×
26.08.2017
217.015.e19a

Результат интеллектуальной деятельности: Устройство для промера распределения поля инфракрасной поверхностной электромагнитной волны над её треком

Вид РИД

Изобретение

Аннотация: Изобретение относится к области исследования поверхности металлов и полупроводников и касается устройства для промера распределения поля инфракрасной поверхностной электромагнитной волны (ПЭВ) над ее треком. Устройство содержит источник монохроматического излучения, элемент преобразования излучения в ПЭВ, твердотельный образец с направляющей волну плоской поверхностью и перемещаемую вдоль трека платформу. На платформе установлен фокусирующий объектив, фотоприемник, измерительный прибор и стойка. На стойке установлены амортизированная пружинами рамка и регулировочный микровинт, сочлененный с размещенной внутри рамки площадкой, несущей элемент преобразования ПЭВ в ОВ. Пружины, упираясь в стойку, поджимают рамку к образцу, а сама рамка опирается на поверхность образца перемещающимися по ней упорами. Элемент преобразования излучения в ПЭВ выполнен в виде сектора цилиндра, ось которого ориентирована перпендикулярно плоскости падения излучения, а выпуклая поверхность этого элемента, способная направлять ПЭВ, сопряжена своим ребром с поверхностью образца и имеет протяженность трека меньше длины распространения ПЭВ. Технический результат заключается в повышении точности измерений. 1 ил.

Изобретение относится к бесконтактным методам исследования поверхности металлов и полупроводников посредством инфракрасного (ИК) излучения, а именно - к определению ИК-спектров поглощения как самой поверхности, так и ее переходного слоя путем измерения длины распространения поверхностной электромагнитной волны (ПЭВ), направляемой этой поверхностью, и может найти применение в исследованиях физико-химических процессов на поверхности твердого тела, в ИК-спектроскопии окисных и адсорбированных слоев, в сенсорных устройствах и контрольно-измерительной технике.

Спектроскопия поверхности твердого тела - одна из основных областей применения ПЭВ (Поверхностные поляритоны. Электромагнитные волны на поверхностях и границах раздела сред / Под ред. В.М. Аграновича и Д.Л. Миллса. – М.: Наука, 1985. - 525 с.) [1]. В ИК-диапазоне применяют, главным образом, абсорбционную ПЭВ-спектроскопию, в которой измеряемой величиной является длина распространения ПЭВ L (расстояние вдоль трека, на котором интенсивность поля ПЭВ уменьшается в e≈2.718 раз), достигающая в этом диапазоне 1000λ (где λ - длина волны излучения, возбуждающего ПЭВ) и которая, поэтому, может быть измерена непосредственно. Причем, так как расстояние взаимодействия излучения с поверхностью в этом методе макроскопическое, а интенсивность поля ПЭВ максимальна на направляющей ее поверхности, то чувствительность ПЭВ-спектроскопии значительно выше чувствительности иных оптических методов контроля проводящей поверхности в ИК-диапазоне.

Точность определения величины L, а следовательно, и точность самого метода ПЭВ-спектроскопии пропорциональна числу N измерений интенсивности ПЭВ в различных точках трека (где N≥2) и в значительной степени зависит от стабильности условий преобразования ПЭВ в детектируемую фотоприемником объемную волну (ОВ); в частности - от неизменности величины зазора между элементом преобразования ПЭВ в ОВ и поверхностью образца в процессе перемещения этого элемента вдоль трека.

Известно устройство для измерения длины распространения монохроматических ПЭВ ИК-диапазона, содержащее источник лазерного излучения, твердотельный образец с плоской поверхностью, направляющей ПЭВ, фиксированный относительно поверхности элемент преобразования излучения в ПЭВ, перемещаемый вдоль трека ПЭВ элемент преобразования ПЭВ в объемную волну, приемник излучения, выходящего из второго элемента преобразования, и измерительный прибор, регистрирующий сигналы с выхода фотоприемника (Жижин Г.Н., Москалева М.А., Шомина Е.В., Яковлев В.А. Селективное поглощение ПЭВ, распространяющейся по металлу в присутствии тонкой диэлектрической пленки // Письма в ЖЭТФ, 1976, т. 24, Вып. 4, с. 221-225) [2].

