×
26.08.2017
217.015.e468

Результат интеллектуальной деятельности: Способ преобразования угла поворота вала в код

Вид РИД

Изобретение

№ охранного документа
0002626552
Дата охранного документа
28.07.2017
Аннотация: Изобретение относится к области автоматики и вычислительной техники. Техническим результатом является повышение точности преобразования угла в код без использования внешнего эталона. В способе для контроля преобразователя формируют разность выходного и второго выходного кодов, по которой контролируют точность преобразования. Для этого вал датчиков устанавливают с шагом 360°/(p⋅p) в расчетные положения по значениям второго кода угла, а не по значениям эталона, в этих положениях фиксируют значения первого кода угла, находят приращения первого кода угла при повороте на р шагов, формируют первую поправку как сумму пространственных гармоник погрешности первого датчика для угла, соответствующего первому коду угла, формируют выходной код, прибавляя первую поправку к первому коду угла. Для формирования второго выходного кода угла находят приращения первого кода угла при повороте вала на p шагов, формируют вторую поправку как сумму пространственных гармоник погрешности второго датчика для угла, соответствующего второму коду угла, формируют второй выходной код, прибавляя вторую поправку к второму коду угла, и используют разность выходного и второго выходного кодов для контроля точности преобразования. 1 ил.

Изобретение относится к области автоматики и вычислительной техники и может быть использовано для связи источников информации об угловом положении вала с ЭВМ в управляющих и информационных системах.

Известны способы преобразования угла поворота вала в код (авторские свидетельства №1181135, №1381711, №1786662, патент РФ №2235422), основанные на том, что вал датчиков угла (далее - датчиков) поворачивают в диапазоне преобразования, преобразуют угол поворота вала в сигналы, определяют амплитуды и фазы пространственных гармоник погрешности преобразования, формируют поправки и затем формируют выходной код угла. Недостатком этих способов является необходимость разворота вала на полный оборот, при ограничении угла поворота вала меньшим углом перечисленные способы не могут быть использованы.

Наиболее близким техническим решением, выбранным за прототип, является способ преобразования угла поворота вала в код по патенту РФ №2266614. Известный способ основан на том, что вал первого и второго датчиков поворачивают в пределах диапазона, не меньшего 360°(1/p1+1/p2), где p1 и p2 - числа периодов погрешности соответственно первого и второго датчика на обороте вала; преобразуют угол поворота вала в сигналы первого и второго датчиков с различными спектрами пространственной погрешности; выходные сигналы первого и второго датчиков преобразуют в первый и второй коды угла; определяют амплитуды и фазы пространственных гармоник погрешности первого и второго датчиков; формируют первую поправку как сумму пространственных гармоник погрешности первого датчика для угла, соответствующего первому коду угла; формируют выходной код, прибавляя первую поправку к первому коду угла, формируют вторую поправку как сумму пространственных гармоник погрешности второго датчика для угла, соответствующего второму коду угла; формируют второй выходной код, прибавляя вторую поправку к второму коду угла; формируют разность выходного и второго выходного кодов, по которой контролируют точность преобразования.

В известном способе определение амплитуд и фаз пространственных гармоник погрешности осуществляется при повороте вала датчиков в пределах диапазона, не меньшего 360°(1/p1+1/p2). Условием для реализации способа является преобразование сигналов датчиков в код в угловых положениях, равномерно распределенных в диапазоне угла поворота с заданным шагом, равным 360°/(p1⋅p2). Условие выполняется при использовании внешнего эталона угла, например, на углоизмерительном стенде. В технических системах возможность использования внешнего эталона часто ограничивается конструкцией системы, что не позволяет использовать известный способ для аттестации и компенсации погрешности преобразования.

Предлагаемое изобретение решает задачу совершенствования способов преобразования угла в код при ограниченном угле поворота.

Техническим результатом является повышение точности преобразования угла в код без использования внешнего эталона.

