×
26.08.2017
217.015.e386

СПОСОБ МОНИТОРИНГА ТЕХНИЧЕСКОГО СОСТОЯНИЯ ОБЪЕКТОВ ПОВЫШЕННОЙ ОПАСНОСТИ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области автоматизированных систем мониторинга технического состояния объектов повышенной опасности и может быть использовано для текущей оценки и прогноза безопасной эксплуатации объектов, эксплуатируемых в условиях динамических воздействий. Предложенный способ заключается в использовании для мониторинга технического состояния результатов синхронной регистрации контрольных параметров объекта мониторинга в ряде дискретных точек. Их использование на основе предложенной процедуры идентификации позволяет достоверно вычислить распределенные параметры напряженно-деформированного состояния объекта с последующей оценкой степени опасности их изменения в текущий момент времени, а также в прогнозном периоде путем их соотнесения с прочностными характеристиками материалов объекта контроля, а также с функциональными параметрами эксплуатации. Технический результат заключается в повышении точности оценок технического состояния объекта мониторинга, при одновременном снижении объемов контроля и исключения процедуры метрологической аттестации. 2 з.п. ф-лы, 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к области автоматизированных систем мониторинга технического состояния объектов повешенной опасности и может быть использовано для мониторинга сооружений, к которым предъявляются повышенные требования безопасности при эксплуатации.

Известен способ определения устойчивости зданий и сооружений (патент на изобретение RU №2245531, МПК G01M 7/00, опубликовано 27.01.2005 г.), включающий возбуждение колебаний испытуемого объекта на собственных частотах воздействием на него последовательности ударных импульсов малой амплитуды, измерение колебаний с помощью установленных на объекте датчиков, определение динамических характеристик объекта, экспериментальное определение значений поверхностной прочности, и/или объемной прочности, и/или параметров армирования элементов конструкции объекта, и/или осадки, и/или сдвига, и/или крена объекта, и/или глубины залегания фундамента, и/или его поверхностной прочности, и/или его объемной прочности, и/или период собственных колебаний грунта под объектом, и/или вокруг него, измеренный, по меньшей мере, по первому тону колебаний, и/или логарифмический декремент их затухания, и/или уровень грунтовых вод, сравнение полученных экспериментальных значений с данными теоретических моделей, рассчитанных для данной конструкции объекта и материалов изготовления, и определение устойчивости зданий и сооружений методом экспертных оценок.

Недостатком известного способа по патенту №2245531 является необходимость возбуждения колебаний объекта на собственных частотах, что не позволяет использовать указанный способ в отношении объектов, работающих в условиях динамических воздействий.

Известен способ дистанционного контроля и диагностики состояния конструкций и инженерных сооружений (патент на изобретение RU №2247958, МПК G01M 5/00, G01M 7/00, опубликовано 10.03.2005 г.), принятый за прототип. Известный способ характеризуется использованием ЭВМ в качестве пункта контроля и обработки информации. Согласно известному способу производят последовательный программный опрос датчиков (измерительных преобразователей), установленных в местах диагностирования конструкции, преобразование (оцифровывание) полученной с датчиков информации и ее передачу на пункт контроля, выполненный в виде компьютера с программным обеспечением, где осуществляют регистрацию и сравнение полученной с датчиков информации с заранее зафиксированными значениями параметров, в качестве которых используют данные метрологической аттестации, проведенной перед началом эксплуатации объекта, а по отклонению поступивших с датчиков сигналов судят о наличии изменений контролируемых параметров.

Недостатком известного способа по патенту №2247958 является невозможность контроля и оценки текущего и прогнозного состояния 100% объема конструкций объекта, в силу ограниченного числа точек контроля и их дискретности. Отсутствует также возможность мониторинга и отображения данных об изменении состояния несущих конструкций, конструктивных элементов объекта в режиме реального времени, что не позволяет обеспечить получение достоверных оценок текущего состояния объекта при возникновении кратковременных быстропротекающих процессов (например, сейсмическое событие). Кроме того, известный способ требует существенного увеличения объемов контроля (увеличения количества точек измерений) при контроле многосвязных пространственных конструкций объекта, а также увеличения требуемых объемов его метрологической аттестации.

Задачей заявляемого изобретения является обеспечение достоверных расчетно-экспериментальных оценок текущего и прогнозного состояния объектов повышенной опасности в целом по результатам мониторинга контрольных параметров в дискретных точках.