Основными недостатками такого устройства являются низкая точность измерений, не превышающая 10%, что обусловлено наличием паразитных приповерхностных объемных волн, порождаемых на первом элементе преобразования вследствие дифракции падающего излучения, и вариациями оптической связи между ПЭВ и вторым элементом преобразования в процессе его перемещения.

Известно устройство для измерения длины распространения ИК ПЭВ, содержащее источник лазерного излучения, твердотельный образец, состоящий из двух частей, сопряженных плоскими поверхностями, фиксированный относительно поверхности первой (по ходу излучения) части элемент преобразования излучения в ПЭВ и подключенный к измерительному прибору фотодетектор, размещенный у края поверхности в плоскости падения излучения; причем фотодетектор имеет возможность перемещаться вдоль линии пересечения плоскости падения излучения и волноведущей поверхности, а вторая часть образца является съемной (Патент РФ на изобретение №2380664) [3].

Основными недостатками такого устройства являются низкая точность измерений, обусловленная наличием паразитных приповерхностных объемных волн, порождаемых вследствие дифракции падающего излучения на первом элементе преобразования, и минимальным числом измерений (N=2) интенсивности ПЭВ: при наличии второй части образца и в ее отсутствии.

Известно устройство для зондирования поля монохроматической ИК ПЭВ над ее треком, содержащее источник лазерного излучения, твердотельный образец с направляющей ПЭВ плоской поверхностью и ребром, перпендикулярным треку, размещенный в окружающей среде над поверхностью элемент преобразования излучения в ПЭВ, способный перемещаться вдоль трека, приемник излучения, зафиксированный относительно образца и размещенный в плоскости падения на уровне направляющей поверхности, и измерительный прибор, регистрирующий сигналы с выхода приемника (Gerasimov V.V., Knyazev В.А., Nikitin А.K., Zhizhin G.N. A way to determine the permittivity of metallized surfaces at terahertz frequencies // Applied Physics Letters, 2011, v. 98, No. 17, 171912) [4].

Основными недостатками известного устройства являются низкая точность измерений, обусловленная наличием паразитных приповерхностных объемных волн, порождаемых при дифракции падающего излучения на элементе преобразования и вариациями оптической связи между ПЭВ и элементом преобразования в процессе его перемещения.

Известно устройство для измерения длины распространения монохроматических ПЭВ ИК-диапазона, содержащее источник излучения, направляющий ПЭВ составной твердотельный образец, состоящий из примыкающих друг к другу двух частей, первая из которых является плоскогранной, а вторая - полуцилиндром с радиусом образующей меньше длины распространения, основание которого сопряжено с торцом первой части и ориентировано перпендикулярно треку, размещенный в окружающей среде над поверхностью неподвижный элемент преобразования излучения в ПЭВ, приемник излучения, размещенный в плоскости падения излучения у края второй части, а также - измерительный прибор, подключенный к приемнику; причем обе части образца и приемник размещены на подвижной платформе, способной перемещаться параллельно направляющей поверхности первой части (Патент РФ на изобретение №2470269) [5].

Основным недостатком такого устройства является низкая точность измерений, обусловленная изменением величины зазора между элементом преобразования и поверхностью первой части, а также смещением пучка излучения источника относительно этого элемента в процессе перемещения платформы.

Наиболее близким по технической сущности к заявляемому устройству является устройство для промера распределения поля ИК ПЭВ над ее треком, содержащее источник лазерного излучения, твердотельный образец, волноведущая поверхность которого образована двумя плоскими гранями, сопряженными скругленным ребром, фиксированный над первой по ходу излучения гранью элемент преобразования излучения в ПЭВ, укрепленные на перемещаемой вдоль трека платформе элемент преобразования ПЭВ в объемное излучение, выполненный в виде плоского зеркала, отражающая грань которого примыкает ко второй грани образца, наклонена к ней под углом 45° и ориентирована перпендикулярно к треку, фокусирующий объектив и фотодетектор, подключенный к измерительному прибору (Gerasimov V.V., Knyazev В.А., Kotelnikov I.A., Nikitin A.K., Cherkassky V.S., Kulipanov G.N., Zhizhin G.N. Surface plasmon-polaritons launched using a terahertz free electron laser: propagating along a gold-ZnS-air interface and decoupling to free waves at the surface tail end // Journal of the Optical Society of America (B), 2013, v. 30, Is. 8, p. 2182-2190 (прототип)) [6].

