×
26.08.2017
217.015.e1db

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ТЕТРАФТОРИДА УРАНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к атомной промышленности и химической технологии неорганических веществ, а именно к способу получения тетрафторида урана сухим методом в производстве гексафторида урана или металлического урана. Способ заключается в том, что смешивают диоксид урана с бифторидом аммония, размещают смесь порошков в замкнутой емкости с ограниченным доступом воздуха, устанавливают замкнутую емкость в другую емкость с зазором, который заполняют засыпкой из углеграфитового материала в виде гранул таким образом, чтобы гранулы полностью укрывали замкнутую емкость, далее осуществляют термообработку полученной смеси на стадии образования двойной соли урана в воздушной атмосфере при температуре выше точки плавления бифторида аммония, но ниже точки его кипения и термообработку двойной соли на стадии ее разложения до тетрафторида урана при температуре выше начала окисления углеграфитового материала, но ниже температуры плавления тетрафторида урана. Изобретение обеспечивает получение кондиционного тетрафторида урана с низким содержанием кислорода, высокой насыпной плотностью и выходом более 99%, а также упрощение процесса. 9 з.п. ф-лы, 2 табл.

Изобретение относится к атомной промышленности и химической технологии неорганических веществ и может быть использовано для получения тетрафторида урана сухим методом в производстве гексафторида урана или металлического урана.

Известен способ получения тетрафторида урана (патент GB №2222824, МПК C01G 43/06, опубл. 06.09.1989), по которому тетрафторид урана получают осаждением фтористо-водородной кислотой при 95°C из раствора урана в концентрированной соляной кислоте. Недостатком этого способа является использование избытка фтористо-водородной кислоты при 95°C, являющейся опасным и коррозионно-активным веществом.

Также известен способ (патент RU №2257351, МПК C01G 43/06, опубл. 27.02.2005), по которому осаждение тетрафторида урана проводят из хлоридного неводного раствора урана фторидом щелочного металла или бифторидом аммония. Недостатками этого способа являются использование агрессивных хлорсодержащих растворов и трибутилфосфата, а также необходимость проведения операций промывки, фильтрации и сушки тетрафторида урана и утилизации (переработки) промывных вод.

Известен «сухой» способ получения тетрафторида урана обработкой оксида урана газообразным фтористым водородом при 150-415°C (патент RU №2484020, МПК СO1G 43/06, опубл. 10.06.2013). Недостаток этого способа - использование герметичной агрегированной системы, включающей шнековые вращающиеся печи, холодильники - конденсаторы и прочее, а так же дорогостоящего, дефицитного газообразного фтористого водорода. Кроме того, тетрафторид, полученный таким способом, может содержать до 0,5% кислорода.

Наиболее близким по технической сущности к заявляемому техническому решению является способ получения тетрафторида урана (патент DE №949735, МПК C01G, опубл. 27.09.1956), по которому смесь диоксида урана и бифторида аммония нагревают до 150°. При этом вначале происходит образование двойных солей урана: пентафторураната (NH4UF5) и гексафторураната (NH4)2UF6). Полученные соли промывают дистиллированной водой и спиртом и сушат в вакууме при 110°C, а их разложение проводят в вакууме или в протоке инертного газа при 400-500°C. К недостаткам этого способа можно отнести многостадийность процесса (синтез двойной соли, промывка ее водой и спиртом, сушка и разложение соли до тетрафторида) и сложность аппаратурного оформления, поскольку этот способ предполагает использование герметичной агрегированной системы для проведения процесса разложения двойной соли в вакууме или инертной атмосфере. При этом содержание кислорода в тетрафториде, получаемом этим способом, составляет 0,5-0,6 мас. %, а его насыпная плотность не превышает 2,0 г/см3.

Задачей изобретения является упрощение процесса, снижение содержания кислорода в получаемом тетрафториде и повышение его насыпной плотности.

