×
26.08.2017
217.015.de61

Результат интеллектуальной деятельности: СПОСОБ ИССЛЕДОВАНИЯ ВНЕЗЕМНЫХ ОБЪЕКТОВ РАДИОИНТЕРФЕРОМЕТРАМИ СО СВЕРХДЛИННЫМИ БАЗАМИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к астрофизике и астрометрии, а именно к способам исследования внеземных объектов естественного происхождения (звезд, квазаров) и сопровождения искусственных объектов (автоматических межпланетных станций). Достигаемый технический результат - точное и однозначное определение местоположения исследуемого внеземного объекта и его перемещение в пространстве путем использования трех сверхдлинных измерительных баз, расположенных в виде треугольника, и корреляционной обработки радиосигналов, принимаемых от исследуемого внеземного объекта. Система, реализующая предлагаемый способ, содержит три радиотелескопа, три линии связи, центр корреляционной обработки информации, три удвоителя фазы, три делителя фазы на два, три узкополосных фильтра, три фазометра, компьютер, три коррелятора, три блока регулируемой задержки, три перемножителя, три фильтра низких частот, три экстремальных регулятора, индикатор азимута, индикатор угла места и индикатор угла ориентации, определенным образом связанные между собой. 3 ил.

Изобретение относится к радиоастрономии и может быть использовано для исследования тонких угловых деталей в радиоизлучении неба, а именно получения особо точных координат и угловых размеров внеземных объектов и построения радиоизображений небесных тел с высоким разрешением.

Известны способы и системы исследования внеземных объектов (авт. свид. СССР №995.062; патенты РФ №№2.059.205, 2.066.060, 2.100.820, 2.112.991, 2.254.588, 2.274.953, 2.316.034, 2.378.676, 2.453.813, 2.554.086; патенты США №№3.866.025, 4.827.422, 5.847613, 6.236.939, 6.414.632, 6.587.761, 6.775.600; патент WO №0.070.364; Финкельштейн A.M., Ипатов А.В. и др. Радиоинтерферометрическая сеть «Квазар-КВО» - базовая система фундаментального координатно-временного обеспечения. СПб. Труды ИЛА РАН, №13, 2005, - С. 104-138; Матвиенко Л.И. РСД исследования - суперразрешение. // “Известия Крымской астрофизической обсерватории”, №3, 2007, С. 66-77 и другие).

Из известных способов и систем наиболее близким к предлагаемому является способ исследования внеземных объектов радиоинтерферометрическим методом (Матвиенко Л.И. РСД исследования - суперразрешение. Журнал “Известия Крымской астрофизической обсерватории”, №3, 2007. - С. 66-77), который и выбран в качестве базового объекта.

Указанный способ в настоящее время используется в работе российской космической обсерватории «Спектр-Р» («Радиоастрон») и будет использоваться в работе проектируемой ныне другой российской радиоастрономической космической обсерватории «Спектр-М» («Миллиметрон»). В соответствии с этим способом размещают на Земле на максимально возможных расстояниях и/или в космическом пространстве систему из двух или более радиотелескопов, направляют их синхронно на исследуемый внеземной объект, осуществляют прием и регистрацию поступающих от него радиосигналов, а затем, используя корреляционный метод обработки и сравнения задержек и измеренных фазовых и иных характеристик сигналов от разных радиотелескопов системы, строят изображение исследуемого внеземного объекта.

Однако известный способ не обеспечивает точного и однозначного определения местоположения исследуемого внеземного объекта и его перемещения в космическом пространстве.

Технической задачей изобретения является точное и однозначное определение местоположения исследуемого внеземного объекта и его перемещения в пространстве путем использования трех сверхдлинных измерительных баз, расположенных в виде треугольника, и корреляционной обработки радиосигналов, принимаемых от исследуемого внеземного объекта (например, квазара или автоматической межпланетной станции (АМС).