Основным недостатком известного устройства также является низкая точность измерений, обусловленная изменением величины зазора между элементом преобразования и поверхностью второй грани образца в процессе перемещения платформы.

Техническим результатом, на достижение которого направлено изобретение, является повышение точности измерений и воспроизводимости их результатов.

Технический результат достигается тем, что в устройстве для промера распределения поля ИК ПЭВ над ее треком, содержащем источник монохроматического излучения, элемент преобразования излучения в ПЭВ, твердотельный образец с направляющей волну плоской поверхностью, перемещаемую вдоль трека платформу, на которой размещены элемент преобразования ПЭВ в объемную волну (ОВ), выполненный в виде плоского зеркала, отражающая грань которого примыкает к поверхности образца, наклонена к ней под углом 45° и ориентирована перпендикулярно к треку, фокусирующий объектив, фотоприемник и подключенный к нему измерительный прибор, согласно изобретению платформа дополнительно содержит стойку, на которой установлены амортизированная пружинами рамка и регулировочный микровинт, сочлененный с размещенной внутри рамки площадкой, несущей элемент преобразования ПЭВ в ОВ, и способный перемещать площадку относительно рамки вдоль нормали к поверхности образца; причем пружины, упираясь в стойку, поджимают рамку к образцу, а сама рамка опирается на поверхность образца перемещающимися по ней упорами; кроме того, элемент преобразования излучения в ПЭВ выполнен в виде сектора цилиндра, ось которого ориентирована перпендикулярно плоскости падения излучения, а выпуклая поверхность этого элемента, способная направлять ПЭВ, сопряжена своим ребром с поверхностью образца и имеет протяженность трека меньше длины распространения ПЭВ.

Повышение точности измерений достигается за счет постоянства величины зазора между элементом преобразования ПЭВ в ОВ в процессе перемещения платформы, обеспечиваемого тем, что величина зазора устанавливается микровинтом и фиксируется упорами рамки, несущей площадку с элементом преобразования; возможные же изменения зазора в ходе движения платформы вдоль трека компенсируются соответствующими изменениями деформации пружин. Кроме того, цилиндрическая форма элемента преобразования излучения источника в ПЭВ обеспечивает надежную экранировку фотоприемника от паразитных засветок объемными волнами, возникающими в результате дифракции излучения на этом элементе.

На Рис. 1 приведена схема заявляемого устройства, где 1 - источник p-поляризованного монохроматического излучения, 2 - фокусирующее цилиндрическое зеркало, образующая которого перпендикулярна плоскости падения излучения; 3 - цилиндрический элемент преобразования излучения в ПЭВ, выпуклая поверхность которого способна направлять ПЭВ и дуга которого в плоскости падения короче длины распространения ПЭВ; 4 - образец, плоская грань которого способна направлять ПЭВ; 5 - элемент преобразования ПЭВ в объемное излучение, выполненный в виде плоского зеркала, отражающая грань которого примыкает к грани образца 4 и наклонена к ней под углом 45°; 6 - фокусирующая линза; 7 - фотоприемник, размещенный в фокусе линзы 6; 8 - измерительный прибор; 9 - платформа, перемещаемая параллельно поверхности грани образца 4; 10 - стойка, укрепленная на платформе 9; 11 - пружины, опирающиеся на стойку 10; 12 - рамка, перемещаемая пружинами 11 вдоль нормали к плоскости грани образца 4; 13 - регулировочный микровинт, установленный на стойке 10; 14 - площадка с укрепленным на ней элементом 5, размещенная внутри рамки 12 и сочлененная с прецизионно перемещающим ее винтом 13; 15 - упоры рамки 12, перемещающиеся по поверхности грани образца 4; 16 - непрозрачный экран, удаленный от стыка "элемент 3 - образец 4" на расстояние меньше длины распространения и больше глубины проникновения ПЭВ в окружающую среду от грани образца 4.

