×
26.08.2017
217.015.df11

Результат интеллектуальной деятельности: Способ экспериментального определения поправки к суммарному импульсу тяги двигателя при стендовых огневых испытаниях

Вид РИД

Изобретение

Аннотация: При экспериментальном определении поправки к суммарному импульсу тяги двигателя при стендовых огневых испытаниях, включающих регистрацию диаграммы тяги датчиком силы, определяют силу сопротивления перемещению подвижных опор стенда с закрепленным на них двигателем путем приложения силовых нагрузок. До начала огневого испытания двигателя силовую нагрузку, превышающую ожидаемую величину сопротивления перемещению подвижных опор стенда с закрепленным на них двигателем, прикладывают поочередно в противоположном направлении действия тяги двигателя и в прямом направлении действия тяги двигателя, а после окончания огневого испытания двигателя - поочередно в прямом направлении действия тяги двигателя и в противоположном направлении действия тяги двигателя. Во время приложения силовой нагрузки регистрируют диаграммы этих силовых нагрузок тем же датчиком силы, которым регистрируют тягу двигателя при огневом испытании. Поправку к суммарному импульсу тяги двигателя определяют как разность произведения силы сопротивления перемещению подвижных опор стенда с закрепленным на них двигателем в прямом направлении действия тяги двигателя на суммарное время прогрессивных участков диаграммы тяги двигателя и произведения силы сопротивления перемещению подвижных опор стенда с закрепленным на них двигателем, в противоположном направлении действия тяги двигателя на суммарное время дегрессивных участков диаграммы тяги испытуемого двигателя. Изобретение позволяет повысить точность определения экспериментального значения суммарной тяги двигателя. 1 з.п. ф-лы, 2 ил.

Предлагаемое изобретение относится к области машиностроения, а именно к наземным испытаниям двигателей летательных аппаратов, при которых на стендах производится подтверждение энергетических параметров (суммарного импульса тяги) двигателей на соответствие техническому заданию.

При проектировании стендов для наземной экспериментальной отработки двигателей конструкторы и исследователи сталкиваются с проблемой достоверного определения суммарного импульса тяги с учетом погрешности, вносимой испытательным стендом. Суммарная погрешность стенда состоит из механической погрешности стенда (сила сопротивления перемещению подвижных опор стенда с закрепленным на них двигателем) и погрешности измерительного канала (датчика силы и регистрирующей аппаратуры).

Если механическая погрешность стенда не превышает допустимого значения по ГОСТ В 21898-76 (0,001 от величины измеряемого параметра), то величина суммарного импульса тяги двигателя практически определяется с погрешностью измерительного канала в диапазоне измерения. В реальных условиях испытаний механическая погрешность стенда часто превышает допустимое значение по ГОСТ В 21898-76 и ее необходимо учитывать как поправку к суммарному импульсу тяги двигателя.

Известен способ определения суммарного импульса тяги двигателя при наземных испытаниях, в котором для уменьшения погрешности, вносимой стендом, проводится механическая градуировка измерительного канала в составе стенда путем ступенчатого нагружения датчика тяги во всем диапазоне измерения (авторы A.M. Винницкий, В.Т. Волков, И.Г. Волковицкий, С.В. Холодилов. Конструкция и отработка РДТТ под редакцией А.М. Винницкого. Москва. Машиностроение. 1980. Глава 10, раздел 10.1, стр. 142-143).

Недостаток этого способа состоит в том, что его применение можно считать допустимым, если измеряемая величина тяги составляет 0,6-1,0 диапазона измерения выбранного датчика силы. Кроме того, этот способ не оправдывает себя из-за существенных различий характера нагружения при градуировке и при работе двигателя во время испытания.

Известен способ определения суммарного импульса тяги двигателя при наземных испытаниях, в котором проводят калибровку системы измерения (датчика силы тяги) стенда перед началом работы двигателя, прикладывая строго регламентированные усилия (авторы И.М. Гладков, B.C. Мухамедов, Е.Л. Валуев, В.И. Черепов. Экспериментальные методы определения параметров двигателей специального назначения. Москва. НТЦ Информтехника. 1993. Глава 5, раздел 5.3). Приложение усилий осуществляется с помощью грузов через роликовый блок (стр. 244-245) или силовых гидроцилиндров с системой измерения, управляемой ЭВМ (стр. 238-240). Суммарный импульс силы тяги определяется путем интегрирования величины измеряемой тяги по времени работы двигателя с учетом данных калибровки системы измерения. Принят за прототип.