Техническое решение поставленной задачи достигается тем, что в способе получения тетрафторида урана, включающем смешивание диоксида урана с бифторидом аммония, термообработку полученной смеси на стадии образования двойной соли урана и термообработку двойной соли на стадии ее разложения до тетрафторида урана, согласно изобретению смесь порошков диоксида урана и бифторида аммония размещают в замкнутой емкости с ограниченным доступом воздуха, устанавливают замкнутую емкость в другую емкость с зазором, который заполняют засыпкой из углеграфитового материала в виде гранул таким образом, чтобы гранулы полностью укрывали упомянутую замкнутую емкость, а термообработку емкостей проводят в воздушной атмосфере в две стадии: на первой стадии (на стадии образования двойной соли урана) при температуре выше точки плавления бифторида аммония, но ниже точки его кипения и на второй стадии (на стадии разложения полученной соли до тетрафторида урана) при температуре выше начала окисления графита, но ниже температуры плавления тетрафторида урана.

В частных вариантах осуществления изобретения:

- В качестве первой замкнутой емкости с ограниченным доступом воздуха используют контейнер с крышкой.

- Толщина слоя засыпки может составлять 1,0 - 2,5 см.

- Термообработку емкостей на стадии разложения двойной соли урана до тетрафторида урана проводят при температуре 650-750°C.

- На первой и второй стадиях термообработки осуществляют выдержку в течение 1-2 часов и 1,0-1,5 часов соответственно.

- Бифторид аммония берут в количестве 1,0-1,2 от веса диоксида урана.

- Используют гранулы углеграфитового материала размером 0,6-2,5 мм.

- Используют углеграфитовый материал с открытой пористостью более 20%.

- В качестве углеграфитового материала используют синтетический графит или кокс.

Смесь порошков диоксида урана и бифторида аммония размещают в замкнутой емкости с ограниченным доступом воздуха, устанавливают в другую емкость с зазором, который заполняют засыпкой из углеграфитового материала в виде гранул таким образом, чтобы гранулы полностью укрывали первую емкость.

В замкнутой емкости со смесью диоксида урана и бифторида аммония, погруженном в засыпку в виде гранул из углеграфитового материала, благодаря продуктам реакции синтеза оксида углерода и разложения бифторида аммония защитная атмосфера образующихся газов (NH3, CO) препятствует прямому воздействию воздушной среды на реакционную смесь и тетрафторид урана. Это способствует существенному снижению кислорода в получаемом продукте с 0,5 (как в прототипе) до 0,04%.

Окислению тетрафторида урана препятствует оксид углерода, образующийся при окислении засыпки из углеграфитового материала в соответствии с протекающими реакциями:

При прокалке емкости со смесью диоксида урана с бифторидом аммония за счет создания замкнутого объема с ограниченным доступом воздуха (в частном варианте осуществления это может быть контейнер с крышкой) создается ограниченный доступ воздуха (кислорода) к гранулам углеграфитового материала. Поэтому в условиях дефицита кислорода протекает преимущественно реакция (2) с образованием оксида углерода, являющегося основным компонентом защитной атмосферы при температуре выше 400-500°C (начало окисления углеграфитового материала). При этом окисление гранул из углеграфитового материала происходит за счет воздуха, находящегося в порах гранул и самой засыпке.

Термообработку емкостей проводят в воздушной атмосфере в две стадии: на первой (на стадии образования двойной соли урана) при температуре выше точки плавления бифторида аммония, но ниже точки его кипения и на второй (на стадии разложения двойной соли урана до тетрафторида урана) при температуре выше начала окисления графита, но ниже температуры плавления тетрафторида урана.

На первой стадии внутри замкнутой емкости с ограниченным доступом воздуха протекает реакция образования двойной соли урана

Нижняя граница температурного диапазона термообработки на первой стадии обусловлена тем, что при температуре выше точки плавления бифторида аммония (~126°C) порошок диоксида урана смачивается жидким (расплавленным) бифторидом аммония, обеспечивая необходимый массобмен между реагентами. С другой стороны, при температуре выше точки кипения бифторида аммония (238°C) происходит процесс интенсивного испарения бифторида аммония и удаления его из зоны реакции, вследствие чего образование двойной соли происходит не полностью.

На второй стадии процесс разложения двойной соли урана до тетрафторида урана проходит по реакции

,

и происходит образование защитной атмосферы вследствие окисления гранул углеграфитового материала в виде оксида углерода по реакции (2).