Поставленная задача решается тем, что в способе мониторинга технического состояния объектов повышенной опасности, включающем опрос датчиков, установленных в местах диагностирования конструкции, преобразование полученной с датчиков информации и ее передачу на пункт контроля, выполненный в виде компьютера с программным обеспечением, где осуществляют регистрацию и сравнение полученной информации с заранее зафиксированными значениями параметров, согласно изобретению, опрос датчиков выполняют синхронно, осуществляют оценку текущего и прогнозного состояния объекта контроля в режиме реального времени посредством проведения идентификационных расчетов, заключающихся в вычислении распределенных параметров напряженно-деформированного состояния объекта по ограниченному числу измеренных параметров на основе минимизации отклонений расчетных параметров от измеренных, а в качестве заранее зафиксированных значений параметров, применяемых для оценки отклонений, свидетельствующих о наличии изменений контролируемых параметров в текущий момент времени, а также в прогнозном периоде, используют прочностные характеристики материалов объекта контроля, а также функциональные параметры эксплуатации объекта повышенной опасности.

Для выполнения процедуры идентификации могут быть использованы результаты опроса датчиков перемещений, и/или осадок, и/или прогибов, и/или вибрации, и/или деформаций, и/или кренов, и/или сейсмических размещаемых в контрольных точках объекта мониторинга.

Вычисляемые параметры напряженно-деформированного состояния объекта, а также результаты оценки степени опасности изменения параметров напряженно-деформированного состояния объекта контроля в текущий момент времени, а также в прогнозном периоде, могут быть выведены в виде звуковых или графических сообщений средствами аудио- и видео- информирования в режиме реального времени.

Технический результат выражается в повышении точности оценок технического состояния объекта мониторинга при одновременном снижении объемов контроля и исключения процедуры метрологической аттестации за счет применения авторских идентификационных алгоритмов, обеспечивающих вычисление в режиме реального времени распределенных параметров напряженно-деформированного состояния объекта, по ограниченному числу синхронно измеренных параметров. При этом интерпретация вычисляемых параметров напряженно-деформированного состояния объекта осуществляется на основе использования прочностных характеристик материалов объекта контроля, а также функциональных параметров эксплуатации объекта повышенной опасности.

Для осуществления предлагаемого способа объект мониторинга представляется в виде идеализированной математической модели - упругой механической системы с конечным числом степеней свободы, поведение которой в общем случае действия динамических нагрузок в матричном виде может быть записано в виде:

где [K], [С], [М] - матрицы жесткости, демпфирования и масс системы, {Р(t)} - вектор внешней нагрузки.

Построение математической модели объекта выполняют на основе проектной и исполнительной документации на объект контроля. В случае несоответствия фактического конструктивного исполнения объекта проектной и исполнительной документации построение математической модели выполняют по результатам натурных обмерочных работ.

С помощью полученной математической модели осуществляют вычисление спектра форм и частот собственных колебаний объекта, на основе чего формируют пространство для идентификации, представляемое матрицей [Ф], содержащей вектора собственных векторов объекта, по направлению регистрируемых датчиками параметров , i=1,2,…n,.

В общем случае в качестве регистрируемых параметров для последующего использования в процедуре идентификации могут выступать результаты опроса датчиков перемещений, и/или осадок, и/или прогибов, и/или вибрации, и/или деформаций, и/или кренов, и/или сейсмических.

При этом задача идентификации напряженно-деформированного состояния объекта в каждый момент времени решается из условия минимизации отклонений значений расчетных параметров {D} объекта от значений измеренных параметров {D*}.

Необходимым условием реализации предлагаемого способа является обеспечение синхронного опроса датчиков, установленных в местах диагностирования конструкции, что позволяет учесть возможные фазовые сдвиги между колебательными процессами в принятых для контроля точках объекта мониторинга. При соблюдении данного условия минимизация невязки {R} между значениями расчетных параметров {D} объекта и значениями измеренных параметров {D*} выполняется из решения дифференциального уравнения:

где {R} - вектор невязок, вычисляемый как:

{R}={D*}-{D}={D*}-W{d}.

Здесь {d} - искомый вектор обобщенных параметров, обеспечивающий наилучшее приближение вектора расчетных параметров {D} к вектору измеренных параметров {D*}.

Вычисляя вектор обобщенных параметров {d} на каждом шаге синхронного опроса датчиков, установленных в местах диагностирования конструкции, определяют требуемые параметры напряженно-деформированного состояния объекта в любой его точке по формуле:

{D}=[Ф]{d}.