Для решения поставленной задачи в способе преобразования угла поворота вала в код, основанном на том, что вал первого и второго датчиков поворачивают в пределах диапазона, не меньшего 360°(1/p1+1/p2), где p1 и p2 - числа периодов погрешности соответственно первого и второго датчика на обороте вала, преобразуют угол поворота вала в сигналы первого и второго датчиков с различными спектрами пространственной погрешности, выходные сигналы первого и второго датчиков преобразуют в первый и второй коды угла, определяют амплитуды и фазы пространственных гармоник погрешности первого и второго датчиков, формируют первую поправку как сумму пространственных гармоник погрешности первого датчика для угла, соответствующего первому коду угла, формируют выходной код, прибавляя первую поправку к первому коду угла, формируют вторую поправку как сумму пространственных гармоник погрешности второго датчика для угла, соответствующего второму коду угла, формируют второй выходной код, прибавляя вторую поправку к второму коду угла, формируют разность выходного и второго выходного кодов, по которой контролируют точность преобразования. При этом согласно предлагаемому изобретению:

- вал датчиков устанавливают с шагом 360°/(p1⋅p2) в расчетные положения по значениям второго кода угла, далее в этих положениях фиксируют значения первого кода угла, находят приращения первого кода угла при повороте на p2 шагов;

- определяют амплитуды и фазы i-x пространственных гармоник погрешности первого датчика, умножая амплитуды спектральных составляющих приращений первого кода угла при повороте на p2 шагов на и сдвигая их фазу на угол ;

- находят приращения первого кода угла при повороте вала на p1 шагов, а амплитуды и фазы j-x пространственных гармоник погрешности второго датчика определяют, умножая амплитуды спектральных составляющих приращений первого кода угла при повороте на p1 шагов на и сдвигая их фазы на угол , где i и j - номера пространственных гармоник погрешности первого и второго датчиков угла.

Блок-схема устройства, реализующего предлагаемый способ преобразования угла поворота вала в код, приведена на фиг. 1, где приняты следующие обозначения:

1, 2 - датчики с различными спектрами пространственных погрешностей (далее - датчики),

3, 4 - преобразователи сигналов датчиков в код угла (далее - преобразователи),

5 - блок формирования массива (значений) кодов,

6, 12, 18 - блоки вычитания кодов,

7, 13 - блоки сдвига кодов,

8, 14 - анализаторы спектра,

9, 15 - блоки коррекции,

10, 16 - блоки синтеза поправки,

11, 17 - сумматоры,

19 - компаратор.

Способ преобразования угла поворота вала состоит из следующих действий:

- преобразуют угол поворота вала в сигналы первого и второго датчиков с различными спектрами пространственной погрешности;

- выходные сигналы первого и второго датчиков преобразуют в первый и второй коды угла;

- перед началом преобразования вал первого и второго датчиков поворачивают в диапазоне, не меньшем 360°(1/p1+1/p2));

- вал датчиков устанавливают с шагом 360°/(p1⋅p2) в расчетные положения по значениям второго кода угла, в этих положениях фиксируют значения первого кода угла;

- находят приращения первого кода угла при повороте вала на p2 шагов;

- проводят спектральный анализ совокупности приращений первого кода угла при повороте вала на p2 шагов, полученной в диапазоне, не меньшем 360°(1/p1+1/p2);

- определяют амплитуды и фазы i-x пространственных гармоник погрешности первого датчика, умножая амплитуды спектральных составляющих приращений первого кода угла при повороте вала на р2 шагов на и сдвигая их фазу на угол ;

- в процессе преобразования угла поворота вала в код формируют первую поправку как сумму пространственных гармоник погрешности первого датчика для угла, соответствующего первому коду угла, и формируют выходной код, прибавляя первую поправку к первому коду угла.

Для контроля точности преобразования угла в код дополнительно выполняют следующие действия:

- находят приращения первого кода угла при повороте вала на p1 шагов;

- проводят спектральный анализ совокупности приращений первого кода угла при повороте вала на p1 шагов, полученной в диапазоне, не меньшем 360°(1/p1+1/p2);

- определяют амплитуды и фазы j-x пространственных гармоник погрешности второго датчика, умножая амплитуды спектральных составляющих приращений первого кода угла при повороте вала на p1 шагов на и сдвигая их фазы на угол ;

- в процессе преобразования угла поворота вала в код формируют вторую поправку как сумму пространственных гармоник погрешности второго датчика для угла, соответствующего второму коду угла, формируют второй выходной код, прибавляя вторую поправку к второму коду угла;

- формируют разность выходного и второго выходных кодов, по которой контролируют точность преобразования.