Заявляемое устройство работает следующим образом. Излучение источника 1 падает на зеркало 2, фокусирующее излучение на ребро элемента преобразования 3, имеющего форму сектора цилиндра с радиус кривизны не менее 100⋅λ, что обеспечивает неизлучающий характер ПЭВ на искривленной поверхности. Излучение дифрагирует на ребре и, с некоторой эффективностью, преобразуется в ПЭВ, направляемую выпуклой поверхностью элемента 3. Достигнув второго ребра выпуклой поверхности, ПЭВ переходит на плоскую грань образца 4 и распространяется по ней с некоторым затуханием, обусловленным джоулевыми потерями в материале образца. Вследствие потерь интенсивность ПЭВ уменьшается вдоль трека по экспоненциальному закону, характеризующему длину распространения L волны. Дойдя до зеркала 5, ПЭВ взаимодействует с его наклоненной отражающей гранью и получает в результате этого отрицательную добавку (модуль которой равен , где k0=2π/λ) к своему волновому вектору, что приводит к преобразованию ПЭВ в объемную волну (ОВ), распространяющуюся в окружающем пространстве вдоль нормали к грани образца 4. ОВ фокусируется линзой 6 на входное отверстие приемника 7. Сигнал I, вырабатываемый приемником 7 и пропорциональный интенсивности поля ПЭВ в точке трека под передней кромкой отражающей грани зеркала 5, регистрируется прибором 8. Регистрацию сигнала выполняют по мере продвижения платформы 9 вдоль трека ПЭВ. Тогда длина распространения ПЭВ L может быть рассчитана по формуле (1):

где x2 и х1 - расстояния (причем x1<x2), проходимые ПЭВ по образцу до произвольных точек трека; I1 и I2 - сигналы, регистрируемые прибором 8, при нахождении зеркала 5 в этих точках.

Выполнив измерения и расчеты значений L для большого числа расстояний х, пробегаемых ПЭВ, находят среднее значение L. Многократность измерений и усреднение их результатов способствуют повышению точности определения L.

Ключевым моментом, позволяющим повысить точность и воспроизводимость результатов измерений при использовании заявляемого устройства, является неизменность зазора между зеркалом 5 и образцом 4 в процессе перемещения платформы 9, на которой размещены линза 6 и приемник 7. Для обеспечения этого постоянства платформа 9 дополнительно содержит стойку 10, на которой установлены амортизированная пружинами 11 рамка 12 и регулировочный микровинт 13, сочлененный с размещенной внутри рамки 12 площадкой 14, несущей элемент 5, и способный перемещать площадку 14 относительно рамки 12 вдоль нормали к грани образца 4; причем пружины 11, упираясь в стойку 10, поджимают рамку 12 к образцу 4, а сама рамка 12 опирается на грань образца 4 перемещающимися по ней упорами 15. Вследствие постоянного механического взаимодействия элемента 5 (наклоненного плоского зеркала), преобразующего ПЭВ в ОВ, в ходе перемещения платформы 9 возможные вариации величины зазора компенсируются изменением длины пружин 11. Сама же величина зазора, определяющая интенсивность детектируемого приемником 7 излучения в данной точке трека, выбирается микровинтом 13 и остается неизменной в процессе регистрации интенсивности поля ПЭВ вдоль ее трека. Кроме того, наличие в устройстве винта 13 позволяет промерять распределение интенсивности поля ПЭВ и вдоль нормали к поверхности образца 4 в любой точке трека, что используют, в частности, для определения действительной части показателя преломления ПЭВ (Gerasimov V.V., Knyazev В.А., Nikitin А.K., Zhizhin G.N. A way to determine the permittivity of metallized surfaces at terahertz frequencies // Applied Physics Letters, 2011, v. 98, No. 17, 171912) [4].

