый корпус и прерывистую рабочую часть с прерывистой режущей кромкой в виде алмазосодержащего покрытия на трубчатом корпусе. Для повышения работоспособности трубчатых сверл малого диаметра при обработке глубоких отверстий рабочая часть сверла выполнена ориентированной в...
Тип: Изобретение
Номер охранного документа: 0002419519
Дата охранного документа: 27.05.2011
19.06.2019
№219.017.8921

Алмазное тонкостенное сверло

Сверло содержит трубчатый корпус с образующими утоненную часть корпуса кольцевыми проточками, выполненными на наружной и внутренней его поверхностях, и рабочую часть, полученную нанесением на корпус гальванических алмазосодержащих слоев. Для повышения работоспособности и стойкости за счет...
Тип: Изобретение
Номер охранного документа: 0002423206
Дата охранного документа: 10.07.2011
15.02.2020
№220.018.02d2

Способ нанесения графенового покрытия на металлические порошки

Изобретение относится к способу нанесения нанодисперсного двухмерного углеродного материала графена на частицы металлических порошков. Металлический порошок смешивают с углеродосодержащим компонентом в виде жидкой среды, выбранной из группы кислот: угольной, углекислой, уксусной, муравьиной,...
Тип: Изобретение
Номер охранного документа: 0002714151
Дата охранного документа: 12.02.2020
14.03.2020
№220.018.0bcb

Способ нанесения износостойкого покрытия

Изобретение относится к области металлургии и может быть использовано при формировании режущей кромки инструмента из твердых сплавов и быстрорежущих сталей. В процессе формирования режущей поверхности пластин из твердого сплава производят полирование полировочной смесью с использованием...
Тип: Изобретение
Номер охранного документа: 0002716561
Дата охранного документа: 12.03.2020
+ добавить свой РИД