×
26.08.2017
217.015.e0ac

Результат интеллектуальной деятельности: СПОСОБ ПРОВЕРКИ СТЕРЖНЕВОЙ ОБМОТКИ РОТОРА ВРАЩАЮЩЕЙСЯ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ

Вид РИД

Изобретение

№ охранного документа
0002625337
Дата охранного документа
13.07.2017
Аннотация: Изобретение относится к электротехнике, а именно к способу проверки стержневой обмотки ротора вращающейся электрической машины, который заключается в измерении температуры отдельных стержней (22) стержневой обмотки ротора (20) с помощью датчика (34) теплового излучения, расположенного в статоре (32) вращающейся электрической машины (30) и оценке считываемых значений датчика (34) теплового излучения. При этом частота вращения ротора (20) должна быть меньше заданной предельной частоты датчика (34) теплового излучения, разделенной на количество стержней стержневой обмотки, а частота считывания должна быть больше частоты вращения ротора (20) умноженной на количество стержней (22). Технический результат состоит в повышении надежности работы электрической машины за счет измерения температуры локальных частей ротора во всех режимах. 2 н. и 22 з.п. ф-лы, 8 ил.

Данное изобретение относится к способу проверки стержневой обмотки ротора вращающейся или линейно движущейся электрической машины, при этом с помощью расположенного в статоре вращающейся электрической машины датчика измерения теплового излучения измеряется тепловое излучение ротора. Кроме того, изобретение относится к устройству для проверки стержневой обмотки ротора вращающейся электрической машины, содержащему расположенный в статоре вращающейся электрической машины датчик измерения теплового излучения, с помощью которого обеспечивается возможность измерения теплового излучение ротора.

Электрическая машина является устройством, которое преобразует электрическую энергию в механическую энергию, в частности энергию движения (режим электродвигателя), и/или механическую энергию в электрическую энергию (режим генератора). Вращающаяся электрическая машина является электрической машиной, в которой статор имеет, как правило, круглое отверстие, в котором установлен с возможностью вращения ротор. Статор расположен относительно ротора без возможности проворачивания. Статор и ротор связаны друг с другом с помощью магнитного потока, за счет чего в режиме электродвигателя создается силовое действие, которое приводит ротор во вращение относительно статора, а в режиме генератора подводимая к ротору механическая энергия преобразуется в электрическую энергию. Для этого статор и ротор имеют соответствующую проводящую ток обмотку. В статоре или в роторе обмотка может быть также образована или дополнена с помощью постоянных магнитов.

Вращающиеся электрические машины этого вида известны из уровня техники, так что не требуется особого доказательства в виде публикаций. Вращающиеся электрические машины указанного вида являются, например, электрическими машинами с вращающимся магнитным полем, которые подключаются к многофазной, в частности трехфазной, электрической сети, такими как асинхронные машины, синхронные машины с пусковой беличьей клеткой или т.п. Стержневая обмотка может быть, в частности, короткозамкнутой обмоткой типа беличья клетка, которая образована, например, с помощью клетки из стержней и короткозамыкающих колец, например, в роторе типа беличья клетка асинхронной машины. Стержневая обмотка предпочтительно содержит проводящие стержни, которые проходят по существу в осевом направлении ротора и на концах ротора соединены электрически проводящим образом, например, с помощью короткозамыкающих колец или лобовых перемычек.

Роторы таких электрических машин подвергаются сильным термодинамическим нагрузкам при не стационарных рабочих условиях. Такие рабочие условия могут вызываться запуском машины со сверхтоком вплоть до достижения номинальной точки, блокировкой электрической машины во время работы или т.п. При этом в стержнях ротора и в короткозамыкающем кольце могут возникать большие токи и большие мощности потерь. Если затем электрическая машина выключается, то тепло потерь остается в роторе, поскольку охлаждающее действие в выключенной машине, как правило, отсутствует. Это особенно проявляется в случае собственного охлаждения, при котором ротор одновременно приводит в действие также охлаждающую систему. В частности, тепловая энергия ротора может отводиться лишь очень не достаточно на основании конструкции машины, когда не предусмотрено другое охлаждающее действие. В частности, при повторяющихся нагрузках, прерывистой работе или т.п., ротор после выключения электрической машины может значительно нагреваться, при этом точная степень нагревания в большинстве случаев не известна. В частности, при новом запуске электрической машины это может приводить к термической перегрузке.