Второй важной особенностью заявляемого устройства является использование в качестве элемента преобразования излучения источника 1 в ПЭВ сектора цилиндра, ось которого ориентирована перпендикулярно плоскости падения излучения и способна направлять ПЭВ выпуклую поверхность, которая своим ребром сопряжена с плоской гранью образца 4 и имеет протяженность трека меньше длины распространения ПЭВ. Цилиндрическая форма согласующего элемента 3 и наличие у его выпуклой поверхности, ограниченной двумя плоскостями, пересекающимися на оси цилиндра, позволяет не только генерировать ПЭВ излучением источника 1 слабо дисперсионным end-fire методом (Stegeman G.I., Wallis R.F., Maradudin А.А. Excitation of surface polaritons by end-fire coupling // Optics Letters, 1983, v. 8 (7), p. 386-388) [7], но и эффективно экранировать приемник 7 от порождаемых при этом паразитных объемных волн. С целью защиты приемника 7 от паразитного излучения, возникающего на стыке элемента 3 и образца 4, над треком размещают непрозрачный экран 16, удаленный от стыка на расстояние меньше длины распространения и больше глубины проникновения ПЭВ в окружающую среду от поверхности образца 4.

В качестве примера применения заявляемого устройства рассмотрим возможность промера распределения поля ПЭВ, генерируемой излучением с λ=130 мкм на поверхности золота, напыленного на плоскую поверхность оптически полированного стекла, размещенного в воздухе. В этом случае длина распространения ПЭВ L≈38.4 мм, а глубина проникновения δ поля в воздух (расстояние вдоль нормали к поверхности образца, на котором интенсивность поля ПЭВ уменьшается в e≈2.718 раз) составляет 1.3 мм (Gerasimov V.V., Knyazev В.А., Nikitin А.K., Zhizhin G.N. A way to determine the permittivity of metallized surfaces at terahertz frequencies // Applied Physics Letters, 2011, v. 98, No. 17, 171912) [4]. Пусть точность измерения перемещения платформы 9 с элементом преобразования 5 (наклоненным на 45° плоским зеркалом) ПЭВ в объемное излучение вдоль трека и вдоль нормали к поверхности грани образца 4 равна 10 мкм. Тогда точность сохранения зазора между зеркалом 5 и образцом 4 при перемещении платформы 9 также составит 10 мкм, что обеспечит определение величин L и δ с относительными ошибками, не превышающими 1% и определяемыми отношением вариации интенсивности поля ПЭВ над треком в пределах 10 мкм (точность сохранения зазора). В случае же применения устройства, взятого в качестве прототипа, предполагающего параллельность поверхности образца 4 и траектории перемещения передней (по ходу излучения) кромки зеркала 5, погрешность этой параллельности в одну угловую минуту приведет к изменению величины зазора (при перемещении платформы 9 на расстояние 38.4 мм), равному 0.40 мм, что, в свою очередь, обусловит более чем 10% неопределенность искомых значений L и δ.

Таким образом, по сравнению с прототипом заявляемое устройство позволяет повысить точность измерений и воспроизводимость их результатов как за счет строгого сохранения величины зазора между образцом и элементом преобразования ПЭВ в объемное излучение в процессе перемещения этого элемента вдоль трека, так и более эффективного экранирования приемника от паразитных засветок путем применения цилиндрического (а не плоскогранного) элемента преобразования излучения источника в ПЭВ.

Источники информации

1. Поверхностные поляритоны. Электромагнитные волны на поверхностях и границах раздела сред / Под ред. В.М.Аграновича и Д.Л.Миллса. - М.: Наука, 1985. - 525 с.

2. Жижин Г.Н., Москалева М.А., Шомина Е.В., Яковлев В.А. Селективное поглощение ПЭВ, распространяющейся по металлу в присутствии тонкой диэлектрической пленки // Письма в ЖЭТФ, 1976, т. 24, Вып. 4, с. 221-225.

3. Жижин Г.Н., Мустафина О.М., Никитин А.К. Устройство для измерения длины распространения ПЭВ ИК-диапазона // Патент РФ на изобретение №2380664. - Бюл. №3 от 27.01.2010 г.

4. Gerasimov V.V., Knyazev В.А., Nikitin А.K., Zhizhin G.N. A way to determine the permittivity of metallized surfaces at terahertz frequencies // Applied Physics Letters, 2011, v. 98, No. 17, 171912.

5. Никитин A.K., Жижин Г.Н., Князев Б.А., Никитин В.В. Устройство для измерения длины распространения монохроматических поверхностных электромагнитных волн инфракрасного диапазона // Патент РФ на изобретение №2470269, Бюл. №35 от 20.12.2012 г.