Устройство работает следующим образом.

Датчики 1 и 2 преобразуют угол α поворота вала в электрические сигналы, а преобразователи 3 и 4 преобразуют эти сигналы в первый N1 и второй N2 коды угла соответственно. Коды угла N1 и N2 формируются с некоторыми погрешностями Δ1 и Δ2 соответственно:

;

.

В устройстве комплексируются датчики 1 и 2 с различными спектрами пространственных погрешностей так, чтобы при всех i=1,2,…,а и j=1,2,…,b выполнялось неравенство i⋅p1≠j⋅p2.

Перед началом преобразования поворачивают вал в пределах диапазона, не меньшего 360°(1/p1+1/p2), устанавливая с шагом 360°/(p1⋅p2) в расчетные положения по значениям второго кода угла N2, в этих положениях фиксируют значения первого кода угла N1.

При установке вала датчиков в k-е расчетное положение, в котором второй код угла N2 равен k⋅360°/(p1⋅p2), истинное угловое положение вала датчиков отличается от расчетного на угол, соответствующий погрешности второго датчика угла, при этом и значение первого кода угла также смещается на величину погрешности второго датчика угла. В результате значения первого кода угла N1, фиксируемые в задаваемых положениях, содержат погрешности как первого, так и второго датчиков угла.

В блоке 5 из этих значений формируется массив значений MN1.

Массив значений MN1 подается в блок 6 вычитания кодов непосредственно и через блок 7 сдвига кодов, где массив значений MN1 сдвигается на p2 позиций. В блоке 6 в результате вычитания поступающих кодов формируется массив первых приращений первого кода угла N1 при повороте вала на p2 шагов.

Массив приращений первого кода угла при повороте вала на р2 шагов поступает в анализатор 8 спектра, который производит спектральный анализ массива и определяет амплитуды и фазы его спектральных составляющих. В блоке 9 коррекции определяют амплитуды и фазы i-x пространственных гармоник погрешности первого датчика, умножая амплитуды спектральных составляющих приращений первого кода угла N1 при повороте вала на p2 шагов на и сдвигая их фазу на угол .

Амплитуды и фазы гармоник с номерами i⋅p1 при всех i=1,2,…,а запоминаются в памяти блока 10.

В процессе преобразования первый код угла N1 из преобразователя 3 поступает в блок 10, в котором формируется поправка Q1:

.

В сумматоре 11 поправка Q1 добавляется к первому коду угла N1, поступающему из преобразователя 3, и на выходе формируется выходной код угла Nout1:

.

При малых значениях погрешности Δ1, таких, что обеспечивается условие , поправка и выходной код угла равен , т.е. погрешность в выходном коде скомпенсирована с точностью до величины второго порядка малости, обусловленной вычислительными погрешностями и точностью выполнения условия .

Для обеспечения контроля точности преобразования массив значений MN1, первого кода угла N1 подается также в блок 12 вычитания кодов непосредственно и через блок 13 сдвига кодов, где массив значений MN1 сдвигается на p1 позиций. В блоке 12 в результате вычитания поступающих кодов формируется массив приращений первого кода угла N1 при повороте вала на p1 шагов.

Массив вторых приращений поступает в анализатор 14 спектра, который производит спектральный анализ массива и определяет амплитуды и фазы его спектральных составляющих. В блоке 15 коррекции определяют амплитуды и фазы j-x пространственных гармоник погрешности второго датчика, умножая амплитуды спектральных составляющих приращений первого кода угла при повороте вала на p1 шагов на и сдвигая их фазы на угол . Из блока 15 амплитуды и фазы гармоник с номерами j⋅p2 при всех j=1,2,…,b перед началом преобразования записываются в память блока 16.

В процессе преобразования второй код угла N2 из преобразователя 4 поступает в блок 16, в котором формируется поправка Q2:

.

В сумматоре 17 поправка Q2 добавляется к второму коду угла N2, поступающему из преобразователя 4, и на выходе формируется второй выходной код угла Nout2:

.

При малых значениях погрешности Δ2, таких, что обеспечивается условие , поправка и второй выходной код равен , т.е. погрешность во втором выходном коде Nout2 также скомпенсирована с точностью до величины второго порядка малости, обусловленной вычислительными погрешностями и точностью выполнения условия .