Недостаток этого способа заключается в том, что при калибровке потери на трение в роликовом блоке нестабильны и увеличиваются пропорционально увеличению веса грузов. Для силовых гидроцилиндров с системой измерения, управляемой ЭВМ, суммарная погрешность измерительного канала силы тяги равна сумме погрешностей регламентированных усилий от гидроцилиндров, задаваемых ЭВМ, и системы измерения стенда.

Задачей предлагаемого изобретения является повышение точности определения экспериментального значения суммарного импульса тяги двигателя при наземных испытаниях.

Задача решается за счет того, что в способе экспериментального определения суммарного импульса тяги двигателя при стендовых огневых испытаниях, основанном на определении сил сопротивления перемещению подвижных опор стенда с закрепленным на них двигателем в прямом и противоположном направлениях действия тяги двигателя путем приложения силовых нагрузок, последующем огневом испытании двигателя с регистрацией диаграммы тяги датчиком силы и определении расчетом его суммарного импульса тяги, до начала огневого испытания двигателя силовую нагрузку, превышающую ожидаемую величину силы сопротивления перемещению подвижных опор стенда, прикладывают поочередно в противоположном направлении действия тяги двигателя и в прямом направлении действия тяги двигателя, а после огневого испытания двигателя - поочередно в прямом направлении действия тяги двигателя и в противоположном направлении действия тяги двигателя, при этом регистрируют диаграммы этих силовых нагрузок датчиком силы, которым регистрируют тягу двигателя при огневом испытании, а поправку к суммарному импульсу тяги двигателя определяют как разность произведения величины силы сопротивления перемещению подвижных опор стенда в прямом направлении действия тяги двигателя на суммарное время прогрессивных участков диаграммы тяги двигателя и произведения величины силы сопротивления перемещению подвижных опор стенда в противоположном направлении действия тяги двигателя на суммарное время дегрессивных участков диаграммы тяги испытуемого двигателя.

При этом величина сил сопротивления перемещению подвижных опор стенда с закрепленным на них испытуемым двигателем, в прямом и противоположном направлениях действия тяги двигателя на каждом прогрессивном и дегрессивном участке диаграммы тяги двигателя определяется как среднее значение на каждом из этих участков диаграммы тяги двигателя при его огневом испытании,

На фиг. 1 показан стенд для наземных испытаний с закрепленным на его подвижных опорах двигателем.

На фиг. 2 показана экспериментальная диаграмма приложения силовой нагрузки к подвижным опорам стенда с закрепленным на них двигателем до начала работы двигателя, результаты измерения тяги датчиком силы во время огневого испытания и приложения силовой нагрузки к подвижным опорам стенда с закрепленным на ней двигателем после окончания работы двигателя. Кроме того, показаны прогрессивные и дегрессивные участки диаграммы тяги двигателя и величины сил сопротивления перемещению подвижных опор стенда в прямом и противоположном направлениях действия тяги двигателя на границах этих участков.

Указанный способ осуществляется следующим образом. При монтаже и проверке работоспособности системы измерения стенда показание датчика тяги соответствуют нулевому уровню по сопроводительному паспорту. После монтажа (см. фиг. 1) испытуемого двигателя 1 на подвижные опоры 2 стенда повторно включают систему измерения перед началом работы двигателя. Показание датчика тяги 3 при этом не соответствует нулевому уровню из-за влияния сил сопротивления перемещению подвижных опор стенда с закрепленным на них двигателем и неопределенного направления действия этих сил сопротивления.

Далее, к подвижным опорам стенда с закрепленным на них неработающим двигателем (см. фиг. 2) прикладывают силовую нагрузку в противоположном направлении относительно направления действия тяги двигателя. Силовая нагрузка должна превышать ожидаемое значение силы сопротивления подвижных опор стенда с закрепленным на них неработающим двигателем, чтобы произошло перемещение опор в направлении приложения силовой нагрузки. Затем силовую нагрузку снимают, при этом датчик тяги перемещает подвижные опоры стенда до тех пор, пока усилие в датчике тяги не станет равным силе сопротивления перемещения подвижных опор стенда в направлении, противоположном действию тяги двигателя, и регистрируют показание датчика тяги (первая часть кривой F).