Поставленная задача решается тем, что способ исследования внеземных объектов радиоинтерферометрами со сверхдлинными базами, основанный, в соответствии с ближайшим аналогом, на использовании двух или более радиотелескопов, которые направляют синхронно на исследуемый внеземной объект, осуществляют прием и регистрацию поступающих от него радиосигналов, а затем, используя корреляционный метод обработки и сравнение задержек и измеренных фазовых и иных характеристик сигналов от разных радиотелескопов и обладая высоким разрешением, строят радиоизображение исследуемого внеземного объекта, отличается от ближайшего аналога тем, что один из радиотелескопов (РТ) размещают на Луне, а два других - на Земле, образуя тем самым три сверхдлинные измерительные базы, расположенные в виде треугольника, радиосигналы, принимаемые лунным радиотелескопом, передают по радиоканалу в центр корреляционной обработки (ЦКО) информации, а радиосигналы, принимаемые земными радиотелескопами, передают по радиоканалам или по оптическим линиям связи в центр корреляционной обработки (ЦКО) информации, в котором указанные сигналы умножают и делят по фазе на два, выделяют гармонические напряжения и измеряют разности фаз между ними, формируя фазовые шкалы отсчета азимута α, угла места β и угла ориентации γ исследуемого внеземного объекта: точные, но неоднозначные, одновременно сигнал, принимаемый лунным радиотелескопом, пропускают через первый и второй блоки регулируемой задержки и перемножают с сигналами, принимаемыми первым и вторым земными радиотелескопами, выделяют низкочастотные напряжения, пропорциональные первой R1(τ) и второй R2(τ) корреляционным функциям, где τ - текущая временная задержка, изменением временной задержки τ обеспечивают максимальные значения первой R1(τ) и второй R2(τ) корреляционных функций, поддерживают их на максимальном уровне и фиксируют временные задержки τ=τз1 и τ=τз2, соответствующие максимуму корреляционных функций, сигнал, принимаемый вторым земным радиотелескопом, пропускают через третий блок регулируемой задержки и перемножают с сигналом, принимаемым первым земным радиотелескопом, выделяют низкочастотное напряжение, пропорциональное третьей корреляционной функции R3(τ), изменением временной задержки τ обеспечивают максимальное значение третьей корреляционной функции R3(τ), поддерживают ее на максимальном уровне и фиксируют временную задержку τ=τз3, соответствующую максимуму корреляционной функции, по зарегистрированным временным задержкам формируют временные шкалы отсчета азимута α, угла места β и угла ориентации γ исследуемого внеземного объекта, по измеренным угловым координатам определяют местоположение исследуемого внеземного объекта и его перемещения в космическом пространстве.

Схема построения радиоинтерферометра со сверхдлинными базами с расположением радиотелескопов на Земле и Луне показана на фиг. 1. Взаимное расположение трех радиотелескопов 1, 2, 3 и источника радиоизлучений (ИРИ) (внеземного объекта ВО) показано на фиг. 2. Структурная схема системы, реализующей предлагаемый способ, представлена на фиг. 3.

Система содержит три радиотелескопа 1, 2, и 3, один из которых размещают на Луне (1), а два других - на Земле (2 и 3), образуя тем самым три сверхдлинные измерительные базы d1, d2 и d3, расположенные в виде треугольника. Радиотелескопы 1, 2 и 3 соединены радиоканалами спутниковой связи и оптическими линиями связи с центром 7 корреляционной обработки информации, который содержит последовательно включенные удвоитель фазы 8 (9, 10), делитель фазы на два 11 (12, 13) и узкополосные фильтры 114 (15, 16), которые через фазометры 17 (18, 19) подключены к компьютеру 20. К выходу радиоканала 4 последовательно подключены перемножитель 23 (23.2), второй вход которого соединен с выходом оптического канала 5 (6), фильтр 24 (24.2) нижних частот и экстремальный регулятор 25.1 (25.2), выход которого соединен с вторым входом блока 22.1 (22.2) регулируемой задержки, второй выход которого через индикатор 26 азимута (индикатор 27 угла места) подключен к соответствующему входу компьютера 20. К выходу оптического канала связи 6 второго земного радиотелескопа 3 последовательно подключены блок 22.3 регулируемой задержки, перемножитель 23.3, второй вход которого соединен с выходом оптического канала 9 первого земного радиотелескопа 2, фильтр 24.3 нижних частот и экстремальный регулятор 25.3, выход которого соединен с вторым входом блока 22.3 регулируемой задержки, второй вход которого через индикатор 28 угла ориентации подключен к соответствующему входу компьютера 20.