В блоке 18 вычисляется разность выходных кодов Nout1 и Nout2

,

которая также представляет собой величину второго порядка малости по сравнению с . Величина в компараторе 19 сравнивается по модулю с установленным допуском ε, и на выходе компаратора при вырабатывается признак S достоверности выходного кода. Если по каким-либо причинам (изменение условий эксплуатации, старение элементов и материалов и т.п.) погрешности датчиков изменяются и величина становится больше чем допуск ε, признак S перестает вырабатываться, что сигнализирует о необходимости повторения калибровки преобразователя, проведенной перед началом преобразования.

Предлагаемое техническое решение в настоящее время уже используется при калибровке цифровых преобразователей угла, изготавливаемых предприятием. Таким образом, заявленный технический результат достигнут.

Способ преобразования угла поворота вала в код, основанный на том, что вал первого и второго датчиков поворачивают в пределах диапазона, не меньшего 360°(1/p+1/p), где p и р - число периодов погрешности соответственно первого и второго датчика на обороте вала, преобразуют угол поворота вала в сигналы первого и второго датчиков с различными спектрами пространственной погрешности, выходные сигналы первого и второго датчиков преобразуют в первый и второй коды угла, определяют амплитуды и фазы пространственных гармоник погрешности первого и второго датчиков, формируют первую поправку как сумму пространственных гармоник погрешности первого датчика для угла, соответствующего первому коду угла, формируют выходной код, прибавляя первую поправку к первому коду угла, формируют вторую поправку как сумму пространственных гармоник погрешности второго датчика для угла, соответствующего второму коду угла, формируют второй выходной код, прибавляя вторую поправку к второму коду угла, формируют разность выходного и второго выходного кодов, по которой контролируют точность преобразования, отличающийся тем, что вал датчиков устанавливают с шагом 360°/(р⋅р) в расчетные положения по значениям второго кода угла, в этих положениях фиксируют значения первого кода угла, находят приращения первого кода угла при повороте на р шагов, определяют амплитуды и фазы i-х пространственных гармоник погрешности первого датчика, умножая амплитуды спектральных составляющих приращений первого кода угла при повороте на p шагов на и сдвигая их фазу на угол π/2-π⋅i/р, находят приращения первого кода угла при повороте вала на p шагов, а амплитуды и фазы j-х пространственных гармоник погрешности второго датчика определяют, умножая амплитуды спектральных составляющих приращений первого кода угла при повороте на p шагов на и сдвигая их фазы на угол π/2+π⋅j/р.
Способ преобразования угла поворота вала в код
Способ преобразования угла поворота вала в код
Способ преобразования угла поворота вала в код
Способ преобразования угла поворота вала в код
Способ преобразования угла поворота вала в код
Способ преобразования угла поворота вала в код
Способ преобразования угла поворота вала в код
Способ преобразования угла поворота вала в код
Источник поступления информации: Роспатент

Показаны записи 41-50 из 88.
10.07.2018
№218.016.6f06

Перископ непроникающего типа с панорамной многоканальной системой наблюдения без вращения головной части относительно корпуса носителя

Устройство относится к оптоэлектронным системам наблюдения и может быть использовано в перископах подводных лодок. Перископ непроникающего типа с панорамной многоканальной системой наблюдения без вращения головной части относительно корпуса носителя содержит защитное окно, выполненное в виде...
Тип: Изобретение
Номер охранного документа: 0002660751
Дата охранного документа: 09.07.2018
30.08.2018
№218.016.817a

Способ измерения скорости судна доплеровским лагом

Изобретение относится к области кораблевождения, а именно к способам и устройствам измерения абсолютной скорости судна. Одним из условий безопасного кораблевождения является постоянный контроль абсолютной (относительно дна) скорости судна и расстояния до дна. Указанный технический результат...
Тип: Изобретение
Номер охранного документа: 0002665345
Дата охранного документа: 29.08.2018
26.10.2018
№218.016.962c

