×
26.08.2017
217.015.df11

Результат интеллектуальной деятельности: Способ экспериментального определения поправки к суммарному импульсу тяги двигателя при стендовых огневых испытаниях

Вид РИД

Изобретение

Аннотация: При экспериментальном определении поправки к суммарному импульсу тяги двигателя при стендовых огневых испытаниях, включающих регистрацию диаграммы тяги датчиком силы, определяют силу сопротивления перемещению подвижных опор стенда с закрепленным на них двигателем путем приложения силовых нагрузок. До начала огневого испытания двигателя силовую нагрузку, превышающую ожидаемую величину сопротивления перемещению подвижных опор стенда с закрепленным на них двигателем, прикладывают поочередно в противоположном направлении действия тяги двигателя и в прямом направлении действия тяги двигателя, а после окончания огневого испытания двигателя - поочередно в прямом направлении действия тяги двигателя и в противоположном направлении действия тяги двигателя. Во время приложения силовой нагрузки регистрируют диаграммы этих силовых нагрузок тем же датчиком силы, которым регистрируют тягу двигателя при огневом испытании. Поправку к суммарному импульсу тяги двигателя определяют как разность произведения силы сопротивления перемещению подвижных опор стенда с закрепленным на них двигателем в прямом направлении действия тяги двигателя на суммарное время прогрессивных участков диаграммы тяги двигателя и произведения силы сопротивления перемещению подвижных опор стенда с закрепленным на них двигателем, в противоположном направлении действия тяги двигателя на суммарное время дегрессивных участков диаграммы тяги испытуемого двигателя. Изобретение позволяет повысить точность определения экспериментального значения суммарной тяги двигателя. 1 з.п. ф-лы, 2 ил.

Предлагаемое изобретение относится к области машиностроения, а именно к наземным испытаниям двигателей летательных аппаратов, при которых на стендах производится подтверждение энергетических параметров (суммарного импульса тяги) двигателей на соответствие техническому заданию.

При проектировании стендов для наземной экспериментальной отработки двигателей конструкторы и исследователи сталкиваются с проблемой достоверного определения суммарного импульса тяги с учетом погрешности, вносимой испытательным стендом. Суммарная погрешность стенда состоит из механической погрешности стенда (сила сопротивления перемещению подвижных опор стенда с закрепленным на них двигателем) и погрешности измерительного канала (датчика силы и регистрирующей аппаратуры).

Если механическая погрешность стенда не превышает допустимого значения по ГОСТ В 21898-76 (0,001 от величины измеряемого параметра), то величина суммарного импульса тяги двигателя практически определяется с погрешностью измерительного канала в диапазоне измерения. В реальных условиях испытаний механическая погрешность стенда часто превышает допустимое значение по ГОСТ В 21898-76 и ее необходимо учитывать как поправку к суммарному импульсу тяги двигателя.

Известен способ определения суммарного импульса тяги двигателя при наземных испытаниях, в котором для уменьшения погрешности, вносимой стендом, проводится механическая градуировка измерительного канала в составе стенда путем ступенчатого нагружения датчика тяги во всем диапазоне измерения (авторы A.M. Винницкий, В.Т. Волков, И.Г. Волковицкий, С.В. Холодилов. Конструкция и отработка РДТТ под редакцией А.М. Винницкого. Москва. Машиностроение. 1980. Глава 10, раздел 10.1, стр. 142-143).

Недостаток этого способа состоит в том, что его применение можно считать допустимым, если измеряемая величина тяги составляет 0,6-1,0 диапазона измерения выбранного датчика силы. Кроме того, этот способ не оправдывает себя из-за существенных различий характера нагружения при градуировке и при работе двигателя во время испытания.

Известен способ определения суммарного импульса тяги двигателя при наземных испытаниях, в котором проводят калибровку системы измерения (датчика силы тяги) стенда перед началом работы двигателя, прикладывая строго регламентированные усилия (авторы И.М. Гладков, B.C. Мухамедов, Е.Л. Валуев, В.И. Черепов. Экспериментальные методы определения параметров двигателей специального назначения. Москва. НТЦ Информтехника. 1993. Глава 5, раздел 5.3). Приложение усилий осуществляется с помощью грузов через роликовый блок (стр. 244-245) или силовых гидроцилиндров с системой измерения, управляемой ЭВМ (стр. 238-240). Суммарный импульс силы тяги определяется путем интегрирования величины измеряемой тяги по времени работы двигателя с учетом данных калибровки системы измерения. Принят за прототип.