Тепло возникает в электрической машине во время ее работы по существу за счет следующих источников потерь: джоулевы потери, потери на перемагничивание и потери на трение. Создаваемое с помощью источников потерь тепло приводит к термической нагрузке электрической машины. В частности, нагрузка проявляется в циклическом расширении и сжатии машинных частей, в частности, частей ротора. Джоулевы потери воздействуют особенно на стержни ротора, которые термически расширяются как раз в продольном направлении. За счет этого места соединения стержней ротора, например, с короткозамыкающим кольцом, подвергаются механическим нагрузкам. Как правило, такие места соединения выполнены посредством пайки, сварки или заливки. Переменные нагрузки приводят в местах соединения к явлениям старения, которые проявляются, например, в виде повышенного электрического сопротивления в зоне места соединения. Старение может приводить к разрушению места соединения, за счет чего электрическая машина в конечном итоге выходит из строя.

Кроме того, различные электрические сопротивления стержней, а также переходные сопротивления в местах соединения приводят к асимметриям в распределении тока в роторе, за счет чего могут возникать локальные различия температуры на поверхности ротора или же колебания вращающего момента.

В основу изобретения положена задача достижения улучшения относительно указанных выше проблем.

В качестве решения, согласно изобретению, предлагается, что в соответствующем способе проверки с помощью датчика теплового излучения измеряют тепловое излучение отдельных стержней стержневой обмотки, при этом способ дополнительно содержит:

- вращение ротора с частотой вращения, которая меньше разделенной на количество стержней стержневой обмотки заданной предельной частоты датчика теплового излучения,

- измерение теплового излучения ротора с помощью датчика теплового излучения,

- считывание датчика теплового излучения с частотой считывания, которая больше умноженной на количество стержней частоты вращения ротора,

- оценку считываемых значений датчика теплового излучения.

С помощью изобретения впервые возможно измерение детальной информации относительно термодинамической нагрузки ротора, в частности, в дискретных местах контакта между стержнем и короткозамыкающим кольцом. За счет этого можно оптимировать работу электрической машины, так что можно предотвращать локальную перегрузку ротора. Кроме того, изобретение обеспечивает также возможность своевременного распознавания возникающих на роторе мест повреждения, так что могут быть инициированы контрмеры. Кроме того, получаемые сведения могут служить для моделирования электрических машин, а также для их конструирования. При этом, согласно изобретению, в частности, предлагается использование датчика теплового излучения, который обеспечивает как подходящее пространственное, так и подходящее временное разрешение, с целью обеспечения желаемого разрешения для измерения отдельных стержней ротора.

Датчик теплового излучения, который расположен в статоре вращающейся электрической машины, может быть расположен, например, на внутренней стороне статора, обращенным к ротору. Таким образом, датчик теплового излучения может быть удален от ротора на величину воздушного зазора, так что с помощью датчика теплового излучения достигается разрешение, которое обеспечивает возможность термического измерения отдельных стержней стержневой обмотки. Для этой цели датчик теплового излучения является чувствительным в диапазоне теплового излучения, в частности инфракрасного излучения. Зона измерения датчика теплового излучения может составлять, например, от 0,01 см2 до 10 см2, однако она может быть выбрана согласованно с размерами стержней, в частности диаметром стержней, так что обеспечивается возможность надежного определения температуры стержней.

Таким образом, с помощью изобретения обеспечивается возможность, в частности, также во время работы в соответствии с предназначением, определения состояния ротора с его составляющими частями, в частности, стержнями и, возможно, с короткозамыкающим кольцом. Таким образом, в отличие от уровня техники можно определять точные локальные нагрузки электрической машины, также при непрерывной работе, при прерывистой кратковременной работе, при повторно-кратковременной работе или т.п. Сам датчик теплового излучения может быть закреплен, например, в канавке статора, на пакете листов статора или на корпусе статора. Кроме того, возможно предусмотрение на стороне статора подходящих гнезд, выемок, отверстий или т.п., в которых может быть расположен датчик теплового излучения. Кроме того, могут быть предусмотрены средства оптического отклонения, с целью фокусировки подлежащего измерению теплового излучения на датчике теплового излучения. Такие отклоняющие средства могут быть, например, линзами, призмами, их комбинациями или т.п.