Полученные распределенные параметры напряженно-деформированного состояния отображают фактическое физическое состояние эксплуатируемого объекта в целом, его блоков и отдельных элементов конструкции и используются для оценки степени опасности их изменения в текущий момент времени или в прогнозном периоде на основе соотнесения их с прочностными характеристиками материалов, из которых они изготовлены, а также с функциональными параметрами эксплуатации объекта.

Заявляемый способ мониторинга может быть осуществлен, например, посредством автоматизированной системы мониторинга технического состояния конструкций (СМТСК), структурная схема которой изображена на фиг. 1.

Структура СМТСК включает в себя три базовых уровня (фиг. 1): подсистему датчиков 1, подсистему сбора и обработки данных 2, а также экспертную систему оценки и прогнозирования технического состояния 3 объекта контроля, представляющую собой промышленный компьютер с инсталлированным программным обеспечением, оснащенным средствами аудио- и видео- информирования, например, монитором с аудиодинамиками.

На основе материалов проектирования, проектно-изыскательных работ, в экспертной системе 3 формируют расчетную математическую модель объекта, например, с использованием аппарата метода конечных элементов [1]. На основе построенной модели осуществляют формирование пространства для идентификации объекта контроля [Ф], путем расчета спектра частот и форм его собственных колебаний.

С использованием подсистемы датчиков 1 и подсистемы сбора и обработки данных 2 с предустановленной периодичностью опроса осуществляют синхронную регистрацию контрольных параметров объекта в выбранных дискретных точках, образующую вектор измеренных параметров {D*}, направляемый в экспертную систему 3 оценки и прогнозирования технического состояния.

На основе полученного в текущий момент времени вектора измеренных параметров {D*}, а также сформированного пространства для идентификации [Ф] в экспертной системе 3 оценки и прогнозирования технического состояния осуществляют процедуру идентификации и вычисляют распределенные параметры напряженно-деформированного состояния объекта. Пример визуального изображения вычисленных в системе СМТСК параметров напряженно-деформированного состояния показан на фиг. 2. Результаты оценки степени опасности изменения параметров напряженно-деформированного состояния объекта контроля в текущий момент времени, а также в прогнозном периоде на основе соотнесения их с прочностными характеристиками материалов объекта контроля, а также с функциональными параметрами эксплуатации объекта, выводят в виде звуковых или графических сообщений средствами аудио и видео информирования в режиме реального времени (фиг. 2).

Заявляемое изобретение промышленно применимо и имеет изобретательский уровень, а заявленная совокупность существенных признаков обладает новой устойчивой взаимосвязью, что позволяет решить поставленную задачу с заявленным техническим результатом.

Предлагаемый способ мониторинга испытан на основе автоматизированной системы мониторинга технического состояния конструкций (СМТСК), включающей подсистему датчиков, подсистему сбора и обработки данных, а также экспертную систему оценки и прогнозирования технического состояния объекта контроля в проекте системы мониторинга технического состояния опасного производственного объекта - трансферных трубопроводов вакуумной колонны К-11 установки ЭЛОУ+АВТ6 (Нефтеперерабатывающий завод АО «Ангарская нефтехимическая компания», г. Ангарск), и подтвердил свою работоспособность.

Использованная литература

1. Бате К. Численные методы анализа и метод конечных элементов / К. Бате, Е. Вильсон. - М.: Стройиздат, 1982. - 448 с.


СПОСОБ МОНИТОРИНГА ТЕХНИЧЕСКОГО СОСТОЯНИЯ ОБЪЕКТОВ ПОВЫШЕННОЙ ОПАСНОСТИ
СПОСОБ МОНИТОРИНГА ТЕХНИЧЕСКОГО СОСТОЯНИЯ ОБЪЕКТОВ ПОВЫШЕННОЙ ОПАСНОСТИ
СПОСОБ МОНИТОРИНГА ТЕХНИЧЕСКОГО СОСТОЯНИЯ ОБЪЕКТОВ ПОВЫШЕННОЙ ОПАСНОСТИ
Источник поступления информации: Роспатент