Блок 22.1 (22.2, 22.3) регулируемой задержки, перемножитель 23.1 (23.2, 23.3), фильтр нижних частот 24.1 (24.2, 24.3) и экстремальный регулятор 25.1 (25.2, 25.3) образуют первый 21.1 (второй 22.1, третий 21.3) коррелятор.

Предлагаемый способ реализуют следующим образом.

На Луне устанавливают радиотелескоп 1, два других радиотелескопа 2 и 3 устанавливают на Земле (например, РСДБ-комплекс «Квазар-КВО»). Между ними и центром корреляционной обработки информации обеспечивают надежную связь через радиоканал 4 и оптические каналы 5 и 6. Радиотелескопы 1, 2 и 3 синхронно направляют на исследуемый внеземной объект 30 (ИРИ), который излучает широкополосные шумоподобные или другие любые радиосигналы, например, сигналы автоматических межпланетных станций (АМС), например «ЭкзоМарс» и других.

Сложные сигналы с фазовой манипуляцией (ФМн), принимаемые радиотелескопами 1, 2 и 3, имеют следующий вид:

u2(t)=U2cos[ωc(t-τ1)+ϕk(t-τ1)+ϕ2],

u1(t)=U1cos[ωct+ϕk(t)+ϕ1],

u3(t)=U3cos[ωc(t-τ2)+ϕk(t-τ3)+ϕ2], 0≤t≤Tc,

где ϕk(t)={0, π} - манипулируемая составляющая фазы, отображающая закон фазовой манипуляции в соответствии с модулирующим кодом M(t) (псевдослучайная последовательность), причем ϕk(t)=const при и может изменяться скачком при t=kτэ. т.е. на границах между элементарными посылками (к=1, 2, …, N-1);

τЭ, N - длительность и количество элементарных посылок, из которых составлен сигнал длительностью Tc(Tc-NτЭ);

- время запаздывания сигнала, приходящего на радиотелескоп 1, по отношению к сигналу, приходящему на радиотелескоп 2;

- время запаздывания сигнала, приходящего на радиотелескоп 1, по отношению к сигналу, приходящему на радиотелескоп 3;

- время запаздывания сигнала, приходящего на радиотелескоп 2, по отношению к сигналу, приходящему на радиотелескоп 3 (фиг. 1);

d1, d2, d3 - сверхдлинные измерительные базы;

α, β, γ - азимут, угол места и угол ориентации ИРИ (30).

С выходов радиотелескопов 1, 2 и 3 указанные сигналы через линии связи 4, 5 и 6 поступают на входы центра 7 корреляционной обработки информации, а именно на входы удвоителей 8, 9 и 10 фазы, а затем на входы делителей 11, 12 и 13 фазы на два. На выходе последних образуются следующие гармонические колебания соответственно:

u4(t)=U4cos(ωct+ϕ1),

u5(t)=U5cos[ωc(t-τ1)+ϕ2],

u6(t)=U6cos[ωc(t-τ2)+ϕ3], 0≤t≤Tc,

которые выделяются узкополосными фильтрами 14, 15 и 16 соответственно и поступают на входы фазометров 17, 18 и 19. Последние измеряют следующие разности фаз:

где λ - длина волны,

которые фиксируются компьютером 20.

Так формируются фазовые шкалы отсчета угловых координат α, β и γ: точные, но неоднозначные.

Принимаемые шумоподобные сигналы u1(t) и u2(t), u1(t) и u3(t), u2(t) и u3(t) одновременно поступают на два входа корреляторов 21.1, 21.2 и 21.3. Получаемые на выходе фильтров 24.1, 24.2 и 24.3 нижних частот корреляционные функции R1(τ), R2(τ) и R3(τ) имеют максимум при значении введенного регулируемого задержания:

τ1=t2-t1, τ2=t3-t1, τ3=t3-t2,

где t1, t2 и t3 - время прохождения сигналом расстояний R1, R2 и R3 от ИРИ (ВО) до радиотелескопов 1, 2 и 3 соответственно.