Устройство для измерения выходного сигнала пьезоэлектрического датчика

Изобретение относится к области измерительной техники, а именно к устройствам с пьезоэлектрическим датчиком, которые преобразуют величину переменных сил давления в электрический сигнал. Устройство для измерения выходного сигнала пьезоэлектрического датчика содержит первый пьезоэлектрический...
Тип: Изобретение
Номер охранного документа: 0002670712
Дата охранного документа: 24.10.2018
26.10.2018
№218.016.9665

Способ измерения частоты эхосигнала в доплеровском лаге

Изобретение относится к области кораблевождения, а именно к способам и устройствам измерения абсолютной скорости судна с использованием доплеровского лага. Достигаемый технический результат - повышение помехоустойчивости доплеровского лага и повышение точности измерения скорости судна при малых...
Тип: Изобретение
Номер охранного документа: 0002670714
Дата охранного документа: 24.10.2018
16.11.2018
№218.016.9e12

Способ измерения скорости судна доплеровским лагом

Изобретение относится к области кораблевождения, а именно к способам и устройствам измерения абсолютной скорости судна. Одним из условий безопасного кораблевождения является постоянный контроль абсолютной (относительно дна) скорости судна и расстояния до дна. Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002672464
Дата охранного документа: 14.11.2018
16.01.2019
№219.016.afc3

Светоизлучающий волоконный световод на основе кварцевого стекла

Изобретение относится к волоконной оптике, а именно к технологии изготовления протяженных светоизлучающих волоконных световодов. Светоизлучающий волоконный световод на основе кварцевого стекла содержит сердцевину с расположенными внутри нее рассеивающими центрами и отражающую оболочку, а также...
Тип: Изобретение
Номер охранного документа: 0002677092
Дата охранного документа: 15.01.2019
16.01.2019
№219.016.afeb

Способ измерения скорости судна доплеровским лагом

Изобретение относится к области кораблевождения, а именно к способам и устройствам измерения абсолютной скорости судна. Достигаемый технический результат - повышение точности измерения скорости судна доплеровским лагом в условиях вертикального перемещения судна. Указанный технический результат...
Тип: Изобретение
Номер охранного документа: 0002677102
Дата охранного документа: 15.01.2019
16.01.2019
№219.016.b045

Способ калибровки погрешностей бескарданной инерциальной системы на электростатических гироскопах в условиях орбитального полета

Изобретение относится к гироскопической технике, а именно к способам калибровки погрешностей бескарданной инерциальной системы на электростатических гироскопах в условия полета космического аппарата. Способ калибровки погрешностей бескарданной инерциальной системы на электростатических...
Тип: Изобретение
Номер охранного документа: 0002677099
Дата охранного документа: 15.01.2019
16.01.2019
№219.016.b072

Способ определения момента дифферента гирокамеры двухстепенного поплавкового гироскопа

Изобретение относится к области прецизионного приборостроения и может быть использовано при изготовлении и эксплуатации двухстепенных поплавковых гироскопов с бесконтактными опорами гирокамеры. Способ определения момента дифферента гирокамеры двухстепенного поплавкового гироскопа дополнительно...
Тип: Изобретение
Номер охранного документа: 0002677091
Дата охранного документа: 15.01.2019
07.02.2019
№219.016.b7e1

Способ калибровки погрешностей электростатических гироскопов бескарданной инерциальной системы ориентации в условиях орбитального космического аппарата

Изобретение относится к области космической техники и может быть использовано в бесплатформенных инерциальных системах ориентации (БИСО) для орбитальных космических аппаратов (КА), измерительный модуль (блок чувствительных элементов -БЧЭ) которых содержит электростатические гироскопы (ЭСГ)....
Тип: Изобретение
Номер охранного документа: 0002678959
Дата охранного документа: 04.02.2019
Показаны записи 31-31 из 31.
04.04.2018
№218.016.2fed

Способ определения дисперсии погрешности измерения двухмерного спектра волнения инерциальным измерительным модулем волномерного буя и устройство для его реализации

Изобретение относится к области измерительной техники. Способ определения дисперсии погрешности измерения двухмерного спектра волнения инерциальным измерительным модулем волномерного буя, заключается в том, что определение погрешности производится путем сравнения характеристик, задаваемых...
Тип: Изобретение
Номер охранного документа: 0002644614
Дата охранного документа: 13.02.2018
+ добавить свой РИД