Показаны записи 1-9 из 9.
20.05.2013
№216.012.41a2

Способ изготовления уплотнительного элемента разъемного соединения

Изобретение относится к уплотнительной технике и может быть использовано при изготовлении и эксплуатации разъемных соединений с уплотнениями типа «металл по металлу», выполненными на одной из деталей соединения. Предварительно формируют исходный кольцевой выступ треугольного профиля с шириной...
Тип: Изобретение
Номер охранного документа: 0002482372
Дата охранного документа: 20.05.2013
10.06.2013
№216.012.494d

Запорный клапан

Изобретение относится к трубопроводной арматуре и может быть использовано в трубопроводах высокого давления. Запорный клапан содержит корпус с входным 2 и выходным 3 патрубками, фонарь 4 с окнами 8 и 9, сальниковую камеру 18, нажимную втулку 27 с фланцем 28, прижимное устройство 21 с колодцем...
Тип: Изобретение
Номер охранного документа: 0002484345
Дата охранного документа: 10.06.2013
27.05.2014
№216.012.cb28

Способ неразрушающего контроля труб

Использование: для неразрушающего контроля труб. Сущность изобретения заключается в том, что излучают внутрь трубы с одного ее конца серию повторяющихся зондирующих акустических сигналов, разделенных интервалами времени между их повторами в серии, детектируют с помощью микрофона отраженные от...
Тип: Изобретение
Номер охранного документа: 0002517774
Дата охранного документа: 27.05.2014
25.08.2017
№217.015.c5e0

Устройство для запирания крышки сосуда, работающего под давлением

Устройство предназначено для запирания крышки сосуда, работающего под давлением. Средство открывания и закрывания крышки выполнено в виде механизма подъема и опускания крышки, вся внутренняя контактная поверхность которой выполнена плоской. Запирание крышки производят тремя симметрично...
Тип: Изобретение
Номер охранного документа: 0002618631
Дата охранного документа: 05.05.2017
20.01.2018
№218.016.138d

Тензометр накладной динамических деформаций

Изобретение относится к измерительной технике и может быть использовано для измерения малых деформаций. Сущность изобретения заключается в том, что в опорной части подставок тензометра размещены магниты, обращенные друг к другу одноименными полюсами. Упругая вставка выполнена в виде нескольких...
Тип: Изобретение
Номер охранного документа: 0002634487
Дата охранного документа: 31.10.2017
20.01.2018
№218.016.1b0c

Демпфер вязкого трения

Изобретение относится к области машиностроения. Демпфер содержит корпус с заливочными отверстиями и с мембранными элементами. Шток установлен в центральном отверстии центральной перегородки. Корпус снабжен фланцами, установленными на его торцевых сторонах. Перепускной вентиль высокого давления...
Тип: Изобретение
Номер охранного документа: 0002635935
Дата охранного документа: 17.11.2017
04.04.2018
№218.016.355e

Теплообменник типа "труба в трубе" с вращающейся трубой

Изобретение относится к теплообменникам типа «труба в трубе» для проведения теплообменных процессов между теплоносителями с использованием подвижных каналов (вращающихся труб) и может быть использовано в газовой, химической и нефтеперерабатывающей промышленности. Теплообменник состоит из двух...
Тип: Изобретение
Номер охранного документа: 0002645861
Дата охранного документа: 28.02.2018
29.05.2018
№218.016.5591

Эталонный объект для рентгеноденситометрии

Использование: для рентгеноденситометрии. Сущность изобретения заключается в том, что эталонный объект для рентгеноденситометрии содержит набор элементов различной калибровочной степени ослабления рентгеновского излучения, причем элементы эталонного объекта выполнены в виде металлических...
Тип: Изобретение
Номер охранного документа: 0002654382
Дата охранного документа: 17.05.2018
20.12.2018
№218.016.a98e

Телеуправляемый внутритрубный интроскоп

Изобретение относится к области химического и нефтяного машиностроения и может быть использовано для интроскопии технологических трубопроводов, паропроводов, ребристых труб. Телеуправляемый внутритрубный интроскоп содержит передний и задний распорные блоки с разделительными торцевыми стенками и...
Тип: Изобретение
Номер охранного документа: 0002675422
Дата охранного документа: 19.12.2018
Показаны записи 1-10 из 10.
20.05.2013
№216.012.41a2

Способ изготовления уплотнительного элемента разъемного соединения

Изобретение относится к уплотнительной технике и может быть использовано при изготовлении и эксплуатации разъемных соединений с уплотнениями типа «металл по металлу», выполненными на одной из деталей соединения. Предварительно формируют исходный кольцевой выступ треугольного профиля с шириной...
Тип: Изобретение
Номер охранного документа: 0002482372
Дата охранного документа: 20.05.2013
10.06.2013
№216.012.494d