Максимальные значения корреляционных функций R1(τ), R2(τ) и R3(τ) поддерживаются с помощью экстремальных регуляторов 25.1, 25.2 и 25.3, воздействующих на управляющие входы блоков 22.1, 22.2 и 22.3 регулируемой задержки.

Шкалы блоков 22.1, 22.2 и 22.3 регулируемой задержки (указатели углов) проградуированы непосредственно в значениях угловых координат α, β и γ ИРИ (ВО):

где τ1, τ2 и τ3 - введенные временные задержки сигналов, соответствующие максимальным значениям корреляционных функций R1(τ), R2(τ) и R3(τ).

Значения угловых координат α, β, и γ фиксируются соответствующими индикаторами 26, 27 и 28 и поступают в компьютер 20.

Так формируются временные шкалы отсчета угловых координат α, β, и γ: грубые, но однозначные.

Следует отметить, что расположение радиотелескопов 1, 2 и 3 в виде треугольника продиктовано новой идеологией фазовой пеленгации источников радиоизлучений (внеземных объектов) в пространстве, которая обеспечивает определение местоположения ИРИ (ВО) и его перемещения в пространстве пассивным методом. Причем для точного и однозначного определения местоположения ИРИ (ВО) и его перемещения в пространстве используются фазовые шкалы отсчета угловых координат α, β и γ: точные, но неоднозначные и временные шкалы отсчета угловых координат α, β и γ: грубые, но однозначные, получаемые за счет корреляционной обработки принимаемых сигналов.

Таким образом, предлагаемый способ исследования внеземных объектов радиоинтерферометрами со сверхдлинными базами по сравнению с базовым объектом и другими техническими решениями аналогичного назначения обеспечивает точное и однозначное определение местоположения исследуемого внеземного объекта и его перемещение в пространстве. Это достигается за счет использования трех сверхдлинных измерительных баз, расположенных в виде треугольника, и корреляционной обработки радиосигналов, принимаемых от исследуемого внегалактического объекта.

Предлагаемый способ (лунный вариант) отличается новизной, оригинальностью, является перспективным и может найти практическое применение при освоении человеком ближнего и дальнего космоса.

Современные астрономические и геодезические РСДБ-наблюдения позволяют определять различные параметры (положение радиоисточников, параметры вращения Земли, координаты станций) с точностью λ/d, где λ - длина волны наблюдений, a d - длина базы между двумя радиотелескопами.

В настоящее время длина волны наблюдений составляет д 7,5 мм, а длина фазы ограничена диаметром Земли. Наблюдения на более коротких длинах волн невозможны из-за интенсивного поглощения таких волн земной атмосферой и высоких требований к аппаратуре. Таким образом, единственным методом увеличить точность решения координатных задач является увеличение длины базы посредством использования радиотелескопа за пределами Земли.

В случае успеха предлагаемый лунный проект станет первым и уникальным в своем роде сооружением и позволит решить мировые научные задачи, не решаемые иными средствами:

- повышение точности реализации Международной небесной системы координат (ICRF) более чем на порядок;

- повышение точности модели орбитального и вращательного движения Луны на два порядка;

- точное задание ориентации группировки ГЛОНАСС в ICRF, что обеспечит высокоточную навигацию в космическом пространстве в инерциальной системе отсчета;

- изучение внутреннего строения Луны из анализа высокоточной модели ее вращения;

- повышение точности эфемерид планет солнечной системы;

- проверка научных гипотез из области астрофизики и релятивистской небесной механики;

- повышение точности и однозначности определения местоположения и перемещение в пространстве спутников глобальной навигационной системы ГЛОНАСС и геостационарных ИСЗ-ретрансляторов, используемых в дуплексном методе сличения удаленных шкал времени, а также в службе единого времени частоты;

- повышение точности и однозначности определения местоположения и перемещения в пространстве источников радиоизлучения, размещенных на различных носителях (космические аппараты, самолеты, ракеты и т.п.);

- повышение точности и однозначности определения местоположения и перемещения в пространстве небесных тел, планет, метеоритов и т.п., находящихся в ближнем м дальнем космосе.