Подходящее разрешение датчика теплового излучения достигается, когда он способен измерять тепловое излучение отдельного стержня стержневой обмотки. Для этой цели могут быть предусмотрены указанные выше отклоняющие средства для теплового излучения.

С целью обеспечения возможности измерения в окружном направлении ротора локальных излучений, согласно изобретению предусмотрено, что ротор вращается. При этом частота вращения, с которой вращается ротор, меньше разделенной на количество стержней стержневой обмотки предельной частоты датчика теплового излучения. Предельная частота датчика теплового излучения определяет временное разрешение, с которым датчик теплового излучения может измерять изменения теплового излучения. Таким образом, предельная частота определяет скорость реакции датчика теплового излучения относительно изменений теплового излучения, которое воздействует на него. Поскольку необходимо измерять тепловое излучение ротора относительно стержней, то, согласно изобретению, ротор необходимо вращать так быстро, что датчик теплового излучения может также измерять отдельные стержни стержневой обмотки во время вращения ротора. Поэтому датчик теплового излучения должен иметь предельную частоту, которая обеспечивает возможность измерения всех стержней во время одного оборота ротора. Если, например, предельная частота датчика теплового излучения составляет 75 Гц, и ротор имеет десять распределенных по окружности ротора стержней ротора, то ротор должен вращаться с частотой вращения меньше 7,5 оборотов в секунду, так что с помощью датчика теплового излучения можно еще измерять отдельные стержни ротора.

Датчик теплового излучения преобразует принимаемое тепловое излучение в электрический сигнал. Для этого датчик теплового излучения соединен с оценочным блоком, который снимает и оценивает электрический сигнал датчика теплового излучения. Для того чтобы оценочный блок мог достаточно полностью оценивать сигналы датчика теплового излучения, съем сигналов с датчика теплового излучения осуществляется с частотой считывания, которая больше умноженной на количество стержней частоты вращения ротора. Предпочтительно, больше в два раза. За счет этого обеспечивается измерение всех принимаемых оценочным блоком тепловых значений соответствующих стержней. Предпочтительно, измеряемые значения переводятся с помощью оценочного блока в цифровые данные, так что их можно использовать для последующей цифровой обработки сигналов. Эти функции могут быть интегрированы в оценочном блоке. Измеряемые значения датчика теплового излучения можно выдавать в желаемом виде, например, с помощью экрана или в печатном виде. Кроме того, значения можно подвергать графической обработке, так что обеспечивается также графическое представление. Для этого оценочный блок может быть соединения с вычислительным устройством, соответственно, содержать такое вычислительное устройство. Кроме того, измеряемые значения можно подавать в комбинированный контролирующий и управляющий блок, который служит для контролирования состояния или диагностики неисправностей.

Способ, согласно изобретению, можно выполнять во время работы в соответствии с предназначением вращающейся электрической машины или же в последующем, предпочтительно на имеющей рабочую температуру электрической машине. Таким образом, можно, например, проверять ротор во время регулярной работы. Кроме того, ротор можно проверять также непосредственно после выключения вращающейся электрической машины, для чего можно использовать вращение ротора после выключения. Фактическую частоту вращения ротора можно определять на основании измеряемых с помощью датчик теплового излучения стержней. Естественно, что после выключения машины ротор можно тормозить так, что выполняется условие относительно предельной частоты.

Кроме того, может быть также предусмотрено, что ротор при прерывании или окончании работы в соответствии с предназначением приводится во вращение извне. Для этого ротор может быть соединен, например, с электродвигателем, который приводит ротор в заданное вращение. Это обеспечивает возможность измерения параметров ротора также после работы в соответствии с предназначением.

В другом варианте выполнения изобретения предусмотрено, что применяются по меньшей мере два расположенных на расстоянии друг от друга в окружном направлении датчика теплового излучения. Оба датчика теплового излучения могут быть расположены в одинаковом положении в осевом направлении. Например, они могут быть расположены со сдвигом на 180º в окружном направлении. Кроме того, возможно расположение датчиков теплового излучения со смещением относительно друг друга в осевом направлении. В этом варианте выполнения они могут быть также расположены с одинаковым углом относительно друг друга в окружном направлении. Это обеспечивает возможность термического измерения окружности ротора в различных осевых положениях. Естественно, может быть также предусмотрено, что измеряемые значения теплового излучения датчиков теплового излучения оцениваются совместно, с целью получения детального температурного профиля ротора или сокращения длительности проверки.