Недостаток этого способа заключается в том, что при калибровке потери на трение в роликовом блоке нестабильны и увеличиваются пропорционально увеличению веса грузов. Для силовых гидроцилиндров с системой измерения, управляемой ЭВМ, суммарная погрешность измерительного канала силы тяги равна сумме погрешностей регламентированных усилий от гидроцилиндров, задаваемых ЭВМ, и системы измерения стенда.

Задачей предлагаемого изобретения является повышение точности определения экспериментального значения суммарного импульса тяги двигателя при наземных испытаниях.

Задача решается за счет того, что в способе экспериментального определения суммарного импульса тяги двигателя при стендовых огневых испытаниях, основанном на определении сил сопротивления перемещению подвижных опор стенда с закрепленным на них двигателем в прямом и противоположном направлениях действия тяги двигателя путем приложения силовых нагрузок, последующем огневом испытании двигателя с регистрацией диаграммы тяги датчиком силы и определении расчетом его суммарного импульса тяги, до начала огневого испытания двигателя силовую нагрузку, превышающую ожидаемую величину силы сопротивления перемещению подвижных опор стенда, прикладывают поочередно в противоположном направлении действия тяги двигателя и в прямом направлении действия тяги двигателя, а после огневого испытания двигателя - поочередно в прямом направлении действия тяги двигателя и в противоположном направлении действия тяги двигателя, при этом регистрируют диаграммы этих силовых нагрузок датчиком силы, которым регистрируют тягу двигателя при огневом испытании, а поправку к суммарному импульсу тяги двигателя определяют как разность произведения величины силы сопротивления перемещению подвижных опор стенда в прямом направлении действия тяги двигателя на суммарное время прогрессивных участков диаграммы тяги двигателя и произведения величины силы сопротивления перемещению подвижных опор стенда в противоположном направлении действия тяги двигателя на суммарное время дегрессивных участков диаграммы тяги испытуемого двигателя.

При этом величина сил сопротивления перемещению подвижных опор стенда с закрепленным на них испытуемым двигателем, в прямом и противоположном направлениях действия тяги двигателя на каждом прогрессивном и дегрессивном участке диаграммы тяги двигателя определяется как среднее значение на каждом из этих участков диаграммы тяги двигателя при его огневом испытании,

На фиг. 1 показан стенд для наземных испытаний с закрепленным на его подвижных опорах двигателем.

На фиг. 2 показана экспериментальная диаграмма приложения силовой нагрузки к подвижным опорам стенда с закрепленным на них двигателем до начала работы двигателя, результаты измерения тяги датчиком силы во время огневого испытания и приложения силовой нагрузки к подвижным опорам стенда с закрепленным на ней двигателем после окончания работы двигателя. Кроме того, показаны прогрессивные и дегрессивные участки диаграммы тяги двигателя и величины сил сопротивления перемещению подвижных опор стенда в прямом и противоположном направлениях действия тяги двигателя на границах этих участков.

Указанный способ осуществляется следующим образом. При монтаже и проверке работоспособности системы измерения стенда показание датчика тяги соответствуют нулевому уровню по сопроводительному паспорту. После монтажа (см. фиг. 1) испытуемого двигателя 1 на подвижные опоры 2 стенда повторно включают систему измерения перед началом работы двигателя. Показание датчика тяги 3 при этом не соответствует нулевому уровню из-за влияния сил сопротивления перемещению подвижных опор стенда с закрепленным на них двигателем и неопределенного направления действия этих сил сопротивления.

Далее, к подвижным опорам стенда с закрепленным на них неработающим двигателем (см. фиг. 2) прикладывают силовую нагрузку в противоположном направлении относительно направления действия тяги двигателя. Силовая нагрузка должна превышать ожидаемое значение силы сопротивления подвижных опор стенда с закрепленным на них неработающим двигателем, чтобы произошло перемещение опор в направлении приложения силовой нагрузки. Затем силовую нагрузку снимают, при этом датчик тяги перемещает подвижные опоры стенда до тех пор, пока усилие в датчике тяги не станет равным силе сопротивления перемещения подвижных опор стенда в направлении, противоположном действию тяги двигателя, и регистрируют показание датчика тяги (первая часть кривой F).