Потом к подвижной части стенда прикладывают силовую нагрузку в прямом направлении относительно направления действия тяги двигателя. Силовая нагрузка, также, должна превышать ожидаемую величину силы сопротивления подвижных опор стенда, чтобы произошло перемещение подвижных опор стенда в другую сторону. Силовую нагрузку снимают, при этом датчик тяги перемещает подвижные опоры стенда до тех пор, пока усилие в датчик тяги не станет равным силе сопротивления подвижных опор стенда в прямом направлении действия тяги двигателя, и регистрируют показание датчика тяги (вторая часть кривой F).

Далее, подают команду на запуск двигателя и проводят его огневое испытание с регистрацией диаграммы тяги двигателя (кривая P).

Потом к подвижным опорам стенда с закрепленным на них отработавшим двигателем прикладывают силовую нагрузку в прямом направлении относительно направления действия тяги двигателя. Силовая нагрузка должна превышать ожидаемое значение силы сопротивления подвижных опор стенда с закрепленным на них отработавшим двигателем, чтобы произошло перемещение опор в направлении приложения силовой нагрузки. Затем силовую нагрузку снимают, при этом датчик тяги перемещает подвижные опоры стенда до тех пор, пока усилие в датчике тяги не станет равным силе сопротивления перемещению подвижных опор стенда в прямом направлении действия тяги двигателя, и регистрируют показание датчика тяги (первая часть кривой F1).

После этого к подвижным опорам стенда с закрепленным на них отработавшим двигателем прикладывают силовую нагрузку в противоположном направлении относительно направления действия тяги двигателя. Силовая нагрузка, также, должна превышать ожидаемую величину силы сопротивления подвижных опор стенда, чтобы произошло перемещение подвижных опор стенда с закрепленным на них отработавшим двигателем в другую сторону. Силовую нагрузку снимают, при этом датчик тяги перемещает подвижные опоры стенда до тех пор, пока усилие в датчике тяги не станет равным силе сопротивления подвижных опор стенда в противоположном направлении относительно направления действия тяги двигателя, и регистрируют показание датчика тяги (вторая часть кривой F1).

По результатам обработки полученной экспериментальной диаграммы тяги двигателя (фиг. 2) определяют величины сил сопротивления Δнп, Δкп, Δно, Δко и текущие значения этих параметров на границах прогрессивных и дегрессивных участков экспериментальной диаграммы тяги двигателя (кривая P), а также средние значения этих параметров на каждом участке диаграммы тяги двигателя.

Поправку к суммарному импульсу тяги двигателя определяют по формуле

ΔJΣ=Σ{0,5(Δнп iкп i)⋅Δτпрогр i}-Σ{0,5(Δно iко i)⋅Δτдегр i},

где Δнп i - сила сопротивления перемещению подвижных опор стенда в прямом направлении действия тяги двигателя в начале каждого прогрессивного участка диаграммы тяги двигателя;

Δкп i - сила сопротивления перемещению подвижных опор стенда в прямом направлении действия тяги двигателя в конце каждого прогрессивного участка диаграммы тяги двигателя;

Δτпрогр i - время каждого прогрессивного участка диаграммы тяги двигателя;

Δно i - сила сопротивления перемещению подвижных опор стенда в направлении, противоположном действию тяги двигателя, в начале каждого дегрессивного участка диаграммы тяги двигателя;

Δко i - сила сопротивления перемещению подвижных опор стенда в направлении, противоположном действию тяги двигателя, в конце каждого дегрессивного участка диаграммы тяги двигателя;

Δτдегр i - время каждого дегрессивного участка диаграммы тяги двигателя.

Первое слагаемое формулы представляет собой суммарный импульс силы сопротивления перемещению подвижных опор стенда в прямом направлении действия тяги двигателя и уменьшает суммарный импульс тяги двигателя (показание датчика силы меньше фактической величины тяги двигателя при огневом испытании).

