×
27.05.2014
216.012.cb28

СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ТРУБ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Использование: для неразрушающего контроля труб. Сущность изобретения заключается в том, что излучают внутрь трубы с одного ее конца серию повторяющихся зондирующих акустических сигналов, разделенных интервалами времени между их повторами в серии, детектируют с помощью микрофона отраженные от дефектов внутреннего объема трубы сигналы, измеряют отраженные сигналы и усредняют результаты по всем измерениям серии сигналов, определяют характер дефекта по амплитудно-временным характеристикам усредненного сигнала, при этом длительность интервалов времени между повторами зондирующих акустических сигналов в серии изменяют от сигнала к сигналу в серии таким образом, чтобы интервал времени перед каждым последующим сигналом отличался от предыдущих интервалов времени на величину не менее длительности зондирующего акустического сигнала. Технический результат: обеспечение возможности исключения влияния посторонних шумов и реверберации на результат измерения.
Основные результаты: Способ неразрушающего контроля труб, включающий излучение внутрь трубы с одного ее конца серии повторяющихся зондирующих акустических сигналов, разделенных интервалами времени между их повторами в серии, детектирование с помощью микрофона отраженных от дефектов внутреннего объема трубы сигналов, измерение отраженных сигналов и усреднение результатов по всем измерениям серии сигналов, определение характера дефекта по амплитудно-временным характеристикам усредненного сигнала, отличающийся тем, что длительность интервалов времени между повторами зондирующих акустических сигналов в серии изменяют от сигнала к сигналу в серии таким образом, чтобы интервал времени перед каждым последующим сигналом отличался от предыдущих интервалов времени на величину не менее длительности зондирующего акустического сигнала.
Реферат Свернуть Развернуть

Изобретение может быть использовано для неразрушающего контроля, например, для определения состояния внутренней поверхности стенок трубы, изменения ее внутреннего сечения, засорения, закупорки, разрыва.

Сущность известного способа неразрушающего контроля труб, в общем случае, заключается в следующем. Внутрь объекта контроля, например, внутрь трубы с одного ее конца, излучают короткий зондирующий акустический сигнал, который, распространяясь внутри трубы, отражается от всех неоднородностей поперечного сечения трубы. Эти отраженные акустические сигналы возвращаются назад к началу трубы и улавливаются микрофоном. При этом измеряют их амплитудно-временные характеристики. По амплитудно-временным характеристикам судят о состоянии внутренней стенки объекта контроля и о расстоянии до неоднородности. Сигнал с микрофона измеряют все время прохождения зондирующего сигнала до дальнего конца трубы и обратно. Затем проводят следующее измерение. При проведении указанных измерений на полезный акустический сигнал могут накладываться случайные акустические шумы из внешней среды.

В известном способе неразрушающего контроля труб [1] для снижения шумов применяется сложная цифровая обработка принимаемого сигнала. Это усложняет известный способ и делает процедуру измерения слишком длительной - 10 секунд на контролирование одной трубы [2].

Наиболее близким предлагаемому известным способом является способ неразрушающего контроля труб [3], включающий излучение внутрь трубы с одного ее конца серии повторяющихся зондирующих акустических сигналов, разделенных интервалами времени, детектирование с помощью микрофона отраженных от дефектов внутреннего объема трубы сигналов, измерение отраженных сигналов и усреднение результатов по всем измерениям серии, определение характера дефекта по амплитудно-временным характеристикам усредненного сигнала. В известном способе для устранения влияния случайных шумов измерения в серии повторяют N раз. Результаты N измерений усредняют. Тем самым упрощается процедура измерений, но время проведения циклов измерений с усреднением ограничивается снизу временем затухания реверберации акустического сигнала в трубе. Специфика исследования объектов способом акустической эхометрии, имеющих ограниченные размеры (т.е. не открытое пространство), как, например, труба длиной от 1 до 30 м, заключается в наличии сильного отражения сигнала от дальнего конца трубы. Отраженный акустический сигнал возвращается к началу трубы, вновь отражается (теперь уже от начала трубы) и начинает второй обход трубы, выполняя функции паразитного зондирующего сигнала. В зависимости от длины трубы и параметров затухания акустического сигнала, повторных обходов может быть несколько. До полного затухания реверберации (до уровня шумов) предыдущего акустического сигнала генерация следующего зондирующего сигнала невозможна, так как регистрация акустического отклика покажет наличие паразитных сигналов не отличимых от сигнала дефекта. Поэтому проведение измерений с усреднением по многим реализациям требует включения в интервал времени между зондирующими акустическими сигналами времени задержки для полного затухания реверберации акустического сигнала. В известном способе [3] создают задержку зондирующего акустического сигнала перед каждым новым его повторением в серии, составляющую 180 мс. В воздухе за это время звук проходит расстояние 60 м, в то время как на само однократное зондирование трубы длиной, скажем, 5 м, при скорости звука 340 м/с требуется 30 мс. В этом случае на проведение циклов измерений с усреднением по 32 реализациям этих измерений потребуется около 6 с, из них только одна секунда приходится на собственно измерение, а остальные пять - на ожидание полного затухания реверберации зондирующего сигнала. При обследовании теплообменника с количеством труб 2000 штук длиной 5 м время, уходящее только на ожидание, составит около трех часов.

