×
26.08.2017
217.015.e3d8

Результат интеллектуальной деятельности: Способ определения дефектов материала

Вид РИД

Изобретение

Аннотация: Изобретение относится к контрольно-диагностическим технологиям, может быть использовано для обнаружения и исследования дефектов материала, определения его размеров и идентификации его по химическому составу и дает возможность проводить работы на любых поверхностях, например, интерьеров и экстерьеров музейных комплексов. Способ определения дефектов материала заключается в предварительном визуальном определении участка поверхности материала с дефектом путем наведения камеры тепловизора на исследуемый участок поверхности и измерении температурного поля на поверхности материала по шкале тепловизора для выявления наличия температурных пиков на поверхности материала. При этом исследуемый материал облучают электромагнитным излучением на длине волны в области характеристической полосы поглощения материала дефекта, идентифицирующей химический состав вещества дефекта. По наличию контрастных участков в поле тепловизора определяют наличие дефектов, их химический состав и координаты местоположения. Технический результат - повышение информативности результатов исследований. 3 ил.

Изобретение относится к контрольно-диагностическим технологиям, в частности к способам обнаружения и исследования дефектов материала, определения его размеров и идентификации его по химическому составу и дает возможность проводить работы на любых поверхностях, например, интерьеров и экстерьеров музейных комплексов.

Известен способ определения дефектов в материалах с помощью тепловизора (Вавилов В.П., Климов А.Г. Тепловизоры и их применение. - М.: Интел универсал, 2002, с. 7), заключающийся в регистрации теплового излучения твердых тел (дефекта) тепловой камерой тепловизора и определении наличия зон с пиковыми значениями температур. Недостатком аналога является невозможность идентифицировать дефект с определенным химическим составом вещества, а так же его координату.

Известен способ определения дефектов в материалах, выбранный в качестве прототипа (Вавилов В.П., Климов А.Г. Тепловизоры и их применение. - М.: Интел универсал, 2002, с. 23), заключающийся в предварительном визуальном определении участка поверхности материала с дефектом, проецировании камеры тепловизора на исследуемый объект, измерении распределения температурного поля на данной поверхности, выявлении наличия температурных пиков на поверхности объекта, по которым делается вывод о наличии дефекта на рассматриваемом участке поверхности. Недостатком прототипа является то, что для оптически непрозрачных объектов тепловизионные устройства фиксируют исключительно поверхностные эффекты: температуру поверхности и величину коэффициентов излучения (поглощения) и отражения. Внутренние феномены могут проявляться (появление температурных пиков на экране тепловизора) на контролируемой поверхности благодаря тому или иному механизму теплопередачи, что обуславливает невозможность идентифицировать дефект с определенным химическим составом вещества, а также его координату.

Техническим результатом заявляемого способа является определение химического состава, дефект и координаты его местоположения.

Способ определения дефектов материала, заключается в предварительном визуальном определении участка поверхности материала с дефектом, наведении камеры тепловизора на исследуемую поверхность и одновременном сканировании исследуемого участка поверхности материала лучом лазера на длине световой волны в области характеристической полосы поглощения, идентифицирующей химический состав вещества дефекта, после чего измеряют распределение температурного поля на данной поверхности и выявляют наличие температурных пиков на поверхности материала, что позволяет по наличию контрастных участков в поле тепловизора определить наличие дефектов, их химический состав и координаты местоположения.

