×
06.12.2018
218.016.a3ef

Результат интеллектуальной деятельности: Способ экспериментального определения параметров запуска двигателя при стендовых испытаниях

Вид РИД

Изобретение

№ охранного документа
0002674112
Дата охранного документа
04.12.2018
Аннотация: Способ экспериментального определения параметров запуска двигателя при стендовых испытаниях, основанный на проведении испытания и регистрации диаграммы тяги изделия двухмостовым силоизмерительным датчиком. В период срабатывания воспламенителя до начала возгорания заряда испытуемого двигателя первым мостом силоизмерительного датчика регистрируют диаграмму тяги с типовой частотой опроса, а вторым мостом силоизмерительного датчика регистрируют параметры акустических волновых процессов в канале заряда двигателя с частотой опроса, пропорциональной отношению скорости звука в канале заряда к удвоенной длине канала заряда двигателя, и определяют по диаграмме, замеренной вторым мостом силоизмерительного датчика, параметры акустических волновых процессов: силовые возмущения - как величины амплитуд акустических колебаний; изменение давления в акустических волнах - как отношения силовых возмущений к площади канала заряда; а изменение температуры в канале заряда - как коэффициент пропорциональности, умноженный на квадраты отношений длины канала заряда к полупериодам акустических колебаний, при этом в качестве критерия оптимальной эффективности процесса воспламенения заряда принимают условие нахождения начала подъема давления в двигателе в диапазоне времен от достижения величины температуры вспышки заряда температурой в канале заряда при ее повышении до достижения величины температуры вспышки заряда температурой в канале заряда при ее спаде во время действия акустических волновых процессов в канале заряда двигателя. Технический результат изобретения – обеспечение оптимальной эффективности процесса воспламенения заряда во время запуска двигателя при стендовых испытаниях. 2 ил.

Предполагаемое изобретение относится к области машиностроения, а именно к наземным испытаниям двигателей, при которых на стендах производится подтверждение их внутрибаллистических и тягово-энергетических параметров на соответствие техническому заданию.

При проведении экспериментальной отработки исследователи сталкиваются с задачей обеспечения надежного запуска двигателя для реализации расчетного режима воспламенения и горения заряда. Достоверная оценка параметров запуска двигателя позволяет подтвердить стабильность его работы при проведении стендовых испытаний.

Известен способ математического моделирования рабочих процессов в двигателях, позволяющий выполнить газо- и термодинамические расчеты при воспламенении заряда и выходе двигателя на рабочий режим. Для этого используется программный комплекс для математического моделирования (ДАН, т. 293, №1, 1987 с. 33-37).

Недостатком способа является большой объем вычислений при прямом моделировании процессов с высокой точностью, что по своей сути представляет собой вычислительный эксперимент по прикладным программам системы ЭВМ.

Известен способ оценки параметров процесса выхода двигателя на рабочий режим, в котором рассматриваются уравнения нестационарного (волнового на начальной стадии) течения продуктов сгорания навески воспламенителя и заряда с учетом догорания в кислороде воздуха, его прогрева и вспышки, начального прогрева элементов конструкции (А.А. Шишков, С.Д. Панин, Б.В. Румянцев. Рабочие процессы в РДТТ. Справочник. Москва. Машиностроение. 1989. Раздел 2.3, с. 54-58). Для расчета используются уравнения течения газа и горения заряда в квазистационарном приближении.

Недостатком способа является то, что реальные параметры выхода двигателя на рабочий режим заметно изменяются вследствие отклонения параметров воспламенителя и заряда двигателя от номинальных. Кроме того, результаты запусков экспериментальных двигателей с неустойчивыми режимами горения зарядов трудно поддаются изучению.

Известен способ определения параметров процесса воспламенения заряда двигателя, в котором предполагают, что все химические реакции протекают на поверхности заряда в зоне горения при малой осевой составляющей скорости продуктов сгорания. Экзотермическими реакциями в твердой фазе пренебрегают. Химические процессы и изменение скорости горения считают квазистационарными. Продукты сгорания воспламенительного состава и заряда считают идеальными газами. К поверхности заряда теплота поступает вследствие вынужденной конвекции от потока продуктов сгорания навески воспламенителя, излучения газов и выпадения раскаленных частиц (А.А. Шишков, С.Д. Панин, Б.В. Румянцев. Рабочие процессы в РДТТ. Справочник. Москва. Машиностроение. 1989. Раздел 3.5, с. 91-97). После начала истечения продуктов сгорания воспламенительного состава в канал заряда в нем возникают и распространяются волны сжатия, а газы перемещаются к выходному отверстию. После распространения нескольких волн заряд прогревается до условий воспламенения, и пламя начинает распространяться по поверхности канала заряда.