Потом к подвижной части стенда прикладывают силовую нагрузку в прямом направлении относительно направления действия тяги двигателя. Силовая нагрузка, также, должна превышать ожидаемую величину силы сопротивления подвижных опор стенда, чтобы произошло перемещение подвижных опор стенда в другую сторону. Силовую нагрузку снимают, при этом датчик тяги перемещает подвижные опоры стенда до тех пор, пока усилие в датчик тяги не станет равным силе сопротивления подвижных опор стенда в прямом направлении действия тяги двигателя, и регистрируют показание датчика тяги (вторая часть кривой F).

Далее, подают команду на запуск двигателя и проводят его огневое испытание с регистрацией диаграммы тяги двигателя (кривая P).

Потом к подвижным опорам стенда с закрепленным на них отработавшим двигателем прикладывают силовую нагрузку в прямом направлении относительно направления действия тяги двигателя. Силовая нагрузка должна превышать ожидаемое значение силы сопротивления подвижных опор стенда с закрепленным на них отработавшим двигателем, чтобы произошло перемещение опор в направлении приложения силовой нагрузки. Затем силовую нагрузку снимают, при этом датчик тяги перемещает подвижные опоры стенда до тех пор, пока усилие в датчике тяги не станет равным силе сопротивления перемещению подвижных опор стенда в прямом направлении действия тяги двигателя, и регистрируют показание датчика тяги (первая часть кривой F1).

После этого к подвижным опорам стенда с закрепленным на них отработавшим двигателем прикладывают силовую нагрузку в противоположном направлении относительно направления действия тяги двигателя. Силовая нагрузка, также, должна превышать ожидаемую величину силы сопротивления подвижных опор стенда, чтобы произошло перемещение подвижных опор стенда с закрепленным на них отработавшим двигателем в другую сторону. Силовую нагрузку снимают, при этом датчик тяги перемещает подвижные опоры стенда до тех пор, пока усилие в датчике тяги не станет равным силе сопротивления подвижных опор стенда в противоположном направлении относительно направления действия тяги двигателя, и регистрируют показание датчика тяги (вторая часть кривой F1).

По результатам обработки полученной экспериментальной диаграммы тяги двигателя (фиг. 2) определяют величины сил сопротивления Δнп, Δкп, Δно, Δко и текущие значения этих параметров на границах прогрессивных и дегрессивных участков экспериментальной диаграммы тяги двигателя (кривая P), а также средние значения этих параметров на каждом участке диаграммы тяги двигателя.

Поправку к суммарному импульсу тяги двигателя определяют по формуле

ΔJΣ=Σ{0,5(Δнп iкп i)⋅Δτпрогр i}-Σ{0,5(Δно iко i)⋅Δτдегр i},

где Δнп i - сила сопротивления перемещению подвижных опор стенда в прямом направлении действия тяги двигателя в начале каждого прогрессивного участка диаграммы тяги двигателя;

Δкп i - сила сопротивления перемещению подвижных опор стенда в прямом направлении действия тяги двигателя в конце каждого прогрессивного участка диаграммы тяги двигателя;

Δτпрогр i - время каждого прогрессивного участка диаграммы тяги двигателя;

Δно i - сила сопротивления перемещению подвижных опор стенда в направлении, противоположном действию тяги двигателя, в начале каждого дегрессивного участка диаграммы тяги двигателя;

Δко i - сила сопротивления перемещению подвижных опор стенда в направлении, противоположном действию тяги двигателя, в конце каждого дегрессивного участка диаграммы тяги двигателя;

Δτдегр i - время каждого дегрессивного участка диаграммы тяги двигателя.

Первое слагаемое формулы представляет собой суммарный импульс силы сопротивления перемещению подвижных опор стенда в прямом направлении действия тяги двигателя и уменьшает суммарный импульс тяги двигателя (показание датчика силы меньше фактической величины тяги двигателя при огневом испытании).