Задачей заявляемого изобретения является сокращение времени на проведение измерения.

Поставленная задача решается тем, что в способе неразрушающего контроля труб, включающем излучение внутрь трубы с одного ее конца серии повторяющихся зондирующих акустических сигналов, разделенных интервалами времени, между их повторами в серии, детектирование с помощью микрофона отраженных от дефектов внутреннего объема трубы сигналов, измерение отраженных сигналов и усреднение результатов по всем измерениям серии сигналов, определение характера дефекта по амплитудно-временным характеристикам усредненного сигнала, согласно предлагаемому изобретению длительность интервалов времени между повторами зондирующих акустических сигналов в серии изменяют от сигнала к сигналу в серии таким образом, чтобы интервал времени перед каждым последующим сигналом отличался от предыдущих интервалов времени на величину не менее длительности зондирующего акустического сигнала.

Технический результат изобретения выражается в исключении влияния посторонних шумов и реверберации на результат измерения за счет того, что длительность интервалов времени между повторами зондирующих акустических сигналов при накоплении результатов измерения и последующем усреднении изменяют от сигнала к сигналу. Это позволяет обойтись без задержки для полного затухания сигнала перед очередным зондированием в серии, и время проведения циклов измерений с усреднением ограничивается снизу временем одного полного обхода трубы, а не временем затухания реверберации акустического сигнала в трубе.

Предложенный способ неразрушающего контроля труб осуществляется следующим образом.

С помощью источника акустических сигналов, расположенного с одного конца исследуемой трубы, излучают внутрь трубы серию повторяющихся зондирующих акустических сигналов, разделенных между собой интервалами времени. Длительность интервалов времени между повторами зондирующих акустических сигналов в серии изменяют от сигнала к сигналу в серии таким образом, чтобы интервал времени перед каждым последующим сигналом отличался от предыдущих интервалов времени на величину не менее длительности зондирующего акустического сигнала. Количество зондирующих акустических сигналов в серии может быть разным. Его значение обычно кратно 2 и выбирается в пределах 8-64 раз. Из опыта исследований известно, что усреднение менее чем по 8 циклам измерений не эффективно при сильном акустическом шуме (помехах), а более 64 не улучшает существенно отношение сигнал/шум, приводя к значительным затратам времени. Экспериментально установлено оптимальное значение количества сигналов в серии 16…32.

Для реализации предлагаемого способа может быть использован любой закон изменения длительности указанного интервала времени, например, в виде арифметической прогрессии. Но при этом минимальная длительность интервала времени определяется длиной трубы и должна быть не менее: Т=2L/c+τ (где Т - длительность интервала времени; L - длина трубы, м; с - скорость звука в воздухе, равная 340 м/с; τ - полная длительность зондирующего акустического сигнала, мс). При этом величину изменения длительности интервала времени ΔТ выбирают большей или равной τ. Если ΔT будет меньше τ, то в случае возможного появления паразитного отражения на каком-либо этапе накопления, это приведет к наложению его в последующих измерениях с его повтором, уменьшая отношение сигнал/помеха. При изменении длительности интервала времени Т по закону арифметической прогрессии, т.е. с постоянным приращением интервала времени ΔТ от сигнала к сигналу, минимальная продолжительность цикла измерения с N повторами зондирующих акустических сигналов в серии равна tизм. мин=[2L/c+τ+ΔT(N-2)/2](N-1).