Недостатком способа являются трудности исследования процесса воспламенения, обусловленные сильным изменением теплового потока к заряду во времени, малым размером наиболее активного участка, неустойчивостью характера процесса воспламенения и др. Так, 10%-ная ошибка при определении расхода воспламенителя приводит к 20%-ной ошибке в расчете времени задержки начала воспламенения заряда двигателя.

Задачей предполагаемого изобретения является обеспечение оптимальной эффективности процесса воспламенения заряда во время запуска двигателя при стендовых испытаниях.

Задача решается за счет того, что в способе экспериментального определения параметров запуска двигателя, основанном на проведении стендового испытания и регистрации диаграммы тяги изделия двух мостовым силоизмерительным датчиком, в период срабатывания воспламенителя до начала возгорания заряда испытуемого двигателя первым мостом силоизмерительного датчика регистрируют диаграмму тяги с типовой частотой опроса, а вторым мостом силоизмерительного датчика регистрируют параметры акустических волновых процессов в канале заряда двигателя с частотой опроса, пропорциональной отношению скорости звука в канале заряда к удвоенной длине канала заряда, и определяют по диаграмме, замеренной вторым мостом силоизмерительного датчика, параметры акустических волновых процессов: силовые возмущения - как величины амплитуд акустических колебаний; изменение давления в акустических волнах - как отношения силовых возмущений к площади канала заряда; а изменение температуры в канале заряда - как коэффициент пропорциональности, умноженный на квадраты отношений длины канала заряда к полупериодам акустических колебаний, при этом в качестве критерия оптимальной эффективности процесса воспламенения заряда принимают условие нахождения начала подъема давления в двигателе в диапазоне времен от достижения величины температуры вспышки заряда температурой в канале заряда при ее повышении до достижения величины температуры вспышки заряда температурой в канале заряда при ее спаде во время действия акустических волновых процессов в канале заряда двигателя.

На фиг. 1 показаны диаграмма силовых возмущений акустических волновых процессов, диаграмма показаний датчика давления во внутренней полости двигателя, диаграмма тяги испытуемого двигателя.

На фиг. 2 показаны экспериментально-расчетные зависимости силовых возмущений, частот колебаний акустических волновых процессов, изменения давления в акустических волнах, изменения температуры в канале заряда двигателя и начала подъема давления в двигателе.

Указанный способ осуществляется следующим образом. В начале проведения испытания двигателя подают команду на зажигание навески воспламенителя. В зоне закрытого торца заряда (корпуса изделия), создается акустическая волна повышенного давления, которая с учетом площади сечения канала заряда вызывает появление силового возмущения (фиг. 1, диаграмма 1), при этом в зоне открытого торца канала заряда (выходного отверстия двигателя) давление в канале заряда остается равным атмосферному. Силовое возмущение имеет волновой характер, не сбалансировано и проявляется как внешний силовой фактор двигателя, регистрируемый одним из мостов двух мостового датчика силы стенда.

Акустическая волна давления движется в сторону открытого торца канала заряда, создавая повышенное давление в зоне выходного отверстия двигателя при торможении, с учетом площади сечения канала заряда. В зоне закрытого торца канала заряда (корпуса изделия) волна разряжения создает пониженное давление, близкое к атмосферному. Возникает силовое возмущение, аналогичное описанному выше, но противоположного направления.

Оно регистрируется тем же мостом датчика силы стенда, если датчик силы работает на «растяжение-сжатие». В случае использования датчика силы только на «сжатие», регистрации обратной акустической полуволны не происходит, и вид силового возмущения можно только интерполировать расчетом. Но, это не изменяет физической картины волнового процесса, происходящего в двигателе при его запуске.

Неоднократное прохождение волны по каналу заряда приводит к изменению в нем состава газовой смеси (атмосферного воздуха с продуктами сгорания навески воспламенителя), потере энергии акустической волны и увеличению температуры газовой смеси, а также к увеличению частоты акустических колебаний из-за повышения скорости звука в канале заряда двигателя при повышении температуры газовой смеси.

Далее, при воспламенении поверхности заряда, во внутренней полости двигателя повышается давление, регистрируемое датчиком давления (фиг. 1, диаграмма 2). По достижению заданного уровня давления в двигателе вскрывается заглушка, начинается истечение продуктов сгорания заряда из выходного отверстия и возникает реактивная тяга двигателя (фиг. 1, диаграмма 3), регистрируемая другим мостом датчика силы стенда.