Второе слагаемое формулы представляет собой суммарный импульс силы сопротивления перемещению подвижных опор стенда в направлении, противоположном направлению действия тяги двигателя, и увеличивает суммарный импульс тяги двигателя (показание датчика силы больше фактической величины тяги двигателя при огневом испытании).

Поэтому существенное значение имеет вид диаграммы тяги (прогрессивный или дегрессивный), а также соотношение величин тяги и массы испытуемого двигателя.

Экспериментальные данные стендовых огневых испытаний различных двигателей подтверждают вышеизложенное.

Например:

1. Для крупногабаритных двигателей (стартовых и маршевых) с временем работы 40-60 с (при соотношении тяги к массе 5-12) поправка к суммарному импульсу двигателя составляет ~0,17-0,25%.

2. Для малогабаритных двигателей с временем работы 300-400 с (при соотношении тяги и массы 0,45-1,1) поправка к суммарному импульсу двигателя составляет ~2,3-3,7%.

Таким образом, предложенный способ определения поправки к суммарному импульсу тяги двигателя позволяет повысить точность определения экспериментального значения суммарного импульса тяги двигателя и достоверность получаемых экспериментальных данных при проведении наземной стендовой отработки различных двигателей.


Способ экспериментального определения поправки к суммарному импульсу тяги двигателя при стендовых огневых испытаниях
Способ экспериментального определения поправки к суммарному импульсу тяги двигателя при стендовых огневых испытаниях
Источник поступления информации: Роспатент

Показаны записи 471-480 из 676.
18.05.2019
№219.017.59b8

Панель солнечной батареи

Изобретение относится к космической технике, а именно к устройствам, предназначенным для прямого преобразования солнечной энергии в электрическую энергию с помощью фотопреобразователей. Панель солнечной батареи содержит каркас с поперечными профилями, модули фотопреобразователей и несущую...
Тип: Изобретение
Номер охранного документа: 0002424956
Дата охранного документа: 27.07.2011
18.05.2019
№219.017.59bc

Отделяемый крупногабаритный головной обтекатель ракеты-носителя

Изобретение относится к ракетно-космической технике. Головной обтекатель имеет верхнюю коническую со сферическим наконечником и нижнюю цилиндрическую части, содержащие две створки со стрингерами их продольного стыка и полушпангоутами их поперечного стыка с переходным отсеком ракеты-носителя,...
Тип: Изобретение
Номер охранного документа: 0002424953
Дата охранного документа: 27.07.2011
18.05.2019
№219.017.5b0e

Способ и устройство синхронизации и устранения фазовой неоднозначности сигналов систем связи с временным разделением каналов

Изобретение относится к области цифровой и вычислительной техники и может быть использовано при устранении фазовой неоднозначности при помехоустойчивом декодировании в системах связи МДВР с кодовым словом. Технический результат - устранение фазовой неоднозначности сигналов без ухудшения...
Тип: Изобретение
Номер охранного документа: 0002444849
Дата охранного документа: 10.03.2012
18.05.2019
№219.017.5b1f

Устройство отделения и раскрытия створок батареи солнечной космического аппарата

Изобретение относится к раскрывающимся конструкциям космических аппаратов таких, как солнечные батареи (СБ) или антенны. Устройство состоит из рамы, жестко закрепленной на валу электропривода, и двух пакетов створок. Пакеты нижними створками (3) закреплены на раме неподвижно, а средние створки...
Тип: Изобретение
Номер охранного документа: 0002441817
Дата охранного документа: 10.02.2012
20.05.2019
№219.017.5cdf

Способ нанесения теплозащитного покрытия на корпус ракетного двигателя твердого топлива

Изобретение относится к способу нанесения теплозащитного покрытия из композиционных материалов, используемого для защиты корпусов ракетных двигателей, работающих на твердом топливе. На корпус ракетного двигателя, прошедший ряд подготовительных для склейки операций, наматывают фторопластовую...
Тип: Изобретение
Номер охранного документа: 0002688128
Дата охранного документа: 17.05.2019
24.05.2019
№219.017.5db5

Способ определения углового положения источника ofdm сигналов

Изобретение относится к радиотехнике и может быть использовано, например, для пассивного определения мобильным измерительным пунктом углового положения источников сигналов, использующих мультиплексирование с ортогональным частотным разделением (OFDM). Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002688927
Дата охранного документа: 23.05.2019
24.05.2019
№219.017.5dd5