Отраженные от дефектов и неоднородностей внутреннего объема трубы акустические сигналы возвращаются назад к началу трубы и детектируются с помощью микрофона. Производят усреднение результатов по всем измерениям серии сигналов. При этом измеряют их амплитудно-временные характеристики. По амплитудно-временным характеристикам усредненного сигнала судят о состоянии внутренней стенки исследуемой трубы и о расстоянии до неоднородности.

Пример 1.

Длина трубы L=5 м; N=16; скорость звука с=340 м/с; τ=1 мс; Т1=2L/c+τ=10/340+0,001 с; ΔT=0,001 с. Минимальное время одного измерения с усреднением по 16 циклам равно tизм. мин=[2L/c+τ+ΔT(N-2)/2](N-1)=(10/340+0,001+0,001·14/2)15=0,56 с.

Пример 2.

Длина трубы L=5 м; N=32; τ=1 мс; Т1=2L/c+τ=10/340+0,001 с; ΔT=0,001 с. Минимальное время одного измерения с усреднением по 32 циклам равно

tизм.мин=[2L/c+τ+ΔT(N-2)/2](N-1)=(10/340+0,001+0,001·30/2)31=1,41 с.

Пример 3.

Длина трубы L=30 м; N=16; скорость звука с=340 м/с; τ=1 мс; Т1=2L/c+τ=60/340+0,001 с; ΔТ=0,001 с. Минимальное время одного измерения с усреднением по 16 циклам равно tизм.мин=[2L/c+τ+ΔT{N-2)/2](N-1)=(60/340+0,001+0,001·14/2)15=2,77 с.

Примеры реализации предложенного способа показывают, что в случае исследования трубы длиной 30 м время измерения в три с лишним раза меньше по сравнению с прототипом.

Источники информации

1. Патент US 7677103 В2, Системы и методы неразрушающего контроля трубных систем. Амир Н. и др. Acousticeye Ltd., 31 июля 2006 г.

(Patent US 7677103 В2, Systems and methods for non-destructive testing of tubular systems. Amir and all, Acousticeye Ltd., Jul. 31, 2006).

2. Н.Амир, О.Барзилэй, А.Йефет, Т.Печтер. Обследование труб конденсора с использованием акустической импульсной рефлектометрии, POWER2008-60169, Труды конференции POWER2008 ASME Power 2008, 22-24 июля 2008 г., Орландо, Флорида, США.

(N.Amir, O.Barzelay, A.Yefet, T.Pechter. Condenser tube examination using acoustic pulse reflectometry, POWER2008-60169, Proceeding of POWER2008 ASME Power 2008, July 22-24, 2008 Orlando, Florida, USA).

3. Д.Б.Шарп. Увеличение длины трубных объектов, которые могут обследоваться с использованием акустической импульсной рефлектометрии. ж-л «Measurement Science and Technology)), том 9, №9, 1998 г., с.1469-1479.

(D.B.Sharp. Increasing the length of tubular object that can be measured using acoustic pulse reflectometry. Measurement Science and Technology (1998), 9(9), pp.1469-1479).

Способ неразрушающего контроля труб, включающий излучение внутрь трубы с одного ее конца серии повторяющихся зондирующих акустических сигналов, разделенных интервалами времени между их повторами в серии, детектирование с помощью микрофона отраженных от дефектов внутреннего объема трубы сигналов, измерение отраженных сигналов и усреднение результатов по всем измерениям серии сигналов, определение характера дефекта по амплитудно-временным характеристикам усредненного сигнала, отличающийся тем, что длительность интервалов времени между повторами зондирующих акустических сигналов в серии изменяют от сигнала к сигналу в серии таким образом, чтобы интервал времени перед каждым последующим сигналом отличался от предыдущих интервалов времени на величину не менее длительности зондирующего акустического сигнала.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 13.
20.05.2013
№216.012.41a2

Способ изготовления уплотнительного элемента разъемного соединения

Изобретение относится к уплотнительной технике и может быть использовано при изготовлении и эксплуатации разъемных соединений с уплотнениями типа «металл по металлу», выполненными на одной из деталей соединения. Предварительно формируют исходный кольцевой выступ треугольного профиля с шириной...
Тип: Изобретение
Номер охранного документа: 0002482372
Дата охранного документа: 20.05.2013
10.06.2013
№216.012.494d