Для получения достоверных данных при использовании данного способа регистрацию параметров акустических волновых процессов в канале заряда двигателя производят с частотой опроса, пропорциональной отношению скорости звука в канале заряда к удвоенной длине канала заряда, одним из мостов датчика силы стенда. Регистрацию диаграммы тяги двигателя производят с типовой частотой опроса с помощью другого моста датчика силы стенда.

После проведения испытания двигателя определяют:

- силовые возмущения (фиг. 2, диаграмма 4) - как величины амплитуд акустических колебаний;

- изменение частот колебаний (фиг. 2, диаграмма 5) акустических волновых процессов - как величины, обратно пропорциональные удвоенным полупериодам колебаний;

- изменение давления в акустических волнах (фиг. 2, диаграмма 6) - как отношения силовых возмущений к площади канала заряда;

- изменение температуры в канале заряда (фиг. 2, диаграмма 7) - как коэффициент пропорциональности, умноженный на квадраты отношений длины канала заряда к полупериодам акустических колебаний;

- время начала подъема давления (фиг. 2, диаграмма 8) в двигателе.

Затем по вышеуказанным параметрам проводят оценку оптимальной эффективности процесса воспламенения заряда, принимая в качестве критерия - условие нахождения начала подъема давления в двигателе τр (фиг. 2, диаграмма 8) в диапазоне времен (фиг. 2, диаграмма 7) от достижения величины температуры вспышки заряда (Твсп) температурой в канале заряда при ее повышении (τ1T) до достижения величины температуры вспышки заряда (Твсп) температурой в канале заряда при ее спаде (τ2T) во время действия акустических волновых процессов в канале заряда двигателя.

По экспериментально-расчетным данным испытания одного из двигателей определена зависимость изменения температуры в канале заряда 2,73⋅10-3⋅(Lканп.п.)2, где: Lкан - длина канала заряда двигателя; τп.п. - время полупериода колебаний акустических волновых процессов в канале заряда двигателя. Эта зависимость позволила получить критерий оптимальной эффективности и стабильности процесса воспламенения этого двигателя.

Таким образом, предложенный способ позволяет проводить экспериментальное определение параметров и надежности запуска двигателя, оценку оптимальной эффективности процесса воспламенения заряда с помощью предложенного критерия, а также использовать полученные результаты при проектировании и наземной отработке аналогичных двигателей.

Способ экспериментального определения параметров запуска двигателя при стендовых испытаниях, основанный на проведении испытания и регистрации диаграммы тяги двигателя двухмостовым силоизмерительным датчиком, отличающийся тем, что в период срабатывания воспламенителя до начала возгорания заряда испытуемого двигателя первым мостом силоизмерительного датчика регистрируют диаграмму тяги с типовой частотой опроса, а вторым мостом силоизмерительного датчика регистрируют параметры акустических волновых процессов в канале заряда двигателя с частотой опроса, пропорциональной отношению скорости звука в канале заряда к удвоенной длине канала заряда, и определяют по диаграмме параметров акустических волновых процессов, замеренной вторым мостом силоизмерительного датчика: силовые возмущения - как величины амплитуд акустических колебаний; изменение давления в акустических волнах - как отношения силовых возмущений к площади канала заряда; а изменение температуры в канале заряда - как коэффициент пропорциональности, умноженный на квадраты отношений длины канала заряда к полупериодам акустических колебаний, при этом в качестве критерия оптимальной эффективности процесса воспламенения заряда принимают условие нахождения начала подъема давления в двигателе в диапазоне времен от достижения величины температуры вспышки заряда температурой в канале заряда при ее повышении до достижения величины температуры вспышки заряда температурой в канале заряда при ее спаде во время действия акустических волновых процессов в канале заряда двигателя.
Способ экспериментального определения параметров запуска двигателя при стендовых испытаниях
Способ экспериментального определения параметров запуска двигателя при стендовых испытаниях
Источник поступления информации: Роспатент

Показаны записи 1-10 из 58.
27.06.2015
№216.013.5a68

Твердотопливный ракетный двигатель

Изобретение относится к области ракетной техники и может быть использовано при создании ракет различного назначения, в частности космического, в системе аварийного спасения. Твердотопливный ракетный двигатель состоит из двух прочноскрепленных с корпусами зарядов твердого топлива...
Тип: Изобретение
Номер охранного документа: 0002554685
Дата охранного документа: 27.06.2015
20.10.2015
№216.013.8456