Способ измерения дальности и радиальной скорости в рлс с зондирующим составным псевдослучайным лчм импульсом

Изобретение относится к радиолокационной технике и может быть использовано для обнаружения и измерения расстояний до разного рода подвижных и неподвижных объектов при реализации в РЛС зондирующего составного линейно-частотно-модулированного (ЛЧМ) импульса, а также может быть использовано в...
Тип: Изобретение
Номер охранного документа: 0002688921
Дата охранного документа: 23.05.2019
24.05.2019
№219.017.5e67

Система коррекции шкал времени группы удаленных часов

Изобретение относится к средствам временной синхронизации и может быть использовано при решении задач коррекции шкал времени группы удаленных часов относительно шкалы времени центральных часов. Система коррекции шкал времени группы удаленных часов содержит центральные часы и группу удаленных...
Тип: Изобретение
Номер охранного документа: 0002688452
Дата охранного документа: 22.05.2019
24.05.2019
№219.017.5ec4

Узел соединения модулей летательного аппарата

Изобретение относится к системам соединения модулей летательных аппаратов (ЛА). Узел соединения модулей ЛА состоит из трех цилиндрических модулей с торцевыми шпангоутами, состыкованных последовательно друг с другом при помощи резьбовых шпилек и гаек. Крайние модули связаны с носителем боковыми...
Тип: Изобретение
Номер охранного документа: 0002688502
Дата охранного документа: 21.05.2019
29.05.2019
№219.017.6394

Гидропривод ракетного комплекса с системой удаления воздуха, растворенного в рабочей жидкости

Изобретение относится к области машиностроения, а более конкретно к гидроприводам. Гидропривод ракетного комплекса монтирован на раме шасси подвижного агрегата ракетного комплекса. Гидропривод состоит из бака с рабочей жидкостью, бака со сжатым воздухом, гидроцилиндра, фильтра, насоса....
Тип: Изобретение
Номер охранного документа: 0002688450
Дата охранного документа: 21.05.2019
Показаны записи 361-364 из 364.
06.12.2018
№218.016.a3ef

Способ экспериментального определения параметров запуска двигателя при стендовых испытаниях

Способ экспериментального определения параметров запуска двигателя при стендовых испытаниях, основанный на проведении испытания и регистрации диаграммы тяги изделия двухмостовым силоизмерительным датчиком. В период срабатывания воспламенителя до начала возгорания заряда испытуемого двигателя...
Тип: Изобретение
Номер охранного документа: 0002674112
Дата охранного документа: 04.12.2018
29.04.2019
№219.017.40de

Стенд для моделирования импульсного газотермодинамического воздействия высокотемпературного газа на элементы тепловой защиты конструкции

Стенд содержит состыкованные между собой твердотопливный газогенератор и газоход переменного сечения. Газоход включает переходный участок с нормированным профилем, мерный участок постоянного сечения с исследуемым материалом и установленными в нем термопарами и сопловой блок для выпуска газов в...
Тип: Изобретение
Номер охранного документа: 0002399783
Дата охранного документа: 20.09.2010
17.07.2019
№219.017.b57b

Способ и стенд для испытания герметизирующей заглушки углового сопла

Стенд для испытания герметизирующей заглушки углового сопла включает основание, емкость пневмодавления, электропневмоклапан, дроссельную шайбу, переходник для монтажа испытуемой заглушки, имитатор раструба сопла, системы измерения и видеонаблюдения. Переходник выполнен в виде имитатора...
Тип: Изобретение
Номер охранного документа: 0002694472
Дата охранного документа: 16.07.2019
07.03.2020
№220.018.0a5d

Заряд твердого топлива

Заряд твердого топлива содержит органопластиковый корпус, изготовленный методом спиральной намотки с защитно-крепящим слоем, нанесенным на внутреннюю поверхность корпуса, и скрепленное с ним твердое топливо посредством защитно-крепящего слоя. В топливе выполнены центральный канал и со стороны...
Тип: Изобретение
Номер охранного документа: 0002716122
Дата охранного документа: 05.03.2020
+ добавить свой РИД