Второе слагаемое формулы представляет собой суммарный импульс силы сопротивления перемещению подвижных опор стенда в направлении, противоположном направлению действия тяги двигателя, и увеличивает суммарный импульс тяги двигателя (показание датчика силы больше фактической величины тяги двигателя при огневом испытании).

Поэтому существенное значение имеет вид диаграммы тяги (прогрессивный или дегрессивный), а также соотношение величин тяги и массы испытуемого двигателя.

Экспериментальные данные стендовых огневых испытаний различных двигателей подтверждают вышеизложенное.

Например:

1. Для крупногабаритных двигателей (стартовых и маршевых) с временем работы 40-60 с (при соотношении тяги к массе 5-12) поправка к суммарному импульсу двигателя составляет ~0,17-0,25%.

2. Для малогабаритных двигателей с временем работы 300-400 с (при соотношении тяги и массы 0,45-1,1) поправка к суммарному импульсу двигателя составляет ~2,3-3,7%.

Таким образом, предложенный способ определения поправки к суммарному импульсу тяги двигателя позволяет повысить точность определения экспериментального значения суммарного импульса тяги двигателя и достоверность получаемых экспериментальных данных при проведении наземной стендовой отработки различных двигателей.


Способ экспериментального определения поправки к суммарному импульсу тяги двигателя при стендовых огневых испытаниях
Способ экспериментального определения поправки к суммарному импульсу тяги двигателя при стендовых огневых испытаниях
Источник поступления информации: Роспатент

Показаны записи 571-580 из 676.
12.12.2019
№219.017.ec81

Способ обнаружения пачки радиоимпульсов с произвольной степенью когерентности и устройство его осуществления

Изобретение относится к радиотехнике и может быть использовано для обнаружения радиосигналов в виде пачки радиоимпульсов на трассах их распространения, когда параметры среды можно считать неизменными («замороженными») на интервалах как меньших длительности пачки, так и при более длительных...
Тип: Изобретение
Номер охранного документа: 0002708372
Дата охранного документа: 09.12.2019
13.12.2019
№219.017.ec9a

Способ изготовления эластичной манжеты корпуса ракетного двигателя на твёрдом топливе

Изобретение относится к области машиностроения, в частности к ракетной технике, а именно к технологии изготовления эластичной манжеты корпуса ракетного двигателя и может быть использовано при проектировании и изготовлении снаряженных корпусов ракетных двигателей на твердом топливе. При...
Тип: Изобретение
Номер охранного документа: 0002708732
Дата охранного документа: 11.12.2019
13.12.2019
№219.017.ecab

Подвеска сиденья транспортного средства с активной системой изменения жёсткости на основе магнитоактивных эластомеров

Изобретение относится к транспортному машиностроению, а именно к подвескам сидений транспортных средств, и может быть использовано на легковых, грузовых автомобилях и спецтехнике для обеспечения комфорта и безопасности водителя и пассажира. Подвеска сиденья транспортного средства с управляемой...
Тип: Изобретение
Номер охранного документа: 0002708797
Дата охранного документа: 11.12.2019
18.12.2019
№219.017.ee92

Твёрдотопливная двигательная установка многократного включения и способ ее многократного включения

Изобретение относится к области ракетостроения, а именно к созданию разгонных блоков на базе твердотопливных двигательных установок, и направлено на совершенствование их конструкции. Твердотопливная двигательная установка многократного включения ракеты космического назначения содержит основную...
Тип: Изобретение
Номер охранного документа: 0002709117
Дата охранного документа: 16.12.2019
24.12.2019
№219.017.f150

Способ удержания космического аппарата на геостационарной орбите при прерываниях измерений и автономном функционировании

Изобретение относится к управлению движением космического аппарата (КА), к удержанию КА на заданной долготе геостационарной орбиты. Выполняют циклы удержания содержащих измерения орбитальных параметров, расчет и выполнение коррекций. По данным измерений коррекции рассчитывают не только для...
Тип: Изобретение
Номер охранного документа: 0002709949
Дата охранного документа: 23.12.2019
24.12.2019
№219.017.f1ad