Координаты дефекта по вертикальной и горизонтальной осям определяют в процессе сканирования поверхности лучом лазера и камерой тепловизора. В процессе сканирования на снимках, полученных камерой тепловизора, выявляют зоны с температурой, существенно отличающейся от основного фона, вследствие эффекта поглощения излучения лазера в области характеристических полос поглощения вещества материала. Границы таких участков являются границами дефекта, а координаты этих участков являются координатами дефекта. Длительность облучения материала лучом лазера определяет глубину, на которой расположен дефект. При одинаковой длительности облучения материала дефект, находящийся на поверхности образца, получит большее количество энергии, чем дефект, находящийся в объеме. Это обусловлено тем, что при прохождении излучением границы раздела сред воздух-материал часть энергии источника излучения теряется при отражении. По мере прохождения излучения лазера вглубь материала часть энергии источника также теряется вследствие рассеяния. Величина этих потерь зависит от глубины, на которой находится дефект. В результате поглощения излучения лазера на длине световой волны в области характеристической полосы поглощения, идентифицирующей строение вещества дефекта, появляется контраст между температурным фоном и температурой дефекта вследствие точечного повышения температуры вещества, имеющего характеристические полосы поглощения, совпадающие с длиной волны лазерного излучения. Длину волны излучения лазера выбирают в области поглощения излучения, соответствующей определяемому материалу дефекта. Вариации источника излучения по выходной мощности и размеру изображения источника излучения позволяют определить координаты и химическое строение дефекта. Определение наличия дефекта, его химического состава и координат стало возможным благодаря тому, что в предлагаемом способе одновременно используется тепловизор, а также независимый источник излучения (лазер), работающий на длине световой волны поглощения дефекта.

Предлагаемое изобретение иллюстрируется следующими чертежами:

На фиг. 1 изображена принципиальная схема мехатронного комплекса.

На фиг. 2 изображен график зависимости поглощения от волнового числа.

На фиг. 3 изображена фотография дефекта, полученная тепловизионной камерой.

Для реализации заявляемого способа сконструирован макет мехатронного комплекса, который включает лазер 1, тепловизор 2, манипулятор 3, тележку 4. Лазер 1 и тепловизор 2 жестко закреплены на манипуляторе 3 с помощью крепежного элемента. Манипулятор 3 установлен на тележку 4 и фиксируется с помощью разъемного соединения. Такая конструкция позволяет производить съемку с заданным шагом для проведения максимально точного измерения и выявления дефекта. Манипулятор 3 позволяет перемещать лазер и тепловизор в горизонтальной и вертикальной плоскостях.

Способ осуществляется следующим образом (применительно к биозаражению поверхности материала).

Для проведения эксперимента предварительно визуально определяют места с дефектом. Измерительные приборы тепловизор 2 и лазер 1 с перестраиваемой длиной волны устанавливают на манипулятор 3. Мехатронный комплекс устанавливают на горизонтальную поверхность на расстоянии, необходимом для проведения измерений, которое определяется температурной чувствительностью тепловизионной камеры. Затем лазер 1 и тепловизор 2 перемещают с помощью манипулятора 3 относительно поверхности исследования. Далее производят измерение распределения температурного поля на данной поверхности и выявляют наличие температурных пиков, по которым делается вывод о наличии дефекта на рассматриваемом участке поверхности.

Пример реализации способа в случае определения дефектов, возникающих при биозаражении. При обследовании поверхности на предмет биозаражения предварительно выполняют визуальное обследование поверхностей с фотофиксацией. Определяют места с повышенным риском заражения биодеструкторами, например в местах протечек, с повышенной запыленностью и т.д. Визуальное обследование может дать представление о следах биозаражения, однако уточненные данные получают после взятия проб с поверхности и последующего анализа в лабораторных условиях.

На фиг. 2 изображен спектр поглощения оливкового масла, следы появления которого часто связаны с нахождением на поверхности микроорганизмов.

На фиг. 3 затемненные точки в местах появления биодеструкторов на экране тепловизора будут более контрастными при поглощении излучения в области 1000 см-1, 1800 см-1, 3000 см-1. Зоны с повышенной концентрацией воды или имеющие характеристические полосы поглощения, позволяющие идентифицировать вещество, будут видны с большим контрастом при облучении лазером в 3 мкм.