Выбор температурного диапазона термообработки на второй стадии обусловлен, с одной стороны, тем, что при температуре выше начала окисления углеграфитового материала (~400-500°C) начинается реакция разложения двойной соли до тетрафторида урана и образование защитной атмосферы, а с другой стороны, при температуре выше температуры плавления тетрафторида урана (~1000°C) происходит его оплавление и спекание.

Температурный диапазон термообработки на второй стадии 650-750°C является оптимальным с точки зрения скорости протекания реакции (5) и получения тетрафторида урана с высокой насыпной плотностью (более 2,0 г/см3).

Экспериментально установлено, что при 650°C оптимальная толщина засыпки составляет порядка 1,0 см, а при увеличении температуры до 750°C - 2,5 см.

Кроме того, выдержка в течение 1-2 часов на первой стадии термообработки и в течение 1,0-1,5 часов на второй стадии термообработки обеспечивает соответственно полноту прохождения реакций образования двойной соли и разложения двойной соли до тетрафторида урана.

Бифторид аммония берут с «запасом», т.е. с учетом его расхода на образование двойной соли и испарения в процессе образования двойной соли, что может составлять 1,0 -1,2 от веса диоксида урана.

Пример осуществления способа

В соответствии с заявляемым способом порошок диоксида урана смешивали с порошком бифторида аммония в количестве 1,0-1,2 от веса диоксида урана и помещали в никелевый контейнер с закрытой крышкой. Этот контейнер размещали в другом контейнере из жаропрочной стали с зазором 1,0-2,5 см, который заполняли гранулами углеграфитового материала до верхнего уровня таким образом, чтобы он полностью закрывал крышку первого контейнера. Толщина слоя засыпки на крышке первого контейнера составляла 1,0-2,5 см. Систему емкостей с углеграфитовой засыпкой нагревали в воздушной атмосфере вначале до температуры 200-235°C, а затем нагревали до 650-750°C. В качестве углеграфитового материала в опытах №1,2,3 использовали гранулы графита ГМЗ с открытой пористостью 25%, а в опыте №4 - гранулы нефтяного кокса с открытой пористостью 35%.

Выдержку при температуре 200-235°C проводили в течение 1-2 ч до образования двойной соли фторида урана ((NH4)2UF6) по реакции (4):

При достижении температуры 650-750°С проводили выдержку в течение 1,0-1,5 ч до разложения двойной соли до тетрафторида урана. Масса ингредиентов и режимы термообработки первой - низкотемпературной (200-235°C) и второй - высокотемпературной (650-750°C) стадий приведены в таблице 1.

Контроль качества получаемого тертафторида урана проводили с помощью рентгенофазового и химического анализов, результаты которых приведены в таблице 2.

Из данных таблиц 1 и 2 и результатов химического и рентгенофазового анализов UF4 видно, что в опытах №1, 2, 3, 4 был получен UF4 хорошего качества с содержанием кислорода всего 0,04-0,049%.

Таким образом, предложенный способ позволяет сократить стадийность и продолжительность процесса, при этом получать кондиционный тетрафторид урана с насыпной плотностью 2,37-2,62 г/см3 и выходом более 99% по сравнению с другими, известными сухими методами. Кроме того, значительно упрощается аппаратурное оформление процесса получения тетрафторида урана.

Предложенный способ позволяет организовать процесс получения UF4 в стандартных прокалочных муфелях, в контейнерах, изготовленных из никеля или сплавов на его основе (монель, инконель) без применения инертных газов, вакуумирования и использования герметичной агрегированной системы.

Источник поступления информации: Роспатент

Показаны записи 61-70 из 78.
10.05.2018
№218.016.3b3e

Способ испытания высокотемпературных тепловыделяющих элементов

Изобретение относится к способам испытаний высокотемпературных твэлов в исследовательском реакторе в составе ампульного облучательного устройства и может быть использовано при разработке и обосновании конструкции невентилируемых высокотемпературных твэлов, например, термоэмиссионного...
Тип: Изобретение
Номер охранного документа: 0002647486
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.40ee

Способ подготовки поверхности изделий из циркония или сплавов на его основе перед гальваническим никелированием