Способ удержания космического аппарата на геостационарной орбите

Изобретение относится к управлению движением космического аппарата (КА), к удержанию геостационарного КА в заданной области стояния. Способ включает удержание КА на геостационарной орбите путем выполнения циклов удержания, содержащих этапы измерений орбитальных параметров, расчета коррекций,...
Тип: Изобретение
Номер охранного документа: 0002709957
Дата охранного документа: 23.12.2019
25.12.2019
№219.017.f259

Многоканальное устройство радиомониторинга

Изобретение относится к радиоэлектронике и может быть использовано в автоматизированных приемных центрах радиоконтроля и радиосвязи стационарного и мобильного типов. Устройство радиомониторинга содержит антенную решетку, состоящую из N приемных антенн, N блоков первичной обработки и фильтрации...
Тип: Изобретение
Номер охранного документа: 0002710104
Дата охранного документа: 24.12.2019
22.01.2020
№220.017.f8d0

Способ ориентации космического аппарата

Изобретение относится к управлению ориентацией космического аппарата (КА) в процессе коррекции его орбиты. Способ включает развороты КА относительно его осей, ориентацию панелей солнечных батарей (СБ) нормалью их поверхности на Солнце путем их разворота вокруг оси, параллельной третьей оси КА....
Тип: Изобретение
Номер охранного документа: 0002711656
Дата охранного документа: 20.01.2020
24.01.2020
№220.017.f95d

Устройство для снижения концентрации пороховых газов в отсеке, содержащем высокую концентрацию вредных веществ

Изобретение относится к военной технике. Устройство для снижения пороховых газов включает нагнетатель и элементы его крепления. Нагнетатель является неподвижным и выполнен в виде изогнутого патрубка, прикрепленного крепежными элементами к системе питания воздухом двигателя боевой машины, при...
Тип: Изобретение
Номер охранного документа: 0002711849
Дата охранного документа: 22.01.2020
05.02.2020
№220.017.fe5b

Способ пассивного акустического определения местоположения водолаза

Изобретение относится к пассивному гидроакустическому обнаружению и подводной навигации, конкретно к пассивным способам акустического обнаружения и определения местоположения водолазов и подводных пловцов в толще воды, и может быть использовано при проведении подводных поисковых и спасательных...
Тип: Изобретение
Номер охранного документа: 0002713053
Дата охранного документа: 03.02.2020
Показаны записи 361-364 из 364.
06.12.2018
№218.016.a3ef

Способ экспериментального определения параметров запуска двигателя при стендовых испытаниях

Способ экспериментального определения параметров запуска двигателя при стендовых испытаниях, основанный на проведении испытания и регистрации диаграммы тяги изделия двухмостовым силоизмерительным датчиком. В период срабатывания воспламенителя до начала возгорания заряда испытуемого двигателя...
Тип: Изобретение
Номер охранного документа: 0002674112
Дата охранного документа: 04.12.2018
29.04.2019
№219.017.40de

Стенд для моделирования импульсного газотермодинамического воздействия высокотемпературного газа на элементы тепловой защиты конструкции

Стенд содержит состыкованные между собой твердотопливный газогенератор и газоход переменного сечения. Газоход включает переходный участок с нормированным профилем, мерный участок постоянного сечения с исследуемым материалом и установленными в нем термопарами и сопловой блок для выпуска газов в...
Тип: Изобретение
Номер охранного документа: 0002399783
Дата охранного документа: 20.09.2010
17.07.2019
№219.017.b57b

Способ и стенд для испытания герметизирующей заглушки углового сопла

Стенд для испытания герметизирующей заглушки углового сопла включает основание, емкость пневмодавления, электропневмоклапан, дроссельную шайбу, переходник для монтажа испытуемой заглушки, имитатор раструба сопла, системы измерения и видеонаблюдения. Переходник выполнен в виде имитатора...
Тип: Изобретение
Номер охранного документа: 0002694472
Дата охранного документа: 16.07.2019
07.03.2020
№220.018.0a5d

Заряд твердого топлива

Заряд твердого топлива содержит органопластиковый корпус, изготовленный методом спиральной намотки с защитно-крепящим слоем, нанесенным на внутреннюю поверхность корпуса, и скрепленное с ним твердое топливо посредством защитно-крепящего слоя. В топливе выполнены центральный канал и со стороны...
Тип: Изобретение
Номер охранного документа: 0002716122
Дата охранного документа: 05.03.2020
+ добавить свой РИД