6. Gerasimov V.V., Knyazev В.А., Kotelnikov I.A., Nikitin A.K., Cherkassky V.S., Kulipanov G.N., Zhizhin G.N. Surface plasmon-polaritons launched using a terahertz free electron laser: propagating along a gold-ZnS-air interface and decoupling to free waves at the surface tail end // Journal of the Optical Society of America (B), 2013, v. 30, Is. 8, p. 2182-2190. (прототип)

7. Stegeman G.I., Wallis R.F., Maradudin A.A. Excitation of surface polaritons by end-fire coupling // Optics Letters, 1983, v. 8 (7), p. 386-388.

Устройство для промера распределения поля инфракрасной поверхностной электромагнитной волны (ПЭВ) над ее треком, содержащее источник монохроматического излучения, элемент преобразования излучения в ПЭВ, твердотельный образец с направляющей волну плоской поверхностью, перемещаемую вдоль трека платформу, на которой размещены элемент преобразования ПЭВ в объемную волну (ОВ), выполненный в виде плоского зеркала, отражающая грань которого примыкает к поверхности образца, наклонена к ней под углом 45° и ориентирована перпендикулярно к треку, фокусирующий объектив, фотоприемник и подключенный к нему измерительный прибор, отличающееся тем, что платформа дополнительно содержит стойку, на которой установлены амортизированная пружинами рамка и регулировочный микровинт, сочлененный с размещенной внутри рамки площадкой, несущей элемент преобразования ПЭВ в ОВ, и способный перемещать площадку относительно рамки вдоль нормали к поверхности образца; причем пружины, упираясь в стойку, поджимают рамку к образцу, а сама рамка опирается на поверхность образца перемещающимися по ней упорами; кроме того, элемент преобразования излучения в ПЭВ выполнен в виде сектора цилиндра, ось которого ориентирована перпендикулярно плоскости падения излучения, а выпуклая поверхность этого элемента, способная направлять ПЭВ, сопряжена своим ребром с поверхностью образца и имеет протяженность трека меньше длины распространения ПЭВ.
Устройство для промера распределения поля инфракрасной поверхностной электромагнитной волны над её треком
Устройство для промера распределения поля инфракрасной поверхностной электромагнитной волны над её треком
Источник поступления информации: Роспатент

Показаны записи 61-70 из 78.
07.06.2020
№220.018.2545

Способ приготовления катализатора гидрирования фурфурола и фурфурилового спирта до 2-метилфурана

Изобретение относится к области разработки способов приготовления катализаторов селективного гидрирования фурфурола и/или фурфурилового спирта для получения 2-метилфурана. Описан способ приготовления катализатора гидрирования фурфурола и/или фурфурилового спирта, включающий смешение молибдата...
Тип: Изобретение
Номер охранного документа: 0002722837
Дата охранного документа: 04.06.2020
07.06.2020
№220.018.2564

Способ получения низкосернистого дизельного топлива

Изобретение относится к способам совместной гидропереработки триглицеридов жирных кислот и нефтяных дизельных фракций на сульфидных катализаторах с целью получения низкосернистого дизельного топлива с улучшенными низкотемпературными характеристиками и может быть использовано в...
Тип: Изобретение
Номер охранного документа: 0002722824
Дата охранного документа: 04.06.2020
18.06.2020
№220.018.27b8

Способ получения высокооктановой добавки путем гидрирования фурфурола и фурфурилового спирта

Изобретение относится к способу получения 2-метилфурана путем селективного гидрирования фурановых производных - фурфурола и/или фурфурилового спирта. Способ заключается в гидрировании фурфурола и/или фурфурилового спирта в присутствии катализатора, содержащего 15 мас.% карбида молибдена,...
Тип: Изобретение
Номер охранного документа: 0002723548
Дата охранного документа: 16.06.2020
21.06.2020
№220.018.2886

Способ изготовления устройства поверхностной аксиальной нанофотоники

Изобретение относится к области нанооптических технологий. Способ изготовления устройства поверхностной аксиальной нанофотоники (SNAP) реализуется путем создания заданного профиля эффективного радиуса волокна по его оси последовательным воздействием сфокусированным излучением на определенные...
Тип: Изобретение
Номер охранного документа: 0002723979
Дата охранного документа: 18.06.2020
06.07.2020
№220.018.2fb2