Способ сборки газовода с эластичным шарниром

Изобретение относится к области машиностроения и направлено на разработку способа сборки гибких газоводов, работающих в условиях высоких температур и переменных давлений. Гибкий газовод содержит подвижный телескопический узел в виде металлических оболочек, сопряженных по цилиндрическим...
Тип: Изобретение
Номер охранного документа: 0002565481
Дата охранного документа: 20.10.2015
10.02.2016
№216.014.c273

Клапан регулирования расхода газа

Изобретение относится к области машиностроения и направлено на совершенствование конструкций клапанов, предназначенных для управления вектором тяги летательных аппаратов. Клапан регулирования расхода газа состоит из корпуса с входным и выходным патрубками, седла, заслонки и вала,...
Тип: Изобретение
Номер охранного документа: 0002574779
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c4c0

Способ подтверждения внутрибаллистических и энергетических характеристик твердотопливного заряда ракетного двигателя и стендовое устройство

При подтверждении внутрибаллистических и энергетических характеристик твердотопливного заряда ракетного двигателя сжигают серию зарядов с различной скоростью горения в камере-имитаторе с расходным круглым отверстием критического сечения с замером давления в камере-имитаторе. Перед сжиганием...
Тип: Изобретение
Номер охранного документа: 0002574778
Дата охранного документа: 10.02.2016
13.01.2017
№217.015.8c04

Импульсный малогабаритный пороховой вытеснитель рабочей жидкости

Импульсный малогабаритный пороховой вытеснитель рабочей жидкости содержит камеру сгорания с пороховым зарядом, пиропатрон и емкость, разделенную выворачивающей диафрагмой на две полости - газовую, сообщающуюся с камерой сгорания, и жидкостную, заполненную рабочей жидкостью. Камера сгорания...
Тип: Изобретение
Номер охранного документа: 0002604775
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8cdb

Твердотопливный импульсный двигатель

Изобретение относится к области ракетной техники и может быть использовано при создании твердотопливных импульсных двигателей, к которым предъявляются повышенные требования разноимпульсности при работе в паре или в целой связке. Твердотопливный импульсный двигатель содержит камеру сгорания с...
Тип: Изобретение
Номер охранного документа: 0002604772
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.ba6c

Нагружающее устройство

Изобретение относится к испытательной технике. Нагружающее устройство содержит привод, корпус с крышкой, выполненной с полым валом, установленный в крышке шестеренчатый редуктор, малая шестерня которого установлена на валу привода, а большая - на полом валу крышки, винтовую передачу,...
Тип: Изобретение
Номер охранного документа: 0002615719
Дата охранного документа: 07.04.2017
25.08.2017
№217.015.bbc4

Нагружающее устройство

Изобретение относится к испытательной технике и может быть использовано для создания тянущих и толкающих усилий в силовых цепях испытательных стендов, для тарировки датчиков силы, испытания материалов на прочность, в качестве приводов исполнительных механизмов, в качестве домкратов и прессов....
Тип: Изобретение
Номер охранного документа: 0002615913
Дата охранного документа: 11.04.2017
25.08.2017
№217.015.c7bb

Газораспределительный клапан

Изобретение относится к области машиностроения и направлено на совершенствование газораспределительных клапанов, обеспечивающих управление летательным аппаратом в плоскостях тангажа, рыскания и крена. Газораспределительный клапан содержит корпус с входным и двумя выходными патрубками, заслонки,...
Тип: Изобретение
Номер охранного документа: 0002619008
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.cd56

Узел соединения отделяемых частей летательного аппарата

Изобретение относится к области машиностроения, а именно к системам соединения разделяемых частей летательных аппаратов. Технический результат - повышение сдвигоустойчивости узла соединения при длительных знакопеременных нагрузках с одновременной возможностью его распадения - отделения. Узел...
Тип: Изобретение
Номер охранного документа: 0002619611
Дата охранного документа: 17.05.2017
Показаны записи 1-10 из 15.
20.04.2014
№216.012.b8dc

Ракетный двигатель твердого топлива для увода отделяемых частей ракеты

Ракетный двигатель твердого топлива для увода отделяемых частей ракеты содержит корпус с твердотопливным многошашечным зарядом, расположенным между опорными решетками и двумя газосвязанными соплами, имеющими разные диаметры критических сечений, а также воспламенители с пиротехническим составом,...
Тип: Изобретение
Номер охранного документа: 0002513052
Дата охранного документа: 20.04.2014
27.06.2015
№216.013.5a68