Из фиг. 2 и фиг. 3 следует, что использование лазеров с длиной волны излучения в области от 1-3 мкм позволяет расширить поле информации предлагаемого мехатронного комплекса.

На фиг. 3 показано место облучения лазером на длине волны 0,63 мкм исследуемого объекта. Изображение источника излучения имеет высокую контрастность по отношению к фону.

Таким образом, способ позволяет определить наличие дефектов, их химический состав и координаты местоположения дефекта, проводить работы на любых поверхностях, например, интерьеров и экстерьеров музейных комплексов.

Способ определения дефектов материала, заключающийся в предварительном визуальном определении участка поверхности материала с дефектом путем наведения камеры тепловизора на исследуемый участок поверхности и измерении температурного поля на поверхности материала по шкале тепловизора для выявления наличия температурных пиков на поверхности материала, отличающийся тем, что исследуемый материал облучают электромагнитным излучением на длине волны в области характеристической полосы поглощения материала дефекта, идентифицирующей химический состав вещества дефекта, и по наличию контрастных участков в поле тепловизора определяют наличие дефектов, их химический состав и координаты местоположения.
Способ определения дефектов материала
Способ определения дефектов материала
Способ определения дефектов материала
Источник поступления информации: Роспатент

Показаны записи 61-70 из 105.
04.04.2018
№218.016.364a

Электрический сенсор на пары гидразина

Изобретение относится к устройствам и материалам для обнаружения и определения концентрации паров гидразина в атмосфере или пробе воздуха (химическим сенсорам) и может быть использовано в медицине, биологии, экологии и различных отраслях промышленности. Электрический сенсор на пары гидразина...
Тип: Изобретение
Номер охранного документа: 0002646419
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.3661

Устройство для разделения жидкостей по плотности

Изобретение относится к пищевой промышленности, а именно к разделению жидкостей по плотности, например, при повышении или понижении концентрации ценных пищевых веществ, содержащихся в промывных водах при переработке растительного или животного сырья. Устройство для разделения жидкостей по...
Тип: Изобретение
Номер охранного документа: 0002646423
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.36a7

Способ частотно-импульсной модуляции полупроводникового лазерного источника оптического излучения для опроса оптических интерферометрических датчиков

Изобретение относится к области оптических измерительных приборов и может быть использовано в оптических интерферометрических датчиках с полупроводниковыми источниками оптического излучения для формирования оптических импульсов и частотной модуляции оптической несущей без использования...
Тип: Изобретение
Номер охранного документа: 0002646420
Дата охранного документа: 05.03.2018
10.05.2018
№218.016.3975

Способ изготовления нанокомпозитов в стекле

Изобретение относится к изготовлению нанопористых электродов для батарей, аккумуляторов и солнечных элементов, катализаторов и др. Способ изготовления металл-стеклянных и полупроводник-стеклянных нанокомпозитов заключается в приложении электрического поля к нанопористому силикатному стеклу,...
Тип: Изобретение
Номер охранного документа: 0002647132
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.3b57

Способ контроля остойчивости судна в условиях экстремального волнения

Изобретение относится к способу контроля остойчивости судна в условиях экстремального волнения. Для контроля остойчивости судна измеряют период бортовой качки, рассчитывают метацентрическую высоту определенным образом, рассчитывают характеристики ударного воздействия разрушающихся волн на...
Тип: Изобретение
Номер охранного документа: 0002647357
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.4730

Устройство для измельчения пищевых продуктов

Изобретение относится к устройствам для измельчения и может быть использовано в пищевой промышленности на консервных или овощесушильных предприятиях. Устройство для измельчения содержит полый перфорированный ротор, полый перфорированный прессующий вал, очистительные ножи и разгрузочные шнеки,...
Тип: Изобретение
Номер охранного документа: 0002650554
Дата охранного документа: 16.04.2018
10.05.2018
№218.016.4797