Изобретение относится к гальваностегии, в частности к нанесению защитных никелевых покрытий на изделия из циркония и сплавов на его основе, и может найти применение в области атомной энергии при производстве уран-циркониевых твэлов при подготовке поверхности перед гальваническим никелированием....
Тип: Изобретение
Номер охранного документа: 0002649112
Дата охранного документа: 29.03.2018
29.05.2018
№218.016.577c

Устройство для получения сферических частиц из жидких вязкотекучих материалов

Изобретение относится к технике диспергирования жидкотекучих сред, в частности вязкотекучих шликерных материалов, и может быть использовано в порошковой металлургии, химической, пищевой и других отраслях промышленности в процессах получения гранул. Устройство для получения сферических частиц из...
Тип: Изобретение
Номер охранного документа: 0002654962
Дата охранного документа: 23.05.2018
25.08.2018
№218.016.7eab

Способ электронно-лучевой сварки тонкостенных труб из молибденовых сплавов

Изобретение относится к способу электронно-лучевой сварки труб из молибденовых сплавов и может быть использовано при изготовлении тонкостенных трубных сварных изделий для атомной и космической техники, в частности для изготовления гильз канала системы управления и защиты. Перед стыковкой труб...
Тип: Изобретение
Номер охранного документа: 0002664746
Дата охранного документа: 22.08.2018
26.10.2018
№218.016.962b

Радиоизотопный элемент электрического питания с полупроводниковым преобразователем, совмещенным с источником излучения

Использование: для питания микроэлектронной аппаратуры. Сущность изобретения заключается в том, что радиоизотопный элемент электрического питания включает источник излучения, выполненный в виде содержащей радиоактивный изотоп фольги, и по крайней мере один полупроводниковый преобразователь, при...
Тип: Изобретение
Номер охранного документа: 0002670710
Дата охранного документа: 24.10.2018
01.03.2019
№219.016.ce20

Устройство контроля газа в жидкометаллическом теплоносителе

Изобретение относится к области диагностики энергетических установок и может использоваться преимущественно в атомной энергетике для контроля герметичности парогенераторов, в которых греющим теплоносителем является жидкий металл (натрий, свинец, свинец-висмут), передающий тепло воде и водяному...
Тип: Изобретение
Номер охранного документа: 0002426111
Дата охранного документа: 10.08.2011
08.03.2019
№219.016.d35f

Способ получения металлического урана

Изобретение относится к получению металлического урана. Способ включает смешивание тетрафторида урана с металлическим кальцием, взятым с избытком от стехиометрического количества, загрузку смеси в реактор и инициирование плавки с помощью нижнего электрозапала. Загрузку смеси осуществляют...
Тип: Изобретение
Номер охранного документа: 0002681331
Дата охранного документа: 06.03.2019
20.03.2019
№219.016.e306

Способ реакторных испытаний высокотемпературных вентилируемых тепловыделяющих элементов

Изобретение относится к способу реакторных испытаний высокотемпературных вентилируемых твэлов в составе ампульного облучательного устройства и может быть использовано при разработке конструкции и обосновании ресурса высокотемпературных, например, термоэмиссионных твэлов космической ЯЭУ. В...
Тип: Изобретение
Номер охранного документа: 0002682238
Дата охранного документа: 18.03.2019
18.05.2019
№219.017.59cc

Способ получения монокристаллов сплава вольфрам-тантал

Изобретение относится к металлургии тугоплавких металлов и сплавов и может быть использовано при выращивании однородных монокристаллов сплава вольфрам - тантал методом бестигельной зонной плавки с электронно-лучевым нагревом (ЭБЗП). Исходные компоненты - порошки вольфрама и тантала смешивают и...
Тип: Изобретение
Номер охранного документа: 0002453624
Дата охранного документа: 20.06.2012
20.05.2019
№219.017.5c97

Способ получения тетрафторида урана

Изобретение относится к химической технологии неорганических веществ, а именно к способу получения тетрафторида урана сухим методом, который может применяться в производстве гексафторида урана или металлического урана. Способ включает смешивание порошков диоксида урана с бифторидом аммония,...
Тип: Изобретение
Номер охранного документа: 0002687935
Дата охранного документа: 16.05.2019
Показаны записи 61-69 из 69.
29.05.2018
№218.016.577c