Кроме того, предлагаемый лунный проект дает толчок к разработке технологий для:

- роботизированных миссий по возведению дистанционно управляемых прецизионных конструкций на поверхности Луны, что является новой и уникальной задачей;

- мягкой посадки на Луну, что актуально для всей отечественной лунной программы;

- пересылки (по оптическому или радиоканалу) больших объемов цифровых данных между Луной и Землей.

Способ исследования внеземных объектов радиоинтерферометрами со сверхдлинными базами, основанный на использовании двух или более радиотелескопов, которые направляют синхронно на исследуемый объект, осуществляют прием и регистрацию поступающих от него радиосигналов, а затем, используя корреляционный метод обработки и сравнения задержек и измененных фазовых характеристик сигналов от разных радиотелескопов, строят изображение исследуемого внеземного объекта, отличающийся тем, что один из радиотелескопов размещают на Луне, а два других - на Земле, образуя тем самым три сверхдлинные измерительные базы, расположенные в виде треугольника, радиосигналы, принимаемые лунным радиотелескопом, передают по радиоканалу в центр корреляционной обработки информации, а радиосигналы, принимаемые земными радиотелескопами, передают по радиоканалам или по оптическим линиям связи в центр корреляционной обработки информации, в котором указанные сигналы умножают и делят по фазе на два, выделяют гармонические напряжения и измеряют разности фаз между ними, формируя фазовые шкалы отсчета азимута α, угла места β и угла ориентации γ исследуемого внеземного объекта: точные, но неоднозначные, одновременно сигнал, принимаемый лунным радиотелескопом, пропускают через первый и второй блоки регулируемой задержки и перемножают с сигналами, принимаемыми первым и вторым земными радиотелескопами, выделяют низкочастотные напряжения, пропорциональные первой R(τ) и второй R(τ) корреляционным функциям, где τ - текущая временная задержка, изменением временной задержки τ обеспечивают максимальные значения первой R(τ) и второй R(τ) корреляционных функций, поддерживают их на максимальном уровне и фиксируют временные задержки τ=τ и τ=τ, соответствующие максимуму корреляционных функций, сигнал, принимаемый вторым земным радиотелескопом, пропускают через третий блок регулируемой задержки и перемножают с сигналом, принимаемым первым земным радиотелескопом, выделяют низкочастотное напряжение, пропорциональное третьей корреляционной функции R(τ), изменением временной задержки τ обеспечивают максимальное значение третьей корреляционной функции R(τ), поддерживают ее на максимальном уровне и фиксируют временную задержку τ=τ, соответствующую максимуму корреляционной функции R(τ), по зарегистрированным временным задержкам формируют временные шкалы отсчета азимута α, угла места β и угла ориентации γ исследуемого внеземного объекта, по измеренным угловым координатам определяют местоположение исследуемого внеземного объекта и его перемещение в космическом пространстве.
СПОСОБ ИССЛЕДОВАНИЯ ВНЕЗЕМНЫХ ОБЪЕКТОВ РАДИОИНТЕРФЕРОМЕТРАМИ СО СВЕРХДЛИННЫМИ БАЗАМИ
СПОСОБ ИССЛЕДОВАНИЯ ВНЕЗЕМНЫХ ОБЪЕКТОВ РАДИОИНТЕРФЕРОМЕТРАМИ СО СВЕРХДЛИННЫМИ БАЗАМИ
СПОСОБ ИССЛЕДОВАНИЯ ВНЕЗЕМНЫХ ОБЪЕКТОВ РАДИОИНТЕРФЕРОМЕТРАМИ СО СВЕРХДЛИННЫМИ БАЗАМИ
СПОСОБ ИССЛЕДОВАНИЯ ВНЕЗЕМНЫХ ОБЪЕКТОВ РАДИОИНТЕРФЕРОМЕТРАМИ СО СВЕРХДЛИННЫМИ БАЗАМИ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 130.
10.09.2013
№216.012.68fc

Способ контроля движения специальных транспортных средств

Изобретение относится к области контроля движения городского наземного транспорта, мусоровозов, обеспечивающих вывоз бытового и промышленного мусора на специальные свалки или в места их переработки, инкассаторских машин, перевозящих денежные средства из банка различным организациям и из...
Тип: Изобретение
Номер охранного документа: 0002492523
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6d10