Твердотопливный ракетный двигатель

Изобретение относится к области ракетной техники и может быть использовано при создании ракет различного назначения, в частности космического, в системе аварийного спасения. Твердотопливный ракетный двигатель состоит из двух прочноскрепленных с корпусами зарядов твердого топлива...
Тип: Изобретение
Номер охранного документа: 0002554685
Дата охранного документа: 27.06.2015
10.02.2016
№216.014.c4c0

Способ подтверждения внутрибаллистических и энергетических характеристик твердотопливного заряда ракетного двигателя и стендовое устройство

При подтверждении внутрибаллистических и энергетических характеристик твердотопливного заряда ракетного двигателя сжигают серию зарядов с различной скоростью горения в камере-имитаторе с расходным круглым отверстием критического сечения с замером давления в камере-имитаторе. Перед сжиганием...
Тип: Изобретение
Номер охранного документа: 0002574778
Дата охранного документа: 10.02.2016
26.08.2017
№217.015.df11

Способ экспериментального определения поправки к суммарному импульсу тяги двигателя при стендовых огневых испытаниях

При экспериментальном определении поправки к суммарному импульсу тяги двигателя при стендовых огневых испытаниях, включающих регистрацию диаграммы тяги датчиком силы, определяют силу сопротивления перемещению подвижных опор стенда с закрепленным на них двигателем путем приложения силовых...
Тип: Изобретение
Номер охранного документа: 0002624928
Дата охранного документа: 11.07.2017
20.01.2018
№218.016.1158

Ракетный двигатель твердого топлива с однократно изменяемым вектором тяги

Изобретение относится к области ракетно-космической техники и может быть использовано при проектировании двигателей твердого топлива для корректировки траектории полета управляемых ракет и корректировки полета отделяемых элементов от ракеты-носителя. Ракетный двигатель твердого топлива с...
Тип: Изобретение
Номер охранного документа: 0002633973
Дата охранного документа: 20.10.2017
02.02.2019
№219.016.b643

Пороховой аккумулятор давления для минометной схемы разделения ступеней ракеты в полете

Изобретение относится к конструкции порохового аккумулятора давления (ПАД) для минометной схемы разделения ступеней ракеты в полете. ПАД содержит корпус, осевое расходное критическое отверстие которого находится внутри полости цилиндрического стакана с боковыми отверстиями, многошашечный заряд...
Тип: Изобретение
Номер охранного документа: 0002678726
Дата охранного документа: 31.01.2019
19.04.2019
№219.017.2df3

Пиротехническое азотгенерирующее устройство

Изобретение относится к области создания автономных источников сжатого газа, а именно низкотемпературных твердотопливных газогенераторов. Пиротехническое азотгенерирующее устройство содержит корпус с крышкой, расположенную внутри корпуса камеру сгорания, заряд твердого источника азота,...
Тип: Изобретение
Номер охранного документа: 0002347979
Дата охранного документа: 27.02.2009
29.04.2019
№219.017.4071

Воспламенитель заряда твердотопливного газогенератора

Изобретение относится к области ракетной техники и может быть использовано в конструкции воспламенителя заряда твердотопливного газогенератора. Воспламенитель заряда твердотопливного газогенератора содержит корпус в виде чашеобразного тела вращения с отбортовкой, размещенные в нем навеску...
Тип: Изобретение
Номер охранного документа: 0002349786
Дата охранного документа: 20.03.2009
29.04.2019
№219.017.40de

Стенд для моделирования импульсного газотермодинамического воздействия высокотемпературного газа на элементы тепловой защиты конструкции

Стенд содержит состыкованные между собой твердотопливный газогенератор и газоход переменного сечения. Газоход включает переходный участок с нормированным профилем, мерный участок постоянного сечения с исследуемым материалом и установленными в нем термопарами и сопловой блок для выпуска газов в...
Тип: Изобретение
Номер охранного документа: 0002399783
Дата охранного документа: 20.09.2010
17.07.2019
№219.017.b57b

Способ и стенд для испытания герметизирующей заглушки углового сопла

Стенд для испытания герметизирующей заглушки углового сопла включает основание, емкость пневмодавления, электропневмоклапан, дроссельную шайбу, переходник для монтажа испытуемой заглушки, имитатор раструба сопла, системы измерения и видеонаблюдения. Переходник выполнен в виде имитатора...
Тип: Изобретение
Номер охранного документа: 0002694472
Дата охранного документа: 16.07.2019
+ добавить свой РИД