Запорный клапан

Изобретение относится к трубопроводной арматуре и может быть использовано в трубопроводах высокого давления. Запорный клапан содержит корпус с входным 2 и выходным 3 патрубками, фонарь 4 с окнами 8 и 9, сальниковую камеру 18, нажимную втулку 27 с фланцем 28, прижимное устройство 21 с колодцем...
Тип: Изобретение
Номер охранного документа: 0002484345
Дата охранного документа: 10.06.2013
27.05.2014
№216.012.cb28

Способ неразрушающего контроля труб

Использование: для неразрушающего контроля труб. Сущность изобретения заключается в том, что излучают внутрь трубы с одного ее конца серию повторяющихся зондирующих акустических сигналов, разделенных интервалами времени между их повторами в серии, детектируют с помощью микрофона отраженные от...
Тип: Изобретение
Номер охранного документа: 0002517774
Дата охранного документа: 27.05.2014
25.08.2017
№217.015.c5e0

Устройство для запирания крышки сосуда, работающего под давлением

Устройство предназначено для запирания крышки сосуда, работающего под давлением. Средство открывания и закрывания крышки выполнено в виде механизма подъема и опускания крышки, вся внутренняя контактная поверхность которой выполнена плоской. Запирание крышки производят тремя симметрично...
Тип: Изобретение
Номер охранного документа: 0002618631
Дата охранного документа: 05.05.2017
20.01.2018
№218.016.138d

Тензометр накладной динамических деформаций

Изобретение относится к измерительной технике и может быть использовано для измерения малых деформаций. Сущность изобретения заключается в том, что в опорной части подставок тензометра размещены магниты, обращенные друг к другу одноименными полюсами. Упругая вставка выполнена в виде нескольких...
Тип: Изобретение
Номер охранного документа: 0002634487
Дата охранного документа: 31.10.2017
20.01.2018
№218.016.1b0c

Демпфер вязкого трения

Изобретение относится к области машиностроения. Демпфер содержит корпус с заливочными отверстиями и с мембранными элементами. Шток установлен в центральном отверстии центральной перегородки. Корпус снабжен фланцами, установленными на его торцевых сторонах. Перепускной вентиль высокого давления...
Тип: Изобретение
Номер охранного документа: 0002635935
Дата охранного документа: 17.11.2017
04.04.2018
№218.016.355e

Теплообменник типа "труба в трубе" с вращающейся трубой

Изобретение относится к теплообменникам типа «труба в трубе» для проведения теплообменных процессов между теплоносителями с использованием подвижных каналов (вращающихся труб) и может быть использовано в газовой, химической и нефтеперерабатывающей промышленности. Теплообменник состоит из двух...
Тип: Изобретение
Номер охранного документа: 0002645861
Дата охранного документа: 28.02.2018
20.12.2018
№218.016.a98e

Телеуправляемый внутритрубный интроскоп

Изобретение относится к области химического и нефтяного машиностроения и может быть использовано для интроскопии технологических трубопроводов, паропроводов, ребристых труб. Телеуправляемый внутритрубный интроскоп содержит передний и задний распорные блоки с разделительными торцевыми стенками и...
Тип: Изобретение
Номер охранного документа: 0002675422
Дата охранного документа: 19.12.2018
11.03.2019
№219.016.d850

Способ определения расстояния между преобразователем и источником акустической эмиссии

Использование: для определения расстояния между преобразователем и источником акустической эмиссии. Сущность: заключается в том, что на контролируемом изделии устанавливают преобразователь акустической эмиссии, изделие нагружают, принимают сигналы акустической эмиссии, генерируемые дефектом...
Тип: Изобретение
Номер охранного документа: 0002397490
Дата охранного документа: 20.08.2010
14.07.2019
№219.017.b4ba

Запорный клапан

Изобретение относится к трубопроводной арматуре и предназначено для использовано в трубопроводах высокого давления. Запорный клапан содержит корпус 1 с выходным патрубком 2, входной патрубок 3, присоединенный к корпусу 1, шпиндель 10 с приводом 9, шток 12 с запорным органом 14 и седло 5....
Тип: Изобретение
Номер охранного документа: 0002445537
Дата охранного документа: 20.03.2012
+ добавить свой РИД