Переносной амплитудный радиопеленгатор

Изобретение относится к области радиотехники и может быть использовано при решении задач радиопеленгации с помощью переносных (малогабаритных) средств в декаметровом и метровом диапазонах радиоволн. Технический результат - повышение точности определения азимута на источник радиоизлучений и...
Тип: Изобретение
Номер охранного документа: 0002493571
Дата охранного документа: 20.09.2013
27.10.2013
№216.012.7afd

Способ обнаружения и идентификации разыскиваемых транспондеров из множества пассивных транспондеров и система для его осуществления

Предлагаемые способ и система относятся к системам радиочастотной идентификации подвижных и неподвижных объектов (RFID-системы). Технической задачей изобретения является расширение функциональных возможностей известных технических решений путем автоматического определения местоположения...
Тип: Изобретение
Номер охранного документа: 0002497147
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.7f5e

Способ дистанционного обнаружения вещества

Предложен способ поиска и обнаружения наркотиков и взрывчатых веществ, находящихся в неметаллической оболочке и в укрывающих средах. Техническим результатом является повышение точности определения местоположения наркотического вещества. В веществе возбуждают магнитный резонанс с последующим...
Тип: Изобретение
Номер охранного документа: 0002498279
Дата охранного документа: 10.11.2013
27.11.2013
№216.012.84f4

Способ и система радиочастотной идентификации и позиционирования железнодорожного транспорта

Группа изобретений относится к области организации и управления движением на железных дорогах. Способ радиочастотной идентификации и позиционирования железнодорожного транспорта состоит в том, что на каждом участке пути располагают, как минимум, две радиочастотные метки. Первую метку размещают...
Тип: Изобретение
Номер охранного документа: 0002499714
Дата охранного документа: 27.11.2013
27.12.2013
№216.012.91e1

Автоматический беспилотный диагностический комплекс

Предлагаемый комплекс относится к области диагностической техники и может быть использован для систематического дистанционного контроля источников радиоизлучений (ИРИ) и состояния магистральных газопроводов и нефтепроводов, а именно для раннего обнаружения нарушений герметичности, повреждений и...
Тип: Изобретение
Номер охранного документа: 0002503038
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.9586

Когерентно-импульсный радиолокатор

Предлагаемое устройство относится к области радиолокации, в частности к системам, предназначенным для распознавания различия между неподвижными и подвижными объектами, а также для определения величины и знака доплеровской частоты. Достигаемый технический результат - повышение чувствительности и...
Тип: Изобретение
Номер охранного документа: 0002503972
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.958e

Система для определения колебаний водной поверхности

Изобретение относится к области геофизики и может быть использовано для сейсмической разведки районов, покрытых водой. Система содержит приемники 1.i (i=1, 2, …, n) колебаний атмосферного давления (микробарографы), схему 2 сравнения, систему 3 оповещения, блок 4 памяти, первый 5 и второй 6...
Тип: Изобретение
Номер охранного документа: 0002503980
Дата охранного документа: 10.01.2014
20.01.2014
№216.012.9924

Региональная информационная система связи

Изобретение относится к системам дуплексной радиосвязи и может быть использована для передачи сигналов управления и синхронизации с пункта контроля и управления большой группе территориально-распределенных объектов, а также для сбора информации с указанных объектов для централизованного...
Тип: Изобретение
Номер охранного документа: 0002504903
Дата охранного документа: 20.01.2014
10.02.2014
№216.012.9e1e

Устройство считывания информации с подвижных объектов железнодорожных составов

Изобретение относится к области управления железнодорожным транспортом. Устройство считывания информации с подвижных объектов железнодорожных составов содержит считывающее устройство, кодовые датчики и размещенные на локомотиве приемоответчики, блок питания и управления, генератор и блок приема...
Тип: Изобретение
Номер охранного документа: 0002506186
Дата охранного документа: 10.02.2014
Показаны записи 21-30 из 178.
10.11.2013
№216.012.7f5e