Запорный клапан

Изобретение относится к трубопроводной арматуре и может быть использовано в трубопроводах высокого давления. Запорный клапан содержит корпус с входным 2 и выходным 3 патрубками, фонарь 4 с окнами 8 и 9, сальниковую камеру 18, нажимную втулку 27 с фланцем 28, прижимное устройство 21 с колодцем...
Тип: Изобретение
Номер охранного документа: 0002484345
Дата охранного документа: 10.06.2013
20.07.2014
№216.012.e1a7

Способ проведения стабильного остеосинтеза при повреждениях костной ткани

Изобретение относится к области медицины, а именно к травматологии и ортопедии, и может быть использовано для проведения стабильного остеосинтеза при лечении повреждений костной ткани (эндопротезирование, переломы с замедленной консолидацией, ложные суставы, хронический остеомиелит). Проведение...
Тип: Изобретение
Номер охранного документа: 0002523553
Дата охранного документа: 20.07.2014
10.11.2015
№216.013.8ada

Теплообменник

Изобретение относится к теплообменным аппаратам и может быть использовано в химической, нефтехимической и смежных отраслях промышленности. Технический результат изобретения выражается в уменьшении изгибных напряжений в аппарате и в обеспечении сбалансированности веса аппарата относительно...
Тип: Изобретение
Номер охранного документа: 0002567153
Дата охранного документа: 10.11.2015
25.08.2017
№217.015.c5e0

Устройство для запирания крышки сосуда, работающего под давлением

Устройство предназначено для запирания крышки сосуда, работающего под давлением. Средство открывания и закрывания крышки выполнено в виде механизма подъема и опускания крышки, вся внутренняя контактная поверхность которой выполнена плоской. Запирание крышки производят тремя симметрично...
Тип: Изобретение
Номер охранного документа: 0002618631
Дата охранного документа: 05.05.2017
26.08.2017
№217.015.e386

Способ мониторинга технического состояния объектов повышенной опасности

Изобретение относится к области автоматизированных систем мониторинга технического состояния объектов повышенной опасности и может быть использовано для текущей оценки и прогноза безопасной эксплуатации объектов, эксплуатируемых в условиях динамических воздействий. Предложенный способ...
Тип: Изобретение
Номер охранного документа: 0002626391
Дата охранного документа: 26.07.2017
20.01.2018
№218.016.138d

Тензометр накладной динамических деформаций

Изобретение относится к измерительной технике и может быть использовано для измерения малых деформаций. Сущность изобретения заключается в том, что в опорной части подставок тензометра размещены магниты, обращенные друг к другу одноименными полюсами. Упругая вставка выполнена в виде нескольких...
Тип: Изобретение
Номер охранного документа: 0002634487
Дата охранного документа: 31.10.2017
20.01.2018
№218.016.1b0c

Демпфер вязкого трения

Изобретение относится к области машиностроения. Демпфер содержит корпус с заливочными отверстиями и с мембранными элементами. Шток установлен в центральном отверстии центральной перегородки. Корпус снабжен фланцами, установленными на его торцевых сторонах. Перепускной вентиль высокого давления...
Тип: Изобретение
Номер охранного документа: 0002635935
Дата охранного документа: 17.11.2017
04.04.2018
№218.016.355e

Теплообменник типа "труба в трубе" с вращающейся трубой

Изобретение относится к теплообменникам типа «труба в трубе» для проведения теплообменных процессов между теплоносителями с использованием подвижных каналов (вращающихся труб) и может быть использовано в газовой, химической и нефтеперерабатывающей промышленности. Теплообменник состоит из двух...
Тип: Изобретение
Номер охранного документа: 0002645861
Дата охранного документа: 28.02.2018
11.03.2019
№219.016.d850

Способ определения расстояния между преобразователем и источником акустической эмиссии

Использование: для определения расстояния между преобразователем и источником акустической эмиссии. Сущность: заключается в том, что на контролируемом изделии устанавливают преобразователь акустической эмиссии, изделие нагружают, принимают сигналы акустической эмиссии, генерируемые дефектом...
Тип: Изобретение
Номер охранного документа: 0002397490
Дата охранного документа: 20.08.2010
Показаны записи 1-10 из 13.
20.05.2013
№216.012.41a2

Способ изготовления уплотнительного элемента разъемного соединения

Изобретение относится к уплотнительной технике и может быть использовано при изготовлении и эксплуатации разъемных соединений с уплотнениями типа «металл по металлу», выполненными на одной из деталей соединения. Предварительно формируют исходный кольцевой выступ треугольного профиля с шириной...
Тип: Изобретение
Номер охранного документа: 0002482372
Дата охранного документа: 20.05.2013
10.06.2013
№216.012.494d