Согласно другому варианту выполнения изобретения, ротор или часть ротора, такая как, например, стержень, может быть покрыта улучшающим тепловое излучение покрытием. За счет этого может быть улучшена точность измерения, соответственно, можно использовать датчики теплового излучения, которые имеют меньшую добротность.

Особенно предпочтительно, когда датчик теплового излучения расположен в осевой зоне электрической машины, в которой контактируют некоторые или все стержни обмотки. Таким образом, обеспечивается возможность контролирования мест контакта стержней друг с другом или с короткозамыкающим кольцом и своевременного обнаружения неисправностей. Как раз места соединения подвергаются при термической нагрузке одновременно также механическим нагрузкам и имеют особенно важное значение относительно надежности. Таким образом, изобретение позволяет получать дополнительную информацию для проверки.

Сам датчик теплового излучения может быть выполнен в виде термостолбика (thermopile). Подходящий термостолбик может быть, например, интегрирован в датчик, который имеет площадь поперечного сечения примерно 4 мм2. Термостолбик может иметь, например, эталонный слой и поглощающий слой, между которыми расположен кристалл, который образует собственно термостолбик. Кристалл может иметь, например, длину кромки 0,1 мм х 0,1 мм. Дополнительно к этому, термостолбик может содержать дополнительные оптические отклоняющие средства, такие как линзы, призмы или т.п.

Датчик теплового излучения предпочтительно расположен на расстоянии от 2 мм до 150 мм от ротора. Естественно, в соответствии с конструкцией электрической машины может быть предусмотрено другое расстояние.

Предпочтительно, термическое разрешение датчика теплового излучения составляет примерно 1K. За счет этого достигается надежное измерение отдельных стержней ротора.

Частота считывания (sample rate) может быть выбрана, например, в диапазоне от 500 Гц до 2 кГц. В зависимости от датчика теплового излучения возможны также другие частоты считывания, так, например, при использовании фотодиодов, таких как германиевые фотодиоды, галлиевые фотодиоды, кремниевые фотодиоды или т.п.

Особенно предпочтительно, когда оценка считываемых значений датчика теплового излучения содержит сравнение с эталонными значениями. Таким образом, можно обнаруживать изменения, в частности старение, ротора, и при необходимости инициировать контрмеры. Как раз в больших, дорогостоящих машинах или в машинах, в которых необходимо выполнять особые требования безопасности или особые требования к работоспособности, может быть в целом значительно повышена надежность. Отсюда вытекает другая цель изобретения, а именно распознавание неисправных мест пайки/сварки, в частности, между стержнем ротора и короткозамыкающим кольцом в асинхронной машине, а также распознавание возможно возникающих локальных предельных нагрузок отдельных стержней или зон ротора. Например, если в неисправном месте соединения изменяется электрическое сопротивление, то это приводит также к асимметричному распределению тока в роторе.

Кроме того, согласно изобретению предлагается также устройство для проверки стержневой обмотки ротора вращающейся электрической машины, содержащее расположенный в статоре вращающейся электрической машины датчик теплового излучения, с помощью которого обеспечивается возможность измерения теплового излучения ротора, при этом датчик теплового излучения предназначен для измерения теплового излучения отдельных стержней стержневой обмотки, при этом ротор вращается с частотой вращения, которая меньше разделенной на количество стержней стержневой обмотки заданной предельной частоты датчика теплового излучения, и предусмотрена возможность считывания датчика теплового излучения с помощью оценочного блока с частотой считывания, которая больше умноженной на количество стержней частоты вращения ротора, и оценки.

Устройство служит, в частности, для выполнения способа, согласно изобретению.