Оптическое волокно для записи брэгговской решетки лазером с длиной волны в ближнем и среднем уф диапазоне, способ получения защитного фторполимерного покрытия оптического волокна и способ нанесения этого покрытия на кварцевую часть волокна

Группа изобретений относится к оптическим волокнам, в структуре световедущей части которых сформированы брэгговские решетки. Оптическое волокно с фторполимерным защитным покрытием, прозрачным на длине волны лазерного источника, позволяет записывать брэгговскую решетку прямо через такое...
Тип: Изобретение
Номер охранного документа: 0002650787
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.47e5

Узкополосный фильтр

Узкополосный фильтр состоит из двух одинаковых прозрачных треугольных призм, которые изготовлены из материала с высоким показателем преломления. Между ними нанесены чередующиеся слои, изготовленные из материалов с низким и высоким показателями преломления. Технический результат - упрощение...
Тип: Изобретение
Номер охранного документа: 0002650750
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.4807

Лидарный комплекс

Лидарный комплекс содержит лазерный источник зондирования, оптическую систему, направляющую лазерное излучение в инспектируемое пространство, приемный телескоп, спектроанализатор и фотоприемное устройство. Оптическая система содержит плоское зеркало эллиптической формы, выполненное с выборками...
Тип: Изобретение
Номер охранного документа: 0002650776
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.4f51

Способ обнаружения наблюдателя

Предлагаемое изобретение относится к области технической оптики и касается способа обнаружения наблюдателя. Способ включает в себя локализацию возможного места размещения наблюдателя и энергетическое освещение фронтальной поверхности оптического прибора наблюдателя экипированной группой из...
Тип: Изобретение
Номер охранного документа: 0002652659
Дата охранного документа: 28.04.2018
Показаны записи 61-65 из 65.
04.04.2018
№218.016.364a

Электрический сенсор на пары гидразина

Изобретение относится к устройствам и материалам для обнаружения и определения концентрации паров гидразина в атмосфере или пробе воздуха (химическим сенсорам) и может быть использовано в медицине, биологии, экологии и различных отраслях промышленности. Электрический сенсор на пары гидразина...
Тип: Изобретение
Номер охранного документа: 0002646419
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.3661

Устройство для разделения жидкостей по плотности

Изобретение относится к пищевой промышленности, а именно к разделению жидкостей по плотности, например, при повышении или понижении концентрации ценных пищевых веществ, содержащихся в промывных водах при переработке растительного или животного сырья. Устройство для разделения жидкостей по...
Тип: Изобретение
Номер охранного документа: 0002646423
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.36a7

Способ частотно-импульсной модуляции полупроводникового лазерного источника оптического излучения для опроса оптических интерферометрических датчиков

Изобретение относится к области оптических измерительных приборов и может быть использовано в оптических интерферометрических датчиках с полупроводниковыми источниками оптического излучения для формирования оптических импульсов и частотной модуляции оптической несущей без использования...
Тип: Изобретение
Номер охранного документа: 0002646420
Дата охранного документа: 05.03.2018
19.07.2018
№218.016.723c

Моющее средство

Изобретение относится к моющему средству и может быть использовано в качестве универсального средства в области приборостроения для отмывки изделий от флюсов, механических, масляных, жировых загрязнений, клейких веществ и абразивов. В состав моющего средства входит силикат щелочного металла, в...
Тип: Изобретение
Номер охранного документа: 0002661483
Дата охранного документа: 17.07.2018
31.01.2020
№220.017.fb45

Способ изготовления тонких кристаллических пластин и тонких кристаллических элементов

Изобретение относится к способам изготовления высокочастотных кристаллических элементов пьезоэлектрических приборов. Технический результат предложенного изобретения заключается в упрощении технологического процесса изготовления и уменьшение разброса по толщине. Осуществляют механическую...
Тип: Изобретение
Номер охранного документа: 0002712426
Дата охранного документа: 28.01.2020
+ добавить свой РИД