Запорный клапан

Изобретение относится к трубопроводной арматуре и может быть использовано в трубопроводах высокого давления. Запорный клапан содержит корпус с входным 2 и выходным 3 патрубками, фонарь 4 с окнами 8 и 9, сальниковую камеру 18, нажимную втулку 27 с фланцем 28, прижимное устройство 21 с колодцем...
Тип: Изобретение
Номер охранного документа: 0002484345
Дата охранного документа: 10.06.2013
20.07.2014
№216.012.e1a7

Способ проведения стабильного остеосинтеза при повреждениях костной ткани

Изобретение относится к области медицины, а именно к травматологии и ортопедии, и может быть использовано для проведения стабильного остеосинтеза при лечении повреждений костной ткани (эндопротезирование, переломы с замедленной консолидацией, ложные суставы, хронический остеомиелит). Проведение...
Тип: Изобретение
Номер охранного документа: 0002523553
Дата охранного документа: 20.07.2014
10.11.2015
№216.013.8ada

Теплообменник

Изобретение относится к теплообменным аппаратам и может быть использовано в химической, нефтехимической и смежных отраслях промышленности. Технический результат изобретения выражается в уменьшении изгибных напряжений в аппарате и в обеспечении сбалансированности веса аппарата относительно...
Тип: Изобретение
Номер охранного документа: 0002567153
Дата охранного документа: 10.11.2015
25.08.2017
№217.015.c5e0

Устройство для запирания крышки сосуда, работающего под давлением

Устройство предназначено для запирания крышки сосуда, работающего под давлением. Средство открывания и закрывания крышки выполнено в виде механизма подъема и опускания крышки, вся внутренняя контактная поверхность которой выполнена плоской. Запирание крышки производят тремя симметрично...
Тип: Изобретение
Номер охранного документа: 0002618631
Дата охранного документа: 05.05.2017
26.08.2017
№217.015.e386

Способ мониторинга технического состояния объектов повышенной опасности

Изобретение относится к области автоматизированных систем мониторинга технического состояния объектов повышенной опасности и может быть использовано для текущей оценки и прогноза безопасной эксплуатации объектов, эксплуатируемых в условиях динамических воздействий. Предложенный способ...
Тип: Изобретение
Номер охранного документа: 0002626391
Дата охранного документа: 26.07.2017
20.01.2018
№218.016.138d

Тензометр накладной динамических деформаций

Изобретение относится к измерительной технике и может быть использовано для измерения малых деформаций. Сущность изобретения заключается в том, что в опорной части подставок тензометра размещены магниты, обращенные друг к другу одноименными полюсами. Упругая вставка выполнена в виде нескольких...
Тип: Изобретение
Номер охранного документа: 0002634487
Дата охранного документа: 31.10.2017
20.01.2018
№218.016.1b0c

Демпфер вязкого трения

Изобретение относится к области машиностроения. Демпфер содержит корпус с заливочными отверстиями и с мембранными элементами. Шток установлен в центральном отверстии центральной перегородки. Корпус снабжен фланцами, установленными на его торцевых сторонах. Перепускной вентиль высокого давления...
Тип: Изобретение
Номер охранного документа: 0002635935
Дата охранного документа: 17.11.2017
04.04.2018
№218.016.355e

Теплообменник типа "труба в трубе" с вращающейся трубой

Изобретение относится к теплообменникам типа «труба в трубе» для проведения теплообменных процессов между теплоносителями с использованием подвижных каналов (вращающихся труб) и может быть использовано в газовой, химической и нефтеперерабатывающей промышленности. Теплообменник состоит из двух...
Тип: Изобретение
Номер охранного документа: 0002645861
Дата охранного документа: 28.02.2018
29.05.2018
№218.016.5591

Эталонный объект для рентгеноденситометрии

Использование: для рентгеноденситометрии. Сущность изобретения заключается в том, что эталонный объект для рентгеноденситометрии содержит набор элементов различной калибровочной степени ослабления рентгеновского излучения, причем элементы эталонного объекта выполнены в виде металлических...
Тип: Изобретение
Номер охранного документа: 0002654382
Дата охранного документа: 17.05.2018
+ добавить свой РИД