За счет изобретения можно измерять локальную температуру динамически и без соприкосновения. Локально изменяющиеся электрические сопротивления приводят, в частности, в случае динамических режимов, таких как запуск, блокирование, изменение частоты вращения, изменение нагрузки или т.п., к локальным изменениям температуры, которые до настоящего времени не поддавались определению в уровне техники. За счет расположения одного или нескольких датчиков теплового излучения, например, в виде установленных в канавках статора термостолбиков, можно выполнять желаемую проверку. Предпочтительно, датчики теплового излучения расположены вблизи перехода между короткозамыкающим кольцом и концами стержней, или же в зоне листового пакета ротора.

Оценка измеряемых значений теплового излучения, например, листового пакета ротора, соответственно, канавок ротора, позволяет определять величину температуры в точке измерения, например, на концах беличьей клетки, соответственно, стержня ротора. За счет этого можно распознавать отклонения от нормального рабочего состояния при известной нагрузке, но также повышенные температуры по сравнению с соседними стержнями. Хотя поверхность листового пакета уже находится на высоком уровне температуры, можно точно измерять температуру каждого стержня ротора, поскольку соответствующая степень излучения тепла является сама по себе высокой за счет геометрии канавок.

В изобретении применяются, в частности, термостолбики для обнаружения локальных отклонений средней температуры ротора для определения асимметричностей в системе тока ротора, вызванных, например, прерыванием контактов или дефектами литья, а также термической перегрузкой отдельных мест контакта.

В целом, за счет изобретения обеспечиваются следующие преимущества:

- непосредственное измерение температуры отдельных стержней ротора или зон в короткозамыкающем кольце или переходов между стержнем и короткозамыкающим кольцом,

- измерение термической нагрузки отдельных мест контакта стержней с короткозамыкающим кольцом,

- раннее обнаружение асимметрий в роторе во время работы в соответствии с предназначением,

- предотвращение необходимости оценки токов статора,

- по существу отсутствие необходимости модификации ротора,

- расширение допустимого рабочего диапазона, соответственно, увеличение термического использования вращающейся электрической машины при необходимости вплоть до термически критической точки, и

- верификация конструктивных изменений в термически сильно нагружаемых местах в масштабе времени, близком к реальному, и с небольшими затратами.

Другие преимущества и признаки следуют из приведенного ниже описания примера выполнения. Пример выполнения служит лишь для пояснения изобретения и не имеет ограничительного характера.

На чертежах изображено:

фиг.1 – беличья клетка ротора асинхронной машины без листового пакета, в изометрической проекции;

фиг.2 - беличья клетка ротора, согласно фиг.1, с листовым пакетом, на виде сбоку;

фиг.3 – часть ротора, в которой должна выполняться проверка, согласно изобретению, в изометрической проекции;

фиг.4 – увеличенные зоны статора вращающейся электрической машины, в котором установлен ротор, согласно фиг.3, для работы в соответствии с предназначением, в изометрической проекции;

фиг.5 – график считывания температуры, на котором показаны измеряемые с помощью термостолбика, считываемые значения температуры;

фиг.6–8 – графики результатов измерения как на фиг.5, однако при различных частотах вращения ротора.

На фиг.1 показана в изометрической проекции беличья клетка 10 ротора 20 асинхронной машины без листового пакета, при этом беличья клетка 10 ротора имеет стержни 12, которые соединены каждый на стороне конца с короткозамыкающим кольцом 14 с возможностью прохождения электрического тока. В данном случае как стержни 10, так и короткозамыкающее кольцо 14 выполнены из медного сплава, и стержни 12 на концах спаяны, сварены с короткозамыкающим кольцом 14 или залиты в нем. В показанной сбоку на фиг.2 беличьей клетке 10 ротора можно видеть, что отдельные стержни 10 на стороне конца немного выступают из соответствующего короткозамыкающего кольца 14.

На фиг.2 дополнительно к беличьей клетке 10 ротора показан листовой пакет 16, который состоит из изолированных листов электротехнической стали, которые сложены в листовой пакет 16. Листовой пакет 16 имеет не обозначенные канавки, в которых расположены стержни 12.

Если имеющий такую конструкцию ротор подвергается термической нагрузке, то происходит различное расширение стержней 12 относительно листового пакета, а также относительно короткозамыкающего кольца 14. Это приводит к термической нагрузке внутри ротора 10. Кроме того, нагружаются свободные концы стержней, поскольку они удерживаются на стороне конца в листовом пакете, а короткозамыкающее кольцо расширяется радиально.