Способ дистанционного обнаружения вещества

Предложен способ поиска и обнаружения наркотиков и взрывчатых веществ, находящихся в неметаллической оболочке и в укрывающих средах. Техническим результатом является повышение точности определения местоположения наркотического вещества. В веществе возбуждают магнитный резонанс с последующим...
Тип: Изобретение
Номер охранного документа: 0002498279
Дата охранного документа: 10.11.2013
27.11.2013
№216.012.84f4

Способ и система радиочастотной идентификации и позиционирования железнодорожного транспорта

Группа изобретений относится к области организации и управления движением на железных дорогах. Способ радиочастотной идентификации и позиционирования железнодорожного транспорта состоит в том, что на каждом участке пути располагают, как минимум, две радиочастотные метки. Первую метку размещают...
Тип: Изобретение
Номер охранного документа: 0002499714
Дата охранного документа: 27.11.2013
27.12.2013
№216.012.91e1

Автоматический беспилотный диагностический комплекс

Предлагаемый комплекс относится к области диагностической техники и может быть использован для систематического дистанционного контроля источников радиоизлучений (ИРИ) и состояния магистральных газопроводов и нефтепроводов, а именно для раннего обнаружения нарушений герметичности, повреждений и...
Тип: Изобретение
Номер охранного документа: 0002503038
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.9586

Когерентно-импульсный радиолокатор

Предлагаемое устройство относится к области радиолокации, в частности к системам, предназначенным для распознавания различия между неподвижными и подвижными объектами, а также для определения величины и знака доплеровской частоты. Достигаемый технический результат - повышение чувствительности и...
Тип: Изобретение
Номер охранного документа: 0002503972
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.958e

Система для определения колебаний водной поверхности

Изобретение относится к области геофизики и может быть использовано для сейсмической разведки районов, покрытых водой. Система содержит приемники 1.i (i=1, 2, …, n) колебаний атмосферного давления (микробарографы), схему 2 сравнения, систему 3 оповещения, блок 4 памяти, первый 5 и второй 6...
Тип: Изобретение
Номер охранного документа: 0002503980
Дата охранного документа: 10.01.2014
20.01.2014
№216.012.9924

Региональная информационная система связи

Изобретение относится к системам дуплексной радиосвязи и может быть использована для передачи сигналов управления и синхронизации с пункта контроля и управления большой группе территориально-распределенных объектов, а также для сбора информации с указанных объектов для централизованного...
Тип: Изобретение
Номер охранного документа: 0002504903
Дата охранного документа: 20.01.2014
10.02.2014
№216.012.9e1e

Устройство считывания информации с подвижных объектов железнодорожных составов

Изобретение относится к области управления железнодорожным транспортом. Устройство считывания информации с подвижных объектов железнодорожных составов содержит считывающее устройство, кодовые датчики и размещенные на локомотиве приемоответчики, блок питания и управления, генератор и блок приема...
Тип: Изобретение
Номер охранного документа: 0002506186
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9f8d

Автоматический беспилотный диагностический комплекс

Изобретение относится к области диагностической техники и может быть использовано для систематического дистанционного контроля состояния магистральных газопроводов и хранилищ, а именно для раннего обнаружения нарушений герметичности, повреждений и утечки в газопроводе, и направлено на...
Тип: Изобретение
Номер охранного документа: 0002506553
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a33e

Способ обнаружения и идентификации взрывчатых и наркотических веществ и устройство для его осуществления

Предлагаемые способ и устройство относятся к технике обнаружения взрывчатых и наркотических веществ, в частности к способам и устройствам обнаружения взрывчатых и наркотических веществ в различных закрытых объемах и на теле человека, находящегося в местах массового скопления людей. Технической...
Тип: Изобретение
Номер охранного документа: 0002507505
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a370

Способ сличения шкал времени

Изобретение предназначено для сличения шкал времени, разнесенных на большие расстояния и размещенных на транспортных средствах и наземном пункте управления и контроля, а также может быть использовано для дистанционного контроля технического состояния транспортного средства и его местоположения...
Тип: Изобретение
Номер охранного документа: 0002507555
Дата охранного документа: 20.02.2014
+ добавить свой РИД