Устройство для получения сферических частиц из жидких вязкотекучих материалов

Изобретение относится к технике диспергирования жидкотекучих сред, в частности вязкотекучих шликерных материалов, и может быть использовано в порошковой металлургии, химической, пищевой и других отраслях промышленности в процессах получения гранул. Устройство для получения сферических частиц из...
Тип: Изобретение
Номер охранного документа: 0002654962
Дата охранного документа: 23.05.2018
08.03.2019
№219.016.d35f

Способ получения металлического урана

Изобретение относится к получению металлического урана. Способ включает смешивание тетрафторида урана с металлическим кальцием, взятым с избытком от стехиометрического количества, загрузку смеси в реактор и инициирование плавки с помощью нижнего электрозапала. Загрузку смеси осуществляют...
Тип: Изобретение
Номер охранного документа: 0002681331
Дата охранного документа: 06.03.2019
20.05.2019
№219.017.5c97

Способ получения тетрафторида урана

Изобретение относится к химической технологии неорганических веществ, а именно к способу получения тетрафторида урана сухим методом, который может применяться в производстве гексафторида урана или металлического урана. Способ включает смешивание порошков диоксида урана с бифторидом аммония,...
Тип: Изобретение
Номер охранного документа: 0002687935
Дата охранного документа: 16.05.2019
14.11.2019
№219.017.e16a

Способ рафинирования чернового урана

Изобретение относится к металлургии и атомной технике и может быть использовано для пирометаллургического рафинирования чернового урана, полученного кальциетермическим восстановлением тетрафторида урана. Рафинирование чернового урана, полученного кальциетермическим методом, включает...
Тип: Изобретение
Номер охранного документа: 0002705845
Дата охранного документа: 12.11.2019
09.02.2020
№220.018.014f

Способ переработки уран-молибденовой композиции

Изобретение относится к области металлургии и технологии урана, в частности к способу переработки уран-молибденовой композиции. Способ переработки уран-молибденовой композиции включает ее окисление и прокаливание в воздушной среде с последующим отделением молибдена от урансодержащего твердого...
Тип: Изобретение
Номер охранного документа: 0002713745
Дата охранного документа: 07.02.2020
12.04.2023
№223.018.4537

Способ сорбционного извлечения тория из нитратных растворов урана и тория

Изобретение относится к гидрометаллургии урана и тория и может быть использовано для сорбционного извлечения тория из нитратных растворов урана и тория методом ионного обмена. Способ сорбционного извлечения тория из нитратных растворов урана и тория, включающий сорбцию тория на сульфокатионите...
Тип: Изобретение
Номер охранного документа: 0002759824
Дата охранного документа: 18.11.2021
16.05.2023
№223.018.6108

Способ переработки кислотоупорных урансодержащих материалов

Изобретение относится к гидрометаллургической переработке кислотоупорных урансодержащих материалов, а именно - техногенных отходов, образующихся в результате окислительной переработки твэлов сложного многокомпонентного состава. Способ включает измельчение исходного урансодержащего материала в...
Тип: Изобретение
Номер охранного документа: 0002743383
Дата охранного документа: 17.02.2021
17.06.2023
№223.018.7d7d

Способ получения углеграфитовых изделий

Изобретение может быть использовано для изготовления электродов, тиглей, нагревателей, материалов для атомной техники, например уран-графитовых тепловыделяющих элементов. Заготовки помещают в контейнер из графлекса или графита, используя в качестве засыпки карбамид в количестве 5-10 мас. %...
Тип: Изобретение
Номер охранного документа: 0002780454
Дата охранного документа: 23.09.2022
17.06.2023
№223.018.7e89

Высокотемпературный плотный композитный материал ядерного топлива и способ его получения

Группа изобретений относится к материалу ядерного топлива и представляет собой высокотемпературный плотный композитный материал ядерного топлива и способ его получения. Высокотемпературный плотный композитный материал ядерного топлива содержит керамическую, инертную к облучению матрицу, в...
Тип: Изобретение
Номер охранного документа: 0002770890
Дата охранного документа: 25.04.2022
+ добавить свой РИД