На фиг.3 в изометрической проекции показан частично ротор 20 асинхронной машины с вращающимся магнитным полем в извлеченном состоянии. Ротор 20 имеет листовой пакет 26, который имеет не обозначенные канавки, в которые введены стержни 22. На стороне концов стержни 22 сварены с короткозамыкающим кольцом 24. Таким образом, конструкция ротора, согласно фиг.3, по существу соответствует конструкции показанного на фиг.2 ротора.

На фиг.4 показана электрическая машина 30 со статором 32, в котором расположен с возможностью вращения во время работы в соответствии с предназначением ротор 20, согласно фиг.3. На двух детальных изображениях фиг.4 можно видеть, как расположены датчики теплового излучения, выполненные здесь в виде термостолбиков 34, в канавках статора 32. Термостолбики 34 выполнены в форме канавочных шпонок и с помощью электрических проводов 36 соединены с не изображенным оценочным блоком.

Графики на фиг.5–8 относятся к электрической машине 30, согласно фиг.4, с ротором, согласно фиг.3. Расположение термостолбиков 34 в соответствии с фиг.4 является примером выполнения. При необходимости термостолбики 34 могут быть расположены, естественно, в других подходящих положениях на окружности статора 32, а также в подходящих положениях в осевом направлении.

В показанном на фиг.5 графике на оси ординат нанесена температура в °С. На оси абсцисс нанесены моменты времени считывания. В данном случае частота считывания составляет примерно 500 Гц. При измерении, согласно фиг.5, ротор вращается с частотой вращения 10 оборотов в минуту. Можно видеть, что распознаются повторяющиеся сигнатуры на расстоянии 86 периодов в температуре ротора. Динамический диапазон ΔТ составляет примерно 20K. Количество периодов связано с количеством канавок ротора электрической машины 30, которое равно также 86. На графике на фиг.5 показаны области 44 и 46, которые показывают повторяющиеся сигнатуры в изменении температуры. Отсюда следует, что обе показанные сигнатуры 44 и 46 соответствуют следующим друг за другом оборотам.

Показанные на фиг.6–8 графики относятся к внешнему приводу ротора 20, т.е. когда электрическая машина 30 не находится во включенном состоянии. Оси соответствуют осям на фиг.5. На фиг.6 показан график при частоте вращения ротора 10 оборотов в минуту, в то время как фиг.7 относится к частоте вращения ротора 20 оборотов в минуту, а фиг.8 – к частоте вращения ротора 50 оборотов в минуту. Остальные параметры являются одинаковыми для всех трех фигур. Из фиг.6–8 можно видеть, как влияет частота вращения ротора на результат измерения. При увеличивающемся приближении отнесенной к количеству стержней частоты вращения ротора к предельной частоте термостолбика 34 уменьшается точность измерения локальной температуры ротора.


СПОСОБ ПРОВЕРКИ СТЕРЖНЕВОЙ ОБМОТКИ РОТОРА ВРАЩАЮЩЕЙСЯ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ
СПОСОБ ПРОВЕРКИ СТЕРЖНЕВОЙ ОБМОТКИ РОТОРА ВРАЩАЮЩЕЙСЯ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ
СПОСОБ ПРОВЕРКИ СТЕРЖНЕВОЙ ОБМОТКИ РОТОРА ВРАЩАЮЩЕЙСЯ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ
СПОСОБ ПРОВЕРКИ СТЕРЖНЕВОЙ ОБМОТКИ РОТОРА ВРАЩАЮЩЕЙСЯ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ
СПОСОБ ПРОВЕРКИ СТЕРЖНЕВОЙ ОБМОТКИ РОТОРА ВРАЩАЮЩЕЙСЯ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ
СПОСОБ ПРОВЕРКИ СТЕРЖНЕВОЙ ОБМОТКИ РОТОРА ВРАЩАЮЩЕЙСЯ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ
СПОСОБ ПРОВЕРКИ СТЕРЖНЕВОЙ ОБМОТКИ РОТОРА ВРАЩАЮЩЕЙСЯ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ
Источник поступления информации: Роспатент