Устройство для преобразования инфракрасного излучения в поверхностную электромагнитную волну на цилиндрическом проводнике

Устройство относится к области информационных технологий, реализуемых с использованием поверхностных электромагнитных волн (ПЭВ) инфракрасного и терагерцового диапазонов. Устройство содержит источник излучения с плоским волновым фронтом, поляризационный конвертер, придающий излучению радиальную...
Тип: Изобретение
Номер охранного документа: 0002725643
Дата охранного документа: 03.07.2020
09.07.2020
№220.018.30cd

Катализатор для получения низкосернистого дизельного топлива

Изобретение относится к применению сульфидированного катализатора, содержащего соединения Ni и Мо, диспергированные на носителе, включающем композицию оксида алюминия и силикоалюмофосфата SAPO-11 и содержащем активные компоненты, мас.%: оксид молибдена МоО - 16,0-19,5, оксид никеля NiO -...
Тип: Изобретение
Номер охранного документа: 0002725870
Дата охранного документа: 07.07.2020
18.07.2020
№220.018.3424

Способ совместной гидропереработки триглицеридов жирных кислот и нефтяных дизельных фракций

Изобретение относится к способам совместной гидропереработки триглицеридов жирных кислот и прямогонной дизельной фракции на сульфидных катализаторах с целью получения низкосернистых углеводородных фракций и может быть использовано в нефтеперерабатывающей промышленности. Предложен способ...
Тип: Изобретение
Номер охранного документа: 0002726796
Дата охранного документа: 15.07.2020
20.04.2023
№223.018.4cb2

Способ внесения в почву зольных минеральных добавок

Изобретение относится к области сельского хозяйства, в частности к полеводству. В способе в качестве зольных минеральных добавок используют золу-унос углей, сжигаемых на ТЭЦ. Используют золу-унос бурых углей с дисперсностью до 100 мкм, которую наносят слоем 1-10 мм на первый снежный покров при...
Тип: Изобретение
Номер охранного документа: 0002757060
Дата охранного документа: 11.10.2021
15.05.2023
№223.018.5b43

Нелинейный монокристалл литиевых халькогенидов и способ его получения

Изобретение относится к кристаллам литиевых халькогенидов для нелинейной оптики. Нелинейный монокристалл литиевых халькогенидов общей формулы LiAgGaSe, где х принимает любое значение от 0,01 до 0,98 с соответствующим изменением пространственной группы от тетрагональной I2d до ромбической Pna2...
Тип: Изобретение
Номер охранного документа: 0002763463
Дата охранного документа: 29.12.2021
16.05.2023
№223.018.6047

Устройство оптического восстановления телекоммуникационного сигнала с амплитудной модуляцией и способ создания этого устройства

Изобретение относится к устройствам, предназначенным для исправления искажений оптических телекоммуникационных сигналов, и может быть использовано для компенсации хроматической дисперсии и нелинейных искажений в сигнале до момента непосредственного детектирования. Технический результат состоит...
Тип: Изобретение
Номер охранного документа: 0002749670
Дата охранного документа: 16.06.2021
Показаны записи 51-52 из 52.
06.07.2020
№220.018.2fb2

Устройство для преобразования инфракрасного излучения в поверхностную электромагнитную волну на цилиндрическом проводнике

Устройство относится к области информационных технологий, реализуемых с использованием поверхностных электромагнитных волн (ПЭВ) инфракрасного и терагерцового диапазонов. Устройство содержит источник излучения с плоским волновым фронтом, поляризационный конвертер, придающий излучению радиальную...
Тип: Изобретение
Номер охранного документа: 0002725643
Дата охранного документа: 03.07.2020
16.06.2023
№223.018.79d3

Способ визуализации неоднородностей плоской полупроводниковой поверхности в терагерцовом излучении

Изобретение относится к оптическим методам контроля качества поверхности полупроводниковых и металлических изделий, в которых взаимодействие зондирующего излучения с поверхностью опосредовано поверхностной электромагнитной волной (ПЭВ), возбуждаемой падающим излучением и направляемой...
Тип: Изобретение
Номер охранного документа: 0002737725
Дата охранного документа: 02.12.2020
+ добавить свой РИД