Показаны записи 371-380 из 1 427.
10.05.2015
№216.013.4a31

Система и способ для заблаговременного распознавания повреждения в подшипнике

Изобретение относится к области электротехники и может быть использовано в электрических машинах. Технический результат - повышение точности оценки токов подшипников в отношении потенциального повреждения соответствующего подшипника. В системе и способе заблаговременного распознавания...
Тип: Изобретение
Номер охранного документа: 0002550500
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4a34

Способ и система для быстрого переключения резервного источника питания в множественном источнике питания

Изобретение раскрывает способ и систему для быстрого переключения между множеством резервных источников питания. Способ содержит формирование, на основе изменяющихся характеристик разности амплитуд и разности углов фаз напряжения шины, модели ускорения для их скорости изменения; выбор...
Тип: Изобретение
Номер охранного документа: 0002550503
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4b1c

Способ подсоединения по меньшей мере двух электрических кабелей, а также соединительное устройство, конструктивный узел, электрическая машина и соответствующее транспортное средство

Изобретение относится к соединительному устройству (1) для подсоединения по меньшей мере двух электрических кабелей (5а, 5b, 5с) к электрической машине (2) транспортного средства, содержащему корпус (3) и по меньшей мере два контактных элемента (4а, 4b, 4с), причем в стенке (6а) корпуса по...
Тип: Изобретение
Номер охранного документа: 0002550735
Дата охранного документа: 10.05.2015
20.05.2015
№216.013.4b69

Ускоритель и способ управления ускорителем

Изобретение относится к ускорителю для ускорения заряженных частиц. Заявленный ускоритель содержит, по меньшей мере, два последовательно установленных по ходу луча высокочастотных резонатора, с помощью которых ускоряется импульсная последовательность, содержащая несколько пучков частиц. Также...
Тип: Изобретение
Номер охранного документа: 0002550819
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d8a

Высоковольтный источник постоянного напряжения и ускоритель частиц

Изобретение относится к высоковольтному источнику (81) постоянного напряжения, содержащему набор конденсаторов с первым электродом (37), к которому приложен первый потенциал, с вторым электродом (39), который расположен концентрично к первому электроду и к которому приложен второй...
Тип: Изобретение
Номер охранного документа: 0002551364
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4db4

Рельсовое транспортное средство, снабженное кожухом фронтального сцепного устройства

Изобретение относится к железнодорожному транспорту. Рельсовое транспортное средство снабжено кожухом для фронтального сцепного устройства. Кожух образован по меньшей мере одной подвижной передней крышкой (1), которая с помощью привода может перемещаться между открытым и закрытым конечным...
Тип: Изобретение
Номер охранного документа: 0002551406
Дата охранного документа: 20.05.2015
27.05.2015
№216.013.4dce

Камера сгорания в сборе

Камера сгорания в сборе содержит основной корпус, формируемый подающим коллектором с системой подачи топлива и топливными форсунками, продолжающимися от подающего коллектора и снабжаемыми топливом посредством системы подачи топлива подающего коллектора. Подающий коллектор имеет...
Тип: Изобретение
Номер охранного документа: 0002551436
Дата охранного документа: 27.05.2015
27.05.2015
№216.013.4de8

Горелка предварительного смешения

Изобретение относится к области энергетики. Горелка предварительного смешения (1) с каналом подвода воздуха (21) по меньшей мере одним каналом подачи пилотного газа (23), который содержит по меньшей мере одну направленную к каналу подвода воздуха (21) стенку канала (39) и один входящий в канал...
Тип: Изобретение
Номер охранного документа: 0002551462
Дата охранного документа: 27.05.2015
27.05.2015
№216.013.4e18

Способ удаления вредных веществ из диоксида углерода и устройство для его осуществления

Группа изобретений относится к способу отделения вредных веществ из газового потока и касается способа удаления вредных веществ из диоксида углерода и устройства для его осуществления. Способ отделения вредного вещества из газовой смеси, которая, в основном, содержит диоксид углерода СО, а...
Тип: Изобретение
Номер охранного документа: 0002551510
Дата охранного документа: 27.05.2015
27.05.2015
№216.013.4f43

Способы и устройства для обработки расширенного элемента прокси информации

Изобретение относится к способам и устройствам для обработки расширенного элемента прокси информации. Технический результат заключается в повышении скорости передачи данных в сети. Способ содержит: обнаружение изменения в соединении внешней станции (E1) с прокси сетевым шлюзом (G1);...
Тип: Изобретение
Номер охранного документа: 0002551809
Дата охранного документа: 27.05.2015
Показаны записи 371-380 из 944.
10.04.2015
№216.013.3d85

Способ функционирования процессора в среде реального времени

Изобретение относится к способу функционирования процессора в среде реального времени. Техническим результатом является понижение потребления энергии. В способе процессор после обработки события реального времени переключается из рабочего состояния в состояние покоя. При предстоящем наступлении...
Тип: Изобретение
Номер охранного документа: 0002547237
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3dfa

Охлаждение конструктивного элемента газовой турбины, выполненного в виде диска ротора или лопатки турбины

Изобретение касается конструктивного элемента газовой турбины, например лопатки турбины или диска ротора. Конструктивный элемент газовой турбины снабжен по меньшей мере одним оканчивающимся на неструктурированной поверхности каналом для направления охлаждающего средства. В поверхности рядом с...
Тип: Изобретение
Номер охранного документа: 0002547354
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3e3e

Резервуар с силовым замыканием

Изобретение относится к области устройств для отведения воды. Устройство содержит резервуар с силовым замыканием с цилиндром для самотека воды, имеющим впускное отверстие и выпускное отверстие. Впускное отверстие образует водосливной порог. Внутри цилиндра установлен соединенный с поплавком...
Тип: Изобретение
Номер охранного документа: 0002547422
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3fca

Система передачи энергии

Использование: в области электроэнергетики. Технический результат - уменьшение перегрузки локальных сетей. Система (10) передачи энергии имеет по меньшей мере одно устройство (60) управления нагрузкой, которое опосредованно или непосредственно соединено с по меньшей мере, соответственно, одним...
Тип: Изобретение
Номер охранного документа: 0002547818
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.4042

Электроприводное устройство летательного аппарата (варианты)

Изобретение относится к области авиации, в частности к электроприводам винтов летательных аппаратов. Электропривод (1) летательного аппарата, в частности вертолета (20), по меньшей мере с одним несущим винтом (23), приводимым во вращение посредством динамоэлектрической машины (2), выполнен...
Тип: Изобретение
Номер охранного документа: 0002547938
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.4099

Контроль электрической сети энергоснабжения

Использование: в области электроэнергетики. Технический результат - упрощение и повышение надежности способа при большом числе мест измерений сети энергоснабжения. Согласно способу каждое значение, измеренное с помощью векторного измерительного прибора, привязывается к опорному значению с...
Тип: Изобретение
Номер охранного документа: 0002548025
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.40a3

Искровой промежуток

Изобретение касается искрового промежутка (1) для защиты от перенапряжения. Разрядник содержит обращенные друг к другу электроды (3,4,20), имеющие по меньшей мере частично ограничивающие путь прохождения тока средства (7,16,17) для принудительного обеспечения желаемого пути прохождения тока в...
Тип: Изобретение
Номер охранного документа: 0002548035
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.411e

Способ и устройство для получения тc (резоскана, золедроновой кислоты)

Изобретение относится к способу получения Tc. Заявленный способ включает следующие стадии: получение раствора, содержащего Mo-молибдат-ионы; создание протонного луча с энергией, достаточной для того, чтобы при облучении Mo-молибдат-ионов индуцировать ядерную реакцию Mo(p,2n)Tc; облучение...
Тип: Изобретение
Номер охранного документа: 0002548168
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4122

Ротор для электрической машины

Изобретение касается ротора для электрической машины, возбуждаемой постоянными магнитами, в частности для электрической машины большой мощности. Технический результат заключается в повышении надёжности крепления магнитов на корпусе ротора без применения винтовых соединений. Ротор имеет...
Тип: Изобретение
Номер охранного документа: 0002548172
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.415f

Способ диагностирования склонности камеры сгорания к гудению и способ управления газовой турбиной

Способ диагностирования склонности камеры сгорания к гудению в рабочем состоянии, включающий следующие этапы: эксплуатацию камеры сгорания в рабочем состоянии; регистрацию термоакустической величины газового объема камеры сгорания и/или величины колебаний конструкции камеры сгорания в рабочем...
Тип: Изобретение
Номер охранного документа: 0002548233
Дата охранного документа: 20.04.2015
